1
|
Zhou L, Tan F, Zhang X, Li Y, Yin W. Neuroprotection and mechanisms of ginsenosides in nervous system diseases: Progress and perspectives. IUBMB Life 2024; 76:862-882. [PMID: 38822647 DOI: 10.1002/iub.2862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Ginsenosides are the primary component discernible from ginseng, including Rb1, Rb2, Rd, Rg1, Rg2, and compound K, and so forth. They have been shown to have multiple pharmacological activities. In recent years, more and more studies have been devoted to the neuroprotection of various ginsenosides against neurological diseases and their potential mechanisms. This paper comprehensively summarizes and reviews the neuroprotective effects of various ginsenosides on neurological diseases, especially acute and chronic neurodegenerative diseases, and their mechanisms, as well as their potential therapeutic applications to promote neuroprotection in disease prevention, treatment, and prognosis. Briefly, ginsenosides exert effective neuroprotective effects on neurological conditions, including stroke, Alzheimer's disease, Parkinson's disease, and brain/spinal cord injuries through a variety of molecular mechanisms, including anti-inflammatory, antioxidant, and anti-apoptotic. Among them, some signaling pathways play important roles in related processes, such as PI3K/Akt, TLR4/NF-κB, ROS/TXNIP/NLRP3, HO-1/Nrf2, Wnt/β-catenin, and Ca2+ pathway. In conclusion, the present study reviews the research progress on the neuroprotective effects of ginsenosides in the last decade, with the aim of furnishing essential theoretical underpinning and effective references for further research and exploration of the multiple medicinal values of Chinese herbal medicines and their small molecule compounds, including ginseng and panax ginseng. Because there is less evidence in the existing clinical studies, future research should be focused on clinical trials in order to truly reflect the clinical value of various ginsenosides for the benefit of patients.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Feilong Tan
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Xue Zhang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yanhua Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Wenjie Yin
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
JIN H, WANG X, WANG R, LI J, YU J, ZHAO D, ZHAI L. Neuroprotective effect of Naochuxue prescription on intracerebral hemorrhage: inhibition of autophagy downregulating high mobility group box-1. J TRADIT CHIN MED 2024; 44:944-953. [PMID: 39380225 PMCID: PMC11462531 DOI: 10.19852/j.cnki.jtcm.20240515.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To determine the molecular mechanisms underlying the neuroprotective effects of Naochuxue prescription (,NCXP) in rats with intracerebral hemorrhage (ICH). METHODS Sprague-Dawley rats were injected with collagenase to generate ICH models, which were then randomly divided into six groups, including control, sham, model, and three intervention groups. The intervention groups received different doses of NCXP (0.13, 0.26, and 0.52 g/kg) daily for 10 d. High-performance liquid chromatography (HPLC) was used to analyze the chemical characteristics of NCXP. The neurobehavioral outcomes of the rats were evaluated using neurological deficit scores (Zea Longa 5) and the corner turn test. Pathomorphological changes in perihematomal tissues after ICH were observed using hematoxylin and eosin staining. Immunohistochemistry (IHC) was used to detect the inflammation expression of interleukin 6 (IL-6) and toll-like receptor 4 (TLR4). High mobility group box-1 (HMGB1), Beclin1, microtubule-associated protein 1 light chain 3 beta (LC3), and sequestosome 1 (p62) were detected using real-time quantitative polymerase chain reaction and Western blotting in perihematomal tissues. RESULTS HPLC showed that the NCXP had good stability. Rats with ICH had severe neurological function deficits compared to the control group. IHC results showed that NCXP significantly downregulated the expression of the inflammatory proteins IL-6 and TLR4. ICH rats treated with NCXP showed less neurological injury than the model group, accompanied by a significantly decreased expression of HMGB1, Beclin1, and LC3 and an increased expression of p62. CONCLUSIONS The neuroprotective effect of NCXP alleviated inflammation and autophagy possibly by downregulating HMGB1 expression. However, further research on the signaling pathways is required to verify this hypothesis.
Collapse
Affiliation(s)
- Hong JIN
- 1 College of Chinese medicine, Changchun University of Chinese Medicine, Changchun 13000, China
| | - Xinna WANG
- 2 Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Ruonan WANG
- 3 College of nursing, Changchun University of Chinese Medicine, Changchun 13000, China
| | - Jinjian LI
- 2 Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Junchao YU
- 2 Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Dexi ZHAO
- 2 Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Lu ZHAI
- 4 Research Center of Traditional Chinese Medicine, the First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 13000, China
| |
Collapse
|
3
|
Wang J, Wang J. Asiaticoside protected brain injury in hypertensive intracerebral hemorrhage via activation of the PI3K/AKT pathway. J Biochem Mol Toxicol 2024; 38:e23843. [PMID: 39253885 DOI: 10.1002/jbt.23843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
Hypertensive intracerebral hemorrhage (HICH) is a destructive disease with high mortality, incidence, and disability. Asiaticoside (AC) is a triterpenoid derivative that has demonstrated to exert a protective effect on neuron and blood vessel. To investigate the function and potential mechanism of AC on HICH. Human brain microvascular endothelial cells (hBMECs) were treated with 20 U/mL thrombin for 24 h to establish the HICH model in vitro, and AC with the concentration of 1, 2 and 4 µM were used to incubate hBMECs. The effect and potential mechanism of AC on HICH were investigated by using cell counting kit-8, flow cytometry, tube forming assays, vascular permeability experiments and western blot assays. In vivo, rats were injected with 20 µL hemoglobin with a concentration of 150 mg/mL, and then intragastrically administrated with 1.25, 2.5 and 5 mg/kg AC. Behavioral tests, brain water content measurement, hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling assays, and western blot were used to assess the effect and potential mechanism of AC on HICH. AC (at 2 and 4 µM) improved the proliferation, apoptosis, angiogenesis and vascular permeability in thrombin-induced hBMECs (p < 0.05). Besides, AC (2.5 and 5 mg/kg) ameliorated behavioral scores, brain water content, pathological lesion, apoptosis and the expression of vascular permeability-related proteins in rats with HICH (p < 0.05). In addition, AC elevated the expression of PI3K/AKT pathway after HICH both in cell and animal models (p < 0.05). Application of LY294002, an inhibitor of PI3K/AKT pathway, reversed the ameliorative effect of AC on the proliferation, apoptosis, angiogenesis and vascular permeability in thrombin-induced hBMECs (p < 0.05). AC reduced brain damage by increasing the expression of the PI3K/AKT pathway after HICH.
Collapse
Affiliation(s)
- Jicun Wang
- Department of Neurology, The Hospital of Shunyi District Beijing, Beijing, China
| | - Jianxin Wang
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan Provincial Cerebrovascular Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
- Department of Neurosurgery, The Hospital of Shunyi District Beijing, Beijing, China
| |
Collapse
|
4
|
Ru S, Sun J, Zhou W, Wei D, Shi H, Liang Y, Wu J, Sun W, Chu L. Effects of traditional Chinese medicine in the treatment of patients with central serous chorioretinopathy: A systematic review and meta-analysis. PLoS One 2024; 19:e0304972. [PMID: 38905170 PMCID: PMC11192357 DOI: 10.1371/journal.pone.0304972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/20/2024] [Indexed: 06/23/2024] Open
Abstract
Several studies have reported the efficacy of traditional Chinese medicine (TCM) for central serous chorioretinopathy (CSC), while some ophthalmologists are concerned that TCM may be a risk factor for CSC as some chinese herbs contain hormonal ingredients. This study aimed to evaluate the efficacy and safety of TCM in treating patients with CSC. Randomized controlled trials (RCTs) and observational studies of TCM for CSC were searched up to July 10, 2023 on the following biological databases without language and publication time restrictions: PubMed, Ovid Medline, Embase, Cochrane Library, The Chinese National Knowledge Infrastructure Database (CNKI), Technology Periodical Database (VIP), Wanfang, and Chinese Biomedical Literature Service System (SinoMed). Review Manager V.5.4.1 and Stata 14 software were used for data analysis. Finally, thirty-eight studies were finally included including 23 RCTs and 15 cohort studies. The meta-analysis showed that compared with the routine treatment alone, the combination of TCM can not only reduce the recurrence rate (OR = 0.29, 95% CI: 0.21,0.40; I2 = 0%) and central retinal thickness (CRT) (MD = - 35.63, 95% CI: - 45.96,-25.30; I2 = 89%) of CSC, but improve patients' best corrected visual acuity (BCVA) (SMD = 0.86, 95% CI: 0.62,1.11; I2 = 77%); additionally, it has no obvious side effects compared with routine treatment (OR = 0.72, 95% CI: 0.39,1.34; I2 = 10%). Overall, this study shows that the use of TCM does not increase the risk of CSC recurrence; on the contrary, the combination of TCM may reduce the recurrence of CSC and improve BCVA and CRT in patients with CSC compared with conventional treatment.
Collapse
Affiliation(s)
- Shuting Ru
- Department of Ophthalmology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Sun
- Department of Ophthalmology, Shanghai Pudong New Area Zhoupu Hospital, Shanghai, China
| | - Wanyu Zhou
- Department of Ophthalmology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Dong Wei
- Department of Ophthalmology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hang Shi
- Department of Ophthalmology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Liang
- Department of Ophthalmology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianguo Wu
- Department of Ophthalmology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wu Sun
- Department of Ophthalmology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Liqun Chu
- Department of Ophthalmology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Wu R, Liu Y, Zhang F, Dai S, Xue X, Peng C, Li Y, Li Y. Protective mechanism of Paeonol on central nervous system. Phytother Res 2024; 38:470-488. [PMID: 37872838 DOI: 10.1002/ptr.8049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
Cerebrovascular diseases involve neuronal damage, resulting in degenerative neuropathy and posing a serious threat to human health. The discovery of effective drug components from natural plants and the study of their mechanism are a research idea different from chemical synthetic medicines. Paeonol is the main active component of traditional Chinese medicine Paeonia lactiflora Pall. It widely exists in many medicinal plants and has pharmacological effects such as anti-atherosclerosis, antiplatelet aggregation, anti-oxidation, and anti-inflammatory, which keeps generally used in the treatment of cardiovascular and cerebrovascular diseases. Based on the therapeutic effects of Paeonol for cardiovascular and cerebrovascular diseases, this article reviewed the pharmacological effects of Paeonol in Alzheimer's disease, Parkinson's disease, stroke, epilepsy, diabetes encephalopathy, and other neurological diseases, providing a reference for the research of the mechanism of Paeonol in central nervous system diseases.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Liu J, Li X, Bai H, Yang X, Mu J, Yan R, Wang S. Traditional uses, phytochemistry, pharmacology, and pharmacokinetics of the root bark of Paeonia x suffruticosa andrews: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116279. [PMID: 36822345 DOI: 10.1016/j.jep.2023.116279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moutan Cortex (MC), commonly known as "Mu dan pi", refers to the dried root bark of Paeonia x suffruticosa Andrews and is broadly used as a traditional herbal medication in China, Japan, and Korea. For thousands of years, it has been utilized to treat female genital, extravasated blood, cardiovascular, and stagnant blood disorders. AIM OF THE REVIEW The purpose of this review article was to summarize information on the traditional uses, phytochemistry, pharmacology and pharmacokinetics of MC, as well as to outline the further research directions for the development of new drugs and the associations between traditional uses and pharmacological effects. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including PubMed, Web of Science, ScienceDirect, SciFinder, China Knowledge Resource Integrated Database, and Google Scholar. The date was from 1992 to 2022. RESULTS Approximately 163 chemical compounds have been extracted and identified from MC, including monoterpenes, monoterpene glycosides, triterpenes, phenolics, flavonoids, volatile oils, alkaloids, and others. In these categories, the monoterpene glycosides and phenols being the most common. A wide variety of pharmacological effects have been described for MC crude extracts and active molecules, such as antioxidant, anti-inflammatory, antibacterial and antiviral, antitumor, antidiabetic, organ protection, and neuroprotective activities, as well as treating cardiovascular diseases. Pharmacokinetics has been also used in the study of MC, including its crude extracts or chemical constituents, in order to explore the therapeutic mechanism, direct clinically appropriate application and provide new ideas for the exploitation of innovative medicines. CONCLUSION Modern pharmacological research has demonstrated that MC, as a significant therapeutic resource, has the ability to heal a wide range of diseases, particularly female genital and cardiovascular problems. These researches propose therapeutic ideas for the development of novel MC medicines. Furthermore, preclinical and clinical study have verified several observed pharmacological properties related with the traditional usages of MC.
Collapse
Affiliation(s)
- Jincai Liu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Huixin Bai
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xu Yang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jun Mu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Ruonan Yan
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Siwang Wang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
7
|
Hou JY, Wu JR, Chen YB, Xu D, Liu S, Shang DD, Fan GW, Cui YL. Systematic identification of the interventional mechanism of Qingfei Xiaoyan Wan (QFXYW) in treatment of the cytokine storm in acute lung injury using transcriptomics-based system pharmacological analyses. PHARMACEUTICAL BIOLOGY 2022; 60:743-754. [PMID: 35357989 PMCID: PMC8979529 DOI: 10.1080/13880209.2022.2055090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT Acute lung injury (ALI) is a complex, severe inflammation disease with high mortality, and there is no specific and effective treatment for ALI. Qingfei Xiaoyan Wan (QFXYW) has been widely used to treat lung-related diseases for centuries. OBJECTIVE This study evaluates the potential effects and elucidates the therapeutic mechanism of QFXYW against LPS induced ALI in mice. MATERIALS AND METHODS BALB/c Mice in each group were first orally administered medicines (0.9% saline solution for the control group, 0.5 mg/kg Dexamethasone, or 1.3, 2.6, 5.2 g/kg QFXYW), after 4 h, the groups were injected LPS (1.0 mg/kg) to induce ALI, then the same medicines were administered repeatedly. The transcriptomics-based system pharmacological analyses were applied to screen the hub genes, RT-PCR, ELISA, and protein array assay was applied to verify the predicted hub genes and key pathways. RESULTS QFXYW significantly decreased the number of leukocytes from (6.34 ± 0.51) × 105/mL to (4.01 ± 0.11) × 105/mL, accompanied by the neutrophil from (1.41 ± 0.19) × 105/mL to (0.77 ± 0.10) × 105/mL in bronchoalveolar lavage fluid (BALF). Based on Degree of node connection (Degree) and BottleNeck (BN), important parameters of network topology, the protein-protein interaction (PPI) network screened hub genes, including IL-6, TNF-α, CCL2, TLR2, CXCL1, and MMP-9. The results of RT-PCR, ELISA, and protein chip assay revealed that QFXYW could effectively inhibit ALI via multiple key targets and the cytokine-cytokine signalling pathway. CONCLUSIONS This study showed that QFXYW decreased the number of leukocytes and neutrophils by attenuating inflammatory response, which provides an important basis for the use of QFXYW in the treatment of ALI.
Collapse
Affiliation(s)
- Jing-Yi Hou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Jia-Rong Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Yi-Bing Chen
- Tianjin Key Laboratory of Transformation of Traditional Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Shu Liu
- Tianjin Zhongxin Pharmaceutical Group Corporation Limited Darentang Pharmaceutical Factory, Tianjin, China
| | - Dan-dan Shang
- Tianjin Zhongxin Pharmaceutical Group Corporation Limited Darentang Pharmaceutical Factory, Tianjin, China
| | - Guan-Wei Fan
- Tianjin Key Laboratory of Transformation of Traditional Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Guan-Wei Fan Tianjin Key Laboratory of Transformation of Traditional Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- CONTACT Yuan-Lu Cui State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
8
|
WEI L, LI W, TIAN T, ZHANG N, YANG S, YANG D, LI G, YE F. Identification of novel biomarkers and therapeutic target candidates for stasis-heat symptom pattern of acute intracerebral hemorrhage by quantitative plasma proteomics. J TRADIT CHIN MED 2022; 42:622-632. [PMID: 35848980 PMCID: PMC9924781 DOI: 10.19852/j.cnki.jtcm.20220617.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To explore the novel biomarkers and therapeutic target candidates related to the stasis-heat syndrome of acute intracerebral hemorrhage (AICH). METHODS Applying an isobaric tagging for relative and absolute quantitation-(iTRAQ-) based quantitative proteomic approach, plasma samples from AICH patients with stasis-heat, and AICH patients with non-stasis-heat and healthy control subjects were collected and analyzed to distinguish differentially expressed proteins (DEPs) correlated to AICH with stasis-heat in this block design. The standard Western blot was applied to verify DEPs. Additionally, DEPs were analyzed via bioinformatic platforms and further approved via Ingenuity Pathway Analysis (IPA). RESULTS A total of 26 DEPs were found among AICH with the stasis-heat, AICH with non-stasis-heat, and healthy control group. The seven DEPs compared with the non-stasis-heat group are closely related to the pathogenesis of stasis heat. These proteins showed three different protein expression patterns. The alpha-1-b glycoprotein (A1BG) and copper-protein (CP) were up-regulated in the stasis-heat group, but down-regulated in the non-stasis-heat group. Compared with the non-stasis-heat group, the expression abundance of actinin, alpha 1 (ACTN1), carbonic anhydrase I (CA1), peroxiredoxin 2 (PRDX2), and vinculin (VCL) is higher in the stasis-heat group, while the CD44 is the opposite. These differences reflect that stasis-heat syndrome has more severe inflammatory immune response, coagulation disorders and damage. Bioinformatics analysis revealed that a wide variety of cellular and metabolic processes and some signaling pathways were involved in the pathophysiology of AICH with stasis-heat. AICH with stasis-heat syndrome showed more severe inflammatory reactions, tissue damage, and coagulation disorders than non-stasis heat syndrome. CONCLUSIONS There are differences in the protein expression patterns between the stasis-heat syndrome and non-stasis-heat syndrome. These differences reflect that stasis-heat syndrome has more severe damage. CD44, CP, ACTN1, CA1, VCL, PRDX2, and A1BG could be the potential biomarkers and therapeutic target candidates of the stasis-heat subtype. This study provides a reasonable explaination for Liangxue Tongyu decoction through anti-inflammatory and brain protection treatment.
Collapse
Affiliation(s)
- Lexin WEI
- 1 Department of Public Health, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiyi LI
- 1 Department of Public Health, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting TIAN
- 2 Emergency Department, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Ning ZHANG
- 1 Department of Public Health, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijing YANG
- 1 Department of Public Health, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dongqing YANG
- 1 Department of Public Health, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guochun LI
- 1 Department of Public Health, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Prof. LI Guochun, Department of Public Health, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fang YE
- 3 the Key Laboratory Department of Stasis-heat Pathogenesis of Traditional Chinese Medicine, the First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210001, China
- Prof. YE Fang, the Key Research Department of Stasis-heat Pathogenesis of Traditional Chinese Medicine, the First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China. , Telephone: +86-25-85511926
| |
Collapse
|
9
|
Duan T, Li L, Yu Y, Li T, Han R, Sun X, Cui Y, Liu T, Wang X, Wang Y, Fan X, Liu Y, Zhang H. Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacol Res 2022; 179:106200. [PMID: 35367344 DOI: 10.1016/j.phrs.2022.106200] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) refers to hemorrhage caused by non-traumatic vascular rupture in the brain parenchyma, which is characterized by acute onset, severe illness, and high mortality and disability. The influx of blood into the brain tissue after cerebrovascular rupture causes severe brain damage, including primary injury caused by persistent hemorrhage and secondary brain injury (SBI) induced by hematoma. The mechanism of brain injury is complicated and is a significant cause of disability after ICH. Therefore, it is essential to understand the mechanism of brain injury after ICH to develop drugs to prevent and treat ICH. Studies have confirmed that many traditional Chinese medicines (TCM) can reduce brain injury by improving neurotoxicity, inflammation, oxidative stress (OS), blood-brain barrier (BBB), apoptosis, and neurological dysfunction after ICH. Starting from the pathophysiological process of brain injury after ICH, this paper summarizes the mechanisms by which TCM improves cerebral injury after ICH and its comparison with conventional western medicine, so as to provide clues and a reference for the clinical application of TCM in the prevention and treatment of hemorrhagic stroke and further research and development of new drugs.
Collapse
Affiliation(s)
- Tian Duan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajun Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiantian Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyi Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Integrated Network Pharmacology and Mice Model to Investigate Qing Zao Fang for Treating Sjögren's Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3690016. [PMID: 35341135 PMCID: PMC8941571 DOI: 10.1155/2022/3690016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease, and its conventional treatment has exhibited limited therapeutic efficacy. Qing Zao Fang (QZF), a traditional Chinese medicine formula, is used in the treatment of Sjögren's syndrome, but its chemical composition is complex, and its pharmacological mechanism is not clear. Therefore, this study aims to explore the potential mechanism of QZF in the treatment of Sjögren's syndrome based on network pharmacology and SS mouse model. The main active components and predicted targets of QZF were analyzed by network pharmacology. The SS mouse model was constructed and divided into 6 groups: control, SS, SS + hydroxychloroquine (HCQ)-treated, SS + low-dose QZF-treated, SS + medium-dose QZF-treated, and SS + high-dose QZF-treated group. Immunohistochemical, ELISA, and qRT-PCR assays were performed to detect the expressions of targets associated with SS. TUNEL staining was used to detect apoptosis. Cumulatively, 230 active compounds and 1883 targets of QZF were identified. There were 227 common targets for QZF and SS. The effective active ingredients were stigmasterol, neocryptotanshinone II, neotanshinone C, miltionone I, and beta-pinene. It mainly acts on biological processes such as inflammatory response, chemokine metabolic process, and immune response as well as pathways such as FoxO signaling pathway, Yersinia infection, HIF-1 signaling pathway, and TNF signaling pathway. In SS mice, levels of AKT1, HIF-1α, TNF-α, IL-6, and IL-17A were increased, while decreased after QZF treatment. In contrast, IL-10 levels were decreased in SS mice and increased in QZF-treated mice. In addition, QZF reduced apoptosis in the submandibular gland tissue compared to SS mice. It can be concluded that the QZF in treatment of SS is the result of the combined action of multiple components, multiple targets, and multiple pathways. This study improves the understanding of the link between QZF and SS on molecular mechanisms.
Collapse
|
11
|
Tian H, Chen X, Liao J, Yang T, Cheng S, Mei Z, Ge J. Mitochondrial quality control in stroke: From the mechanisms to therapeutic potentials. J Cell Mol Med 2022; 26:1000-1012. [PMID: 35040556 PMCID: PMC8831937 DOI: 10.1111/jcmm.17189] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial damage is a critical contributor to stroke‐induced injury, and mitochondrial quality control (MQC) is the cornerstone of restoring mitochondrial homeostasis and plays an indispensable role in alleviating pathological process of stroke. Mitochondria quality control promotes neuronal survival via various adaptive responses for preserving mitochondria structure, morphology, quantity and function. The processes of mitochondrial fission and fusion allow for damaged mitochondria to be segregated and facilitate the equilibration of mitochondrial components such as DNA, proteins and metabolites. The process of mitophagy is responsible for the degradation and recycling of damaged mitochondria. This review aims to offer a synopsis of the molecular mechanisms involved in MQC for recapitulating our current understanding of the complex role that MQC plays in the progression of stroke. Speculating on the prospect that targeted manipulation of MQC mechanisms may be exploited for the rationale design of novel therapeutic interventions in the ischaemic stroke and haemorrhagic stroke. In the review, we highlight the potential of MQC as therapeutic targets for stroke treatment and provide valuable insights for clinical strategies.
Collapse
Affiliation(s)
- Heyan Tian
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Jun Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Zarneshan SN, Fakhri S, Khan H. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacol Res 2022; 177:106099. [DOI: 10.1016/j.phrs.2022.106099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 12/15/2022]
|
13
|
Wu M, Yu Z, Li X, Zhang X, Wang S, Yang S, Hu L, Liu L. Paeonol for the Treatment of Atherosclerotic Cardiovascular Disease: A Pharmacological and Mechanistic Overview. Front Cardiovasc Med 2021; 8:690116. [PMID: 34368250 PMCID: PMC8333700 DOI: 10.3389/fcvm.2021.690116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
With improvement in living standards and average life expectancy, atherosclerotic cardiovascular disease incidences and mortality have been increasing annually. Paeonia suffruticosa, a natural herb, has been used for the treatment of atherosclerotic cardiovascular disease for thousands of years in Eastern countries. Paeonol is an active ingredient extracted from Paeonia suffruticosa. Previous studies have extensively explored the clinical benefits of paeonol. However, comprehensive reviews on the cardiovascular protective effects of paeonol have not been conducted. The current review summarizes studies reporting on the protective effects of paeonol on the cardiovascular system. This study includes studies published in the last 10 years. The biological characteristics of Paeonia suffruticosa, pharmacological mechanisms of paeonol, and its toxicological and pharmacokinetic characteristics were explored. The findings of this study show that paeonol confers protection against atherosclerotic cardiovascular disease through various mechanisms, including inflammation, platelet aggregation, lipid metabolism, mitochondria damage, endoplasmic reticulum stress, autophagy, and non-coding RNA. Further studies should be conducted to elucidate the cardiovascular benefits of paeonol.
Collapse
Affiliation(s)
- Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoya Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaonan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songzi Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanqing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Synergistic Network Pharmacology for Traditional Chinese Medicine Liangxue Tongyu Formula in Acute Intracerebral Hemorrhagic Stroke. Neural Plast 2021; 2021:8874296. [PMID: 33727915 PMCID: PMC7936909 DOI: 10.1155/2021/8874296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background Nowadays, acute intracerebral hemorrhage stroke (AICH) still causes higher mortality. Liangxue Tongyu Formula (LXTYF), originating from a traditional Chinese medicine (TCM) prescription, is widely used as auxiliary treatment for AICH. Objective To dig into the multicomponent, multitarget, and multipathway mechanism of LXTYF on treating AICH via network pharmacology and RNA-seq. Methods Network pharmacology analysis was used by ingredient collection, target exploration and prediction, network construction, and Gene Ontology (GO) and KEGG analysis, with the Cytoscape software and ClusterProfiler package in R. The RNA-seq data of the AICH-rats were analyzed for differential expression and functional enrichments. Herb-Compound-Target-Pathway (H-C-T-P) network was shown to clarify the mechanism of LXTYF for AICH. Results 76 active ingredients (quercetin, Alanine, kaempferol, etc.) of LXTYF and 376 putative targets to alleviate AICH (PTGS2, PTGS1, ESR1, etc.) were successfully identified. The protein-protein interaction (PPI) network indicated the important role of STAT3. The functional enrichment of GO and KEGG pathway showed that LXTYF is most likely to influence MAPK and PI3K-Akt signaling pathways for AICH treatment. From the RNA-seq of AICH-rats, 583 differential mRNAs were identified and 14 of them were consistent with the putative targets of LXTYF for AICH treatment. The KEGG pathway enrichment also implied that the MAPK signaling pathway was the most correlated one among all the related signaling pathways. Many important targets with expression changes of LXTYF for AICH treatment and their related pathways are great markers of antioxidation, anti-inflammatory, antiapoptosis, and lowering blood pressure, which indicated that LXTYF may play mutiroles in the mechanisms for AICH treatment. Conclusion The LXTYF attenuates AICH partially by antioxidation, anti-inflammatory, and antiapoptosis and lowers blood pressure roles through regulating the targets involved MAPK, calcium, apoptosis, and TNF signaling pathway, which provide notable clues for further experimental validation.
Collapse
|
15
|
Shang Z, Xu L, Kuang Y, Lin Y, Liu S, Sun L, Bo T, Ye M, Qiao X. Simultaneous determination of 35 constituents and elucidation of effective constituents in a multi-herb Chinese medicine formula Xiaoer-Feire-Kechuan. J Pharm Anal 2021; 11:717-725. [PMID: 35028176 PMCID: PMC8740375 DOI: 10.1016/j.jpha.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/24/2020] [Accepted: 01/24/2021] [Indexed: 01/20/2023] Open
Abstract
Xiaoer-Feire-Kechuan (XFK) is an 11-herb Chinese medicine formula to treat cough and pulmonary inflammation. The complicated composition rendered its chemical analysis and effective-component elucidation. In this study, we combined quantitative analysis and bioactivity test to reveal the anti-inflammatory constituents of XFK. First, UPLC-DAD and UHPLC/Q-Orbitrap-MS methods were established and validated to quantify 35 analytes (covering 9 out of 11 herbs) in different XFK formulations. Parallel reaction monitoring mode built in Q-Orbitrap-MS was used to improve the sensitivity and selectivity. Then, anti-inflammatory activities of the 35 analytes were analyzed using in vitro COX-2 inhibition assay. Finally, major analytes forsythosides H, I, A (8–10), and baicalin (15) (total contents varied from 21.79 to 91.20 mg/dose in different formulations) with significant activities (inhibitory rate ≥ 80%) were proposed as the anti-inflammatory constituents of XFK. The present study provided an effective strategy to discover effective constituents of multi-herb formulas. Effective components were elucidated for XFK, a 11-herb formula. ∙Contents of 35 compounds were determined using UPLC-DAD and UHPLC/Q-Orbitrap-MS. ∙Parallel Reaction Monitoring mode was used to improve the sensitivity. ∙COX-2 inhibition assay was used to evaluate the bioactivity of 35 compounds. ∙Five major compounds were proposed as anti-inflammatory constituents for XFK.
Collapse
Affiliation(s)
- Zhanpeng Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lulu Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Lin
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 550025, China
| | - Shuang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Long Sun
- Thermo Fisher Scientific, Beijing, 100102, China
| | - Tao Bo
- Thermo Fisher Scientific, Beijing, 100102, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author.
| |
Collapse
|
16
|
Jin ZL, Gao WY, Liao SJ, Yu T, Shi Q, Yu SZ, Cai YF. Paeonol inhibits the progression of intracerebral haemorrhage by mediating the HOTAIR/UPF1/ACSL4 axis. ASN Neuro 2021; 13:17590914211010647. [PMID: 33906483 PMCID: PMC8718120 DOI: 10.1177/17590914211010647] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 01/21/2023] Open
Abstract
Intracerebral haemorrhage (ICH) is a devastating subtype of stroke with high morbidity and mortality. It has been reported that paeonol (PAN) inhibits the progression of ICH. However, the mechanism by which paeonol mediates the progression of ICH remains unclear. To mimic ICH in vitro, neuronal cells were treated with hemin. An in vivo model of ICH was established to detect the effect of paeonol on ferroptosis in neurons during ICH. Cell viability was tested by MTT assay. Furthermore, cell injury was detected by GSH, MDA and ROS assays. Ferroptosis was examined by iron assay. RT-qPCR and western blotting were used to detect gene and protein expression, respectively. The correlation among HOTAIR, UPF1 and ACSL4 was explored by FISH, RNA pull-down and RIP assays. Paeonol significantly inhibited the ferroptosis of neurons in ICH mice. In addition, paeonol significantly reversed hemin-induced injury and ferroptosis in neurons, while this phenomenon was notably reversed by HOTAIR overexpression. Moreover, paeonol notably inhibited ferroptosis in hemin-treated neuronal cells via inhibition of ACSL4. Additionally, HOTAIR bound to UPF1, and UPF1 promoted the degradation of ACSL4 by binding to ACSL4. Furthermore, HOTAIR overexpression reversed paeonol-induced inhibition of ferroptosis by mediating the UPF1/ACSL4 axis. Paeonol inhibits the progression of ICH by mediating the HOTAIR/UPF1/ACSL4 axis. Therefore, paeonol might serve as a new agent for the treatment of ICH.
Collapse
Affiliation(s)
- Zheng-Long Jin
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji’nan University, Jiangmen, P.R. China
| | - Wen-Ying Gao
- Department of TCM Pediatrics, Jiangmen Maternal and Child Health Hospital, Jiangmen, P.R. China
| | - Shao-Jun Liao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Tao Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji’nan University, Jiangmen, P.R. China
| | - Qing Shi
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji’nan University, Jiangmen, P.R. China
| | - Shang-Zhen Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji’nan University, Jiangmen, P.R. China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
17
|
Cheng TF, Zhao J, Wu QL, Zeng HW, Sun YT, Zhang YH, Mi R, Qi XP, Zou JT, Liu AJ, Jin HZ, Zhang WD. Compound Dan Zhi tablet attenuates experimental ischemic stroke via inhibiting platelet activation and thrombus formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153330. [PMID: 32932202 DOI: 10.1016/j.phymed.2020.153330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Compound Dan Zhi tablet (DZT) is a commonly used traditional Chinese medicine formula. It has been used for the treatment of ischemic stroke for many years in clinical. However, its pharmacological mechanism is unclear. PURPOSE The aim of the current study was to understand the protective effects and underlying mechanisms of DZT on ischemic stroke. METHODS Fifteen representative chemical markers in DZT were determined by ultra-performance liquid chromatography coupled with tandem quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). The protective effect of DZT against ischemic stroke was studied in a rat model of middle cerebral artery occlusion (MCAO), and the mechanism was further explored through a combination of network pharmacology and experimental verification. RESULTS Quantitative analysis showed that the contents of phenolic acids, furan sulfonic acids, tanshinones, flavonoids, saponins and phthalides in DZT were calculated as 7.47, 0.788, 0.627, 0.531 and 0.256 mg/g, respectively. Phenolic acids were the most abundant constituents. Orally administered DZT (1.701 g kg-1) significantly alleviated the infarct size and neurological scores in MCAO rats. The network analysis predicted that 53 absorbed active compounds in DZT-treated plasma targeted 189 proteins and 47 pathways. Ten pathways were associated with anti-platelet activity. In further experiments, DZT (0.4 and 0.8 mg mL-1) markedly inhibited in vitro prostaglandin G/H synthase 1 (PTGS1) activity. DZT (0.4 and 0.8 mg mL-1) significantly inhibited in vitro platelet aggregation in response to ADP or AA. DZT (113 and 226 mg kg-1, p.o.) also produced a marked inhibition of ADP- or AA-induced ex vivo platelet aggregation with a short duration of action. DZT decreased the level of thromboxane A2 (TXA2) in MCAO rats. In the carrageenan-induced tail thrombosis model and ADP-induced acute pulmonary thromboembolism mice model, DZT (113 and 226 mg kg-1, p.o.) prevented thrombus formation. Importantly, DZT (113 and 226 mg kg-1, p.o.) exhibited a low bleeding liability. CONCLUSION DZT protected against cerebral ischemic injury. The inhibition of TXA2 level, platelet aggregation and thrombosis formation might involve in the protective mechanism.
Collapse
Affiliation(s)
- Tao-Fang Cheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Zhao
- Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiu-Lin Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Hua-Wu Zeng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yu-Ting Sun
- Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Hao Zhang
- Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rui Mi
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xiao-Po Qi
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jing-Tao Zou
- Tonghua Huaxia Pharmaceutical Co., Ltd., Tonghua, 134100, China
| | - Ai-Jun Liu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Hui-Zi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
18
|
Zhang X, Zhang XF, Wang L, Guo DY, Zhang JM, Chen YG, Wang ZC, Pei LS, Chen JX, Shi YJ, Zou JB. Analysis of Clinical Efficacy of Traditional Chinese Medicine in Recovery Stage of Stroke: A Systematic Review and Meta-Analysis. Cardiovasc Ther 2020; 2020:7172052. [PMID: 33042224 PMCID: PMC7528130 DOI: 10.1155/2020/7172052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/15/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We provide an updated meta-analysis with detailed information on a combination of TCM and routine treatment. METHODS Retrieve appropriate articles with no language restrictions on keywords until 8 July 2019 in an electronic database. All trajectories are screened according to certain criteria. The quality of certified research was also evaluated. We made a detailed record of the results of the measurement. Meta-analysis was carried out by using the Revman 5.3 software. RESULTS Sixty-seven RCTs were included, and 6594 subjects were analyzed. Compared with routine treatment, the total effective rate (TER) of TCM combined with routine treatment was improved, and the recovery of stroke was also significantly accelerated. Regulation of blood lipids by notably shrinking the contents of TC, TG, and LDL and enhancing the levels of HDL. The levels of serum hs-CRP, WHV, and WLV decreased significantly, indicating that the expression of thrombomodulin was decreased after the comprehensive treatment of traditional Chinese medicines (TCMs). The combination of TCM treatment could enhance the protection of neural function by decreasing the NIHSS scoring while increasing the BI scoring. Paeoniae Radix Rubra, Angeticae Sinensis Radix, etc., can effectively improve the clinical symptoms of stroke convalescent patients and promote the recovery of neurological function. ACU of Baihui, Renzhong, etc., can improve the clinical rehabilitation effect of patients. However, our findings must be handled with care because of the small sample size and low quality of clinic trials cited. Other rigorous and large-scale RCTs are in need to confirm these results. CONCLUSION A combination of TCM and routine treatment in the treatment of stroke could improve TER, and it is beneficial to the rehabilitation of patients in the recovery period of apoplexy. These effects can be mediated by a combination of several mechanisms. Nevertheless, due to the limitations of this study, these results should be handled with caution.
Collapse
Affiliation(s)
- Xue Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China 712046
| | - Xiao-Fei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China 712046
| | - Lin Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China 712046
| | - Dong-Yan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China 712046
| | - Jia-Min Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China 712046
| | - Yong-Gang Chen
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China 712046
| | - Zhi-Chao Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China 712046
| | - Li-Shan Pei
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China 712046
| | - Jiang-Xue Chen
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China 712046
| | - Ya-Jun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China 712046
| | - Jun-Bo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, China 712046
| |
Collapse
|
19
|
Li J, Ye M, Gao J, Zhang Y, Zhu Q, Liang W. Systematic Understanding of Mechanism of Yi-Qi-Huo-Xue Decoction Against Intracerebral Hemorrhagic Stroke Using a Network Pharmacology Approach. Med Sci Monit 2020; 26:e921849. [PMID: 32769962 PMCID: PMC7433745 DOI: 10.12659/msm.921849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH), a fatal type of stroke, profoundly affects public health. Yi-Qi-Huo-Xue decoction (YQHXD), a traditional Chinese medicine (TCM) prescription, is verified to be an efficient method to treat ICH stroke among the Chinese population. Nevertheless, the pharmacological mechanisms of YQHXD have been unclear. Material/Methods We used a strategy based on network pharmacology to explore the possible multi-component, multi-target, and multi-pathway pattern of YQHXD in treating ICH. First, candidate targets for YQHXD were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Then, these candidate YQHXD targets were used in combination with the known targets for the treatment of ICH stroke to construct the core network (cPPI) using data on protein–protein interaction (PPI). We calculated 5 topological parameters for identification of the main hubs. Pathway enrichment and GO biological process enrichment analyses were performed after the incorporation of the main hubs into ClueGO. Results In total, 55 candidate YQHXD targets for ICH were recognized to be the major hubs in accordance with their topological importance. As suggested by enrichment analysis, the YQHXD targets for ICH were roughly classified into several biological processes (related to redox equilibrium, cell–cell communication, adhesion and collagen biosynthesis, cytokine generation, lymphocyte differentiation and activation, neurocyte apoptosis and development, neuroendocrine system, and vascular development) and related pathways (VEGF, mTOR, NF-kB, RAS/MAPK, JAK/STAT and cytokine–cytokine receptors interaction), indicating those mechanisms underlying the therapeutic effect of YQHXD. Conclusions The present results may serve as a pharmacological framework for TCM studies in the future, helping to promote the use of YQHXD in clinical treatment of ICH.
Collapse
Affiliation(s)
- Jian Li
- Department of Neurosurgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Ming Ye
- Department of Neurosurgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Jueming Gao
- Department of Neurosurgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Yeqing Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Qiyong Zhu
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Weibang Liang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
20
|
Jiang C, Yang X, Dong J, Li G. Systematic Review and Meta-Analysis of Randomized Controlled Trials of Liangxue Tongyu Formula on Patients With Acute Intracerebral Hemorrhage. Front Pharmacol 2020; 11:437. [PMID: 32351387 PMCID: PMC7174629 DOI: 10.3389/fphar.2020.00437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/20/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND As a traditional Chinese medicine (TCM) prescription for acute stroke, Liangxue Tongyu formula (LXTYF) was widely used as auxiliary treatment measure in some clinical practice. This study aimed to evaluate the clinical efficacy and safety of LXTYF combined western conventional medicine (WCM) with WCM only for acute intracerebral hemorrhage (ICH). METHODS We systematically searched PubMed, Embase, Cochrane Library, CMB (Chinese biomedicine database), CNKI (China National Knowledge Infrastructure), WanFang, and VIP until August 2019 to confirm relevant randomized controlled trials (RCTs) compared the combination of LXTYF and WCM with WCM alone for the treatment of acute ICH. Two investigators independently assessed the risk of bias, and extracted and analyzed the data from the identified studies using RevMan 5.3.0 software following Cochrane's standard and PRISMA guidelines. The herbal compositions of LXTYF were also assessed. RESULTS 15 RCTs were identified, totally recruiting 1648 patients with acute intracerebral hemorrhage. Compared with the WCM alone, the combination therapy of LXTYF with WCM could improve the clinical effective rate (RR, 1.21; 95% CI, 1.15-1.25, P < 0.05) and ADL score (MD, 18.09; 95% CI, 12.11-24.07; P < 0.05), and reduce syndrome scores of the TCM (MD, -4.11; 95% CI, -4.69 to -3.53; P < 0.05) and the Glasgow outcome score(GOS) (MD=0.43, 95%CI: 0.06 to 0.79, P=0.02) Moreover, there was no sufficient evidence to indicate the adverse effects would increase compared with WCM alone. CONCLUSION Based on current evidence, we concluded that the combined therapy had some benefits in treating acute intracerebral hemorrhage. However, considering the potential biases and limitations of our study, additional large, high-quality RCTs are required in the future to confirm or refute the effects of LFTYF combined with WCM in acute stroke.
Collapse
Affiliation(s)
| | | | | | - Guochun Li
- Department of Public Health, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
21
|
Guo Q, Yang S, Yang D, Zhang N, Li X, Chen T, Chen J, Li G, Yin L, Wu Q. Differential mRNA expression combined with network pharmacology reveals network effects of Liangxue Tongyu Prescription for acute intracerebral hemorrhagic rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112231. [PMID: 31520671 DOI: 10.1016/j.jep.2019.112231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liangxue Tongyu Prescription (LTP) is a traditional Chinese medicine formula composed of 8 crude drugs that is widely used to treat acute intracerebral hemorrhage (AICH). AIM OF THE STUDY To verify the efficacy of LTP on the survival time in the treatment of acute intracerebral hemorrhagic rats (AICHs), and to elucidate its network pharmacodynamic mechanism of multi-component, multi-target, and multi-signaling pathways. MATERIALS AND METHODS Survival analysis was used to evaluate the survival time of AICH rats induced by different doses of collagenase and the efficacy of three doses of LTP in the treatment of AICH rats. The Kaplan-Meier curves for survival time were produced and compared with the Log-rank test and Wilcoxon (Gehan) χ2. Differential mRNA-seq combined with network pharmacology was used to disclose the network effect mechanism of LTP on AICH, and the obtained differential genes were mapped into the predictive empirical compound-target network model (ECT network model) and the empirical compound-target-pathogenesis (disease) network model (ECTP network model). RESULTS The median survival time of four different doses of LTP-treated groups (0.00 g/kg, 5.78 g/kg, 11.55 g/kg, 23.10 g/kg) for adult AICH rats by 0.18 U collagenase was 14 h, 37 h, 150 h, and 51 h respectively, and the 7-day survival rates were 33.3%, 41.7%, 50.0%, and 38.5%, of which the medium-dose group (MD) had a longer survival time and higher survival rate. Through further validation experiments, the MD group had a better efficacy trend with a median survival time of 168 h vs 23 h in the model control group (MC) (Wilcoxon Gehan Test, χ2 = 3.478, P = 0.062). The transcriptomic analysis of mRNA showed that 583 significant differential genes were found between the MC and MD group and 7 key therapeutic targets regulated by 29 compounds in LTP on AICH were screened out by VCT and VCTP network model. These targets were involved in 5 regulatory models or pathways. CONCLUSION Our study confirmed the exact efficacy of the LTP in the treatment of AICH and revealed the potential pharmacodynamic components and mode of action of the LTP on AICH. Using differential transcriptome of mRNA combined with network pharmacology, we screened out 29 chemical compounds as the potential effective ingredients of LTP which acted on 7 targets of AICH involving 5 pathological pathways, mainly including repairing the brain function defect, improving neural function, protecting blood-brain barrier from damage, reducing inflammatory factors, and inhibiting apoptosis. The present study not only provides a new explanation for the 'multi-component, multi-target, multi-pathway' effects of the LTP on AICH but also screened out some major compounds of LTP and their potential targets which will facilitate the development of new drugs for AICH.
Collapse
Affiliation(s)
- Qingqing Guo
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Shijin Yang
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Dongqing Yang
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Ning Zhang
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Xun Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Nanjing, PR China
| | - Tianli Chen
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Jiayan Chen
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Guochun Li
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China.
| | - Lian Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Nanjing, PR China.
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, PR China.
| |
Collapse
|
22
|
Han F, Xu H, Shen JX, Pan C, Yu ZH, Chen JJ, Zhu XL, Cai YF, Lu YP. RhoA/Rock2/Limk1/cofilin1 pathway is involved in attenuation of neuronal dendritic spine loss by paeonol in the frontal cortex of D-galactose and aluminum-induced Alzheimer’s disease-like rat model. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|