1
|
Upton R, Agudelo I, Cabrera Y, Caceres A, Calderón A, Calzada F, Camacho R, da Costa F, Dobrecky C, Enciso R, Escobar M, Fakhary M, Fletcher E, Gao Q, Lock O, Mata R, Parada M, Perera W, Pombo LM, Reich E, Sanchez E, Simirgiotis MJ, Sood C, Amiguet VT, Villar M, Ghelman R, Schveitzer MC, Portella CFS, Wolffenbüttel A, Ruppelt B, Frickmann FS, Gavillan-Suarez J, Allen K, Alvarado LD, Sarma N, Marles R, Monagas M, Navarro-Hoyos M. A U.S. Pharmacopeia (USP) overview of Pan American botanicals used in dietary supplements and herbal medicines. Front Pharmacol 2024; 15:1426210. [PMID: 39281273 PMCID: PMC11392873 DOI: 10.3389/fphar.2024.1426210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
The United States Pharmacopeial Convention (USP) is a nonprofit, scientific, standard-setting organization, and world leader in establishing quality, purity, and testing standards for medicines, foods, and dietary supplements. USP quality standards are used in more than 140 countries and are legally recognized by more than 40 countries. Currently, there is renewed interest in herbal medicines globally, and health policies are being implemented worldwide for the use of complementary and traditional medicine. In response, USP has developed a robust body of monographs that can be used to guide industry and regulators in ensuring the quality and safety of botanical ingredients used in dietary supplements and herbal medicines. Throughout the Pan American regions, there is a strong tradition of using botanicals as herbal medicines and, as in other regions, a growing desire for botanical dietary supplements. This underscores the need for public quality standards to ensure quality, reduce the flow of substandard and adulterated products, and ensure public health and safety. In April 2022, USP launched the Pan America Botanical Dietary Supplements and Herbal Medicines Expert Panel, with experts representing 12 different countries. The Expert Panel's work focuses on developing quality control standards for the most important botanical ingredients used in the respective countries, ingredients that are also of global importance. This article provides an overview of the state of botanical dietary supplements and herbal medicines in different Pan American regions with a focus on the regulatory status of herbal products, the development of national quality and research initiatives, and policies related to agriculture conservation and sustainability, among other topics.
Collapse
Affiliation(s)
- Roy Upton
- American Herbal Pharmacopoeia, Scotts Valley, CA, United States
| | - Ignacio Agudelo
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacobotánica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yadira Cabrera
- Ministerio de Salud Publica del Ecuador, Cuenca, Ecuador
| | | | - Angela Calderón
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades 2 Piso CORSE, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuidad de Mexico, Mexico
| | - Rosa Camacho
- Direccion General de Medicamentos, Insumos y Drogas (DIGEMID), Ministerio de Salud Publica del Peru, Lima, Peru
| | - Fernando da Costa
- Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidad de Sao Paulo, Ribeirao Preto, Brazil
| | - Cecilia Dobrecky
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina
| | - Roberto Enciso
- Farmacopea de los Estados Unidos Mexicanos, Cuidad de Mexico, Mexico
| | - Marcela Escobar
- Facultad de Farmacia, Universidad de Valparaiso, Valparaiso, Chile
| | | | | | - Quanyin Gao
- Herbalife, Quality Control Labs, Los Angeles, CA, United States
| | - Olga Lock
- Federacion Latinoamericana de Asociaciones Quimicas (FLAQ), Lima, Peru
| | - Rachel Mata
- Facultad de Quimica, Universidad Autonoma de Mexico (UNAM), Cuidad de Mexico, Mexico
| | - Mirtha Parada
- Agencia Nacional de Medicamentos (ANAMED), Instituto de Salud Publica de Chile, Gran Santiago, Chile
| | - Wilmer Perera
- CAMAG Scientific Inc., Wilmington, NC, United States
| | - Luis Miguel Pombo
- Centro de Investigacion Fundacion Universitaria Juan N. Corpas, Bogota, Colombia
| | | | - Eric Sanchez
- Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
| | - Mario Juan Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | | - Martha Villar
- Centro de Investigación Clínica de Medicina Complementaria (CICMEC), Gerencia de Medicina Complementaria, Seguro Social de Salud-EsSalud and Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad Mayor de San Marcos, Lima, Peru
| | - Ricardo Ghelman
- Natural Products Committee of the Brazilian Academic Consortium or Integrative Health (CABSIN), San Pablo, Brazil
| | - Mariana Cabral Schveitzer
- Natural Products Committee of the Brazilian Academic Consortium or Integrative Health (CABSIN), San Pablo, Brazil
| | | | - Adriana Wolffenbüttel
- Natural Products Committee of the Brazilian Academic Consortium or Integrative Health (CABSIN), San Pablo, Brazil
| | - Bettina Ruppelt
- Natural Products Committee of the Brazilian Academic Consortium or Integrative Health (CABSIN), San Pablo, Brazil
| | - Fabiana Souza Frickmann
- Natural Products Committee of the Brazilian Academic Consortium or Integrative Health (CABSIN), San Pablo, Brazil
| | | | - Kristin Allen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Luis Diego Alvarado
- Department of Chemistry, University of Costa Rica (UCR), Bioactivity & Sustainable Development (BIODESS) Group, San Jose, Costa Rica
| | - Nandakumara Sarma
- Department of Chemistry, University of Costa Rica (UCR), Bioactivity & Sustainable Development (BIODESS) Group, San Jose, Costa Rica
| | - Robin Marles
- United States Pharmacopeia (USP) Botanical Dietary Supplements and Herbal Medicines Expert Committee, United States Pharmacopeia (USP), Rokcville, MD, United States
| | - Maria Monagas
- United States Pharmacopeial Convention (USP), Dietary Supplements and Herbal Medicines, Rockville, MD, United States
| | - Mirtha Navarro-Hoyos
- Department of Chemistry, University of Costa Rica (UCR), Bioactivity & Sustainable Development (BIODESS) Group, San Jose, Costa Rica
- Department of Chemistry, Georgetown University, Washington, DC, United States
| |
Collapse
|
2
|
Desrini S, Ducloux J, Hamion G, Bodet C, Labanowski J, Mustofa M, Nuryastuti T, Imbert C, Girardot M. Antibiofilm Activity of Invasive Plants against Candida albicans: Focus on Baccharis halimifolia Essential Oil and Its Compounds. Chem Biodivers 2023; 20:e202300130. [PMID: 37452792 DOI: 10.1002/cbdv.202300130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The extracts of five invasive plants were investigated for antifungal and antibiofilm activities against Candida albicans, C. glabrata, C. krusei, and C. parapsilosis. The antifungal activity was evaluated using the microdilution assay and the antibiofilm effect by measurement of the metabolic activity. Ethanol and ethanol-water extracts of Reynoutria japonica leaves inhibited 50 % of planktonic cells at 250 μg mL-1 and 15.6 μg mL-1 , respectively. Ethanol and ethanol-water extracts of Baccharis halimifolia inhibited >75 % of the mature biofilm of C. albicans at 500 μg mL-1 . The essential oil (EO) of B. halimifolia leaves was the most active (50 % inhibition (IC50 ) at 4 and 74 μg mL-1 against the maturation phase and 24 h old-biofilms of C. albicans, respectively). Oxygenated sesquiterpenes were the primary contents in this EO (62.02 %), with β-caryophyllene oxide as the major component (37 %). Aromadendrene oxide-(2), β-caryophyllene oxide, and (±)-β-pinene displayed significant activities against the maturation phase (IC50 =9-310 μ mol l-1 ) and preformed 24 h-biofilm (IC50 =38-630 μ mol l-1 ) of C. albicans with very low cytotoxicity for the first two compounds. C. albicans remained the most susceptible species to this EO and its components. This study highlighted for the first time the antibiofilm potential of B. halimifolia, its EO and some of its components.
Collapse
Affiliation(s)
- Sufi Desrini
- Department of Pharmacology, Faculty of Medicine, Universitas Islam Indonesia, 55584, Yogyakarta, Indonesia
- Doctoral Programme of Faculty Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Julien Ducloux
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Guillaume Hamion
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines UR 15560, Université de Poitiers, Poitiers, France
| | | | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
- Indonesia Biofilm Research Collaboration Center UGM-BRIN, Yogyakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
- Indonesia Biofilm Research Collaboration Center UGM-BRIN, Yogyakarta, Indonesia
| | - Christine Imbert
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Marion Girardot
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| |
Collapse
|
3
|
Castañeda R, Cáceres A, Cruz SM, Aceituno JA, Marroquín ES, Barrios Sosa AC, Strangman WK, Williamson RT. Nephroprotective plant species used in traditional Mayan Medicine for renal-associated diseases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115755. [PMID: 36181985 DOI: 10.1016/j.jep.2022.115755] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of kidney disease has increased rapidly in recent years and has emerged as one of the leading causes of mortality worldwide. Natural products have been suggested as valuable nephroprotective agents due to their multi-target and synergistic effects on modulating important proteins involved in kidney injury. There is a large number of plant species that have been used traditionally for kidney-related conditions in Mesoamerican medicine by different cultural groups that could provide a valuable source of nephroprotective therapeutic candidates and could lead to potential drug discovery. AIM OF REVIEW This review aims to provide an overview of the currently known efficacy of plant species used traditionally in Mesoamerica by Mayan groups to treat kidney-related conditions and to analyze the phytochemical, pharmacological, molecular, toxicological, and clinical evidence to contribute to public health efforts and for directing future research. METHODS Primary sources of plant use reports for traditional kidney-related disorders in Mesoamerica were searched systematically from library catalogs, theses, and scientific databases (PubMed, Google Scholar; and Science Direct), and were filtered according to usage frequency in Mayan groups and plant endemism. The database of traditional plants was further analyzed based on associations with published reports of the phytochemical, pharmacological, molecular, toxicological, and clinical evidence. RESULTS The most reported kidney-related conditions used traditionally in Mayan medicine involve reducing renal damage (a cultural interpretation that considers an inflammatory or infectious condition), cleaning or purifying the blood and kidney, reducing kidney pain, and eliminating kidney stones. A total of 208 plants used for kidney-related problems by 10 Mayan groups were found, representing 143 native species, where only 42 have reported pharmacological activity against kidney damage, mainly approached by in vitro and in vivo models of chemical- or drug-induced nephrotoxicity, diabetes nephropathy, and renal injury produced by hypertension. Nephroprotective effects are mainly mediated by reducing oxidative stress, inflammatory response, fibrosis mechanisms, and apoptosis in the kidney. The most common nephroprotective compounds associated with traditional Mayan medicine were flavonoids, terpenoids, and phenolic acids. The most widely studied traditional plants in terms of pharmacological evidence, bioactive compounds, and mechanisms of action, are Annona muricata L., Carica papaya L., Ipomoea batatas (L.) Lam., Lantana camara L., Sechium edule (Jacq.) Sw., Tagetes erecta L., and Zea mays L. Most of the plant species with reported pharmacological activity against kidney damage were considered safe in toxicological studies. CONCLUSION Available pharmacological reports suggest that several herbs used in traditional Mayan medicine for renal-associated diseases may have nephroprotective effects and consistent pharmacological evidence, nephroprotective compounds, and mechanisms of action in different models of kidney injury. However, more research is required to fully understand the potential of traditional Mayan medicine in drug discovery given the limited ethnobotanical studies and data available for most species with regards to identification on bioactive components, pharmacological mechanisms, and the scarce number of clinical studies.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | | | - Sully M Cruz
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - J Agustín Aceituno
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - E Sebastián Marroquín
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - Ana C Barrios Sosa
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, USA.
| | - Wendy K Strangman
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, USA.
| | - R Thomas Williamson
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, USA.
| |
Collapse
|
4
|
Castañeda R, Cáceres A, Velásquez D, Rodríguez C, Morales D, Castillo A. Medicinal plants used in traditional Mayan medicine for the treatment of central nervous system disorders: An overview. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114746. [PMID: 34656668 DOI: 10.1016/j.jep.2021.114746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For thousands of years, different cultural groups have used and transformed natural resources for medicinal purposes focused on psychological or neurological conditions. Some of these are recognized as central nervous system (CNS) disorders and diseases, whereas other ethnopsychiatric interpretations are explained in culture-specific terms. In traditional Mayan medicine, several herbs have been part of treatments and rituals focused on cultural and ethnomedical concepts. AIM OF REVIEW This study aims to provide a comprehensive overview of the medicinal plants used in Mesoamerica by traditional healers and Mayan groups to CNS disorders and associate the traditional use with demonstrated pharmacological evidence to establish a solid foundation for directing future research. METHODS A systematic search for primary sources of plant use reports for traditional CNS-related remedies of Mesoamerica were obtained from library catalogs, thesis and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct), and entered in a database with data analyzed in terms of the usage frequency, use by ethnic groups, plant endemism, and pharmacological investigation. RESULTS A total of 155 plants used for ethnopsychiatric conditions in Mesoamerica by Mayan groups were found, encompassing 127 native species. Of these, only 49 native species have reported in vitro or in vivo pharmacological analyses. The most commonly reported ethnopsychiatric conditions are related to anxiety, depression, memory loss, epilepsy, and insomnia. The extent of the scientific evidence available to understand the pharmacological application for their use against CNS disorders varied between different plant species, with the most prominent evidence shown by Annona cherimola, Justicia pectoralis, J. spicigera, Mimosa pudica, Persea americana, Petiveria alliacea, Piper amalago, Psidium guajava, Tagetes erecta and T. lucida. CONCLUSION Available pharmacological data suggest that different plant species used in traditional Mayan medicine may target the CNS, mainly related to GABA, serotonin, acetylcholine, or neuroprotective pathways. However, more research is required, given the limited data regarding mechanism of action at the preclinical in vivo level, identification of active compounds, scarce number of clinical studies, and the dearth of peer-reviewed studies.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | | | - Diana Velásquez
- School of Biology, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - Cesar Rodríguez
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - David Morales
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - Andrea Castillo
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| |
Collapse
|
5
|
Geck MS, Lecca D, Marchese G, Casu L, Leonti M. Ethnomedicine and neuropsychopharmacology in Mesoamerica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114243. [PMID: 34129899 DOI: 10.1016/j.jep.2021.114243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/27/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The burden of disease caused by mental and neurological disorders is increasing globally, to a disproportionate degree in Latin America. In contrast to the many psychoactive plants with a use history in Mesoamerican cultures, the translation to the wider population of knowledge around numerous botanicals used contemporarily by indigenous Mesoamerican societies to treat psychological and neurological disorders did not receive the same attention. MATERIAL AND METHODS We used the previously published Mesoamerican Medicinal Plant Database to extract species and associated botanical drugs used as treatments for illnesses associated with the nervous system by Mesoamerican cultures in Belize, Guatemala, and Mexico. With the critical use of published pharmacological literature, the cross-culturally most salient genera are systematically reviewed. RESULTS From 2188 plant taxa contained in the database 1324 are used as treatments for illnesses associated with the nervous system. The ethnomedical data was critically confronted with the available biomedical literature for the 58 cross-culturally most salient genera. For a considerable proportion of the frequently used taxa, preclinical data are available, mostly validating ethnomedicinal uses. CONCLUSION This quantitative approach facilitates the prioritization of taxa for future pre-clinical, clinical and treatment outcome studies and gives patients, practitioners, and legislators a fundamental framework of evidence, on which to base decisions regarding phytomedicines.
Collapse
Affiliation(s)
- Matthias S Geck
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, CA, Italy; Biovision - Foundation for Ecological Development, Heinrichstrasse 147, 8005, Zurich, Switzerland
| | - Daniele Lecca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, CA, Italy
| | - Giorgio Marchese
- Institute of Translational Pharmacology UOS of Cagliari National Research Council of Italy, Pula, Cagliari, Italy
| | - Laura Casu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, CA, Italy
| | - Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, CA, Italy.
| |
Collapse
|
6
|
Matailo A, Bec N, Calva J, Ramírez J, Andrade JM, Larroque C, Vidari G, Armijos C. Selective BuChE inhibitory activity, chemical composition, and enantiomer content of the volatile oil from the Ecuadorian plant Clinopodium brownei. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|