1
|
Yow HY, Ikawati M, Siswanto S, Hermawan A, Rahmat AK, Tan JSL, Tee YC, Ng KP, Ikawati Z. Influence of genetic polymorphisms on pharmacokinetics and treatment response of mycophenolic acid: a scoping review. Pharmacogenomics 2024; 25:259-288. [PMID: 38884938 PMCID: PMC11388138 DOI: 10.1080/14622416.2024.2344430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
This scoping review explores the impact of genetic polymorphisms on the pharmacokinetics and treatment responses of mycophenolic acid (MPA), an immunosuppressant. The study includes 83 articles from 1226 original studies, focusing on transplantation (n = 80) and autoimmune disorders (n = 3). Genetic variants in uridine 5'-diphospho-glucuronosyltransferase (UGT1A9, UGT1A8 and UGT2B7) and transmembrane transporters (ABCC2, SLCO1B1, SLCO1B3 and ABCB1) significantly affected MPA's pharmacokinetics and susceptibility to its adverse effect. Whereas variants in several genes including UGT1A9, UGT2B7, IMPDH1 and IMPDH2 have been associated with a higher risk of transplant rejection. However, there is a lack of studies on MPA's impact on autoimmune disorders and limited research on the Asian population. The findings underscore the need for further research on MPA's impact across different populations and diseases, particularly among other Asian ethnic groups, to advance personalized medicine in MPA therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Muthi Ikawati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Soni Siswanto
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
- Advanced Pharmaceutical Sciences Laboratory, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Alim Khodimul Rahmat
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Janet Sui-Ling Tan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ying-Chew Tee
- Rheumatology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kok-Peng Ng
- Nephrology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zullies Ikawati
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| |
Collapse
|
2
|
Dang X, Song M, Lv L, Yang Y, Luo XJ. Proteome-wide Mendelian randomization reveals the causal effects of immune-related plasma proteins on psychiatric disorders. Hum Genet 2023; 142:809-818. [PMID: 37085628 DOI: 10.1007/s00439-023-02562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Immune dysregulation has been consistently reported in psychiatric disorders, however, the causes and mechanisms underlying immune dysregulation in psychiatric disorders remain largely unclear. Here we conduct a Mendelian randomization study by integrating plasma proteome and GWASs of schizophrenia, bipolar disorder and depression. The primate-specific immune-related protein BTN3A3 showed the most significant associations with all three psychiatric disorders. In addition, other immune-related proteins, including AIF1, FOXO3, IRF3, CFHR4, IGLON5, FKBP2, and PI3, also showed significant associations with psychiatric disorders. Our study showed that a proportion of psychiatric risk variants may contribute to disease risk by regulating immune-related plasma proteins, providing direct evidence that connect the genetic risk of psychiatric disorders to immune system.
Collapse
Affiliation(s)
- Xinglun Dang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, Henan, China.
| | - Xiong-Jian Luo
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
3
|
Malyszko J, Basak G, Batko K, Capasso G, Capasso A, Drozd-Sokolowska J, Krzanowska K, Kulicki P, Matuszkiewicz-Rowinska J, Soler MJ, Sprangers B, Malyszko J. Haematological disorders following kidney transplantation. Nephrol Dial Transplant 2020; 37:409-420. [PMID: 33150431 DOI: 10.1093/ndt/gfaa219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Indexed: 01/19/2023] Open
Abstract
Transplantation offers cure for some haematological cancers, end-stage organ failure, but at the cost of long-term complications. Renal transplantation is the best-known kidney replacement therapy and it can prolong end-stage renal disease patient lives for decades. However, patients after renal transplantation are at a higher risk of developing different complications connected not only with surgical procedure but also with immunosuppressive treatment, chronic kidney disease progression and rejection processes. Various blood disorders can develop in post-transplant patients ranging from relatively benign anaemia through cytopenias to therapy-related myelodysplasia and acute myeloid leukaemia (AML) and post-transplant lymphoproliferative disorders followed by a rare and fatal condition of thrombotic microangiopathy and haemophagocytic syndrome. So far literature mainly focused on the post-transplant lymphoproliferative disease. In this review, a variety of haematological problems after transplantation ranging from rare disorders such as myelodysplasia and AML to relatively common conditions such as anaemia and iron deficiency are presented with up-to-date diagnosis and management.
Collapse
Affiliation(s)
| | - Grzegorz Basak
- Department of Hematology, Oncology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Batko
- Department of Nephrology, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Giavambatista Capasso
- Department of Translational Medical Sciences, University Luigi Vanvitelli, Naples, Italy
| | - Anna Capasso
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX, USA
| | - Joanna Drozd-Sokolowska
- Department of Hematology, Oncology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Krzanowska
- Department of Nephrology, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Pawel Kulicki
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Maria Jose Soler
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ben Sprangers
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Molecular Immunology, Rega Institute, Katholieke Universiteit Leuven, Belgium.,Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Jacek Malyszko
- 1st Department of Nephrology and Transplantology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Freitas RCC, Bortolin RH, Genvigir FDV, Bonezi V, Hirata TDC, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Cerda A, Doi SQ, Hirata MH, Hirata RDC. Differentially expressed urinary exo-miRs and clinical outcomes in kidney recipients on short-term tacrolimus therapy: a pilot study. Epigenomics 2020; 12:2019-2034. [PMID: 33275448 DOI: 10.2217/epi-2020-0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: To analyze the expression of urinary exosome-derived miRNAs (exo-miRs) in kidney recipients on tacrolimus-based therapy. Patients & methods: Clinical and drug monitoring data were recorded from 23 kidney recipients. Expression of 93 exo-miRs was measured by quantitative PCR array and mRNA targets were explored. Results: 16 exo-miRs were differentially expressed, including marked upregulation of miR-155-5p, and downregulation of miR-223-3p and miR-1228-3p. Expression of miR-155-5p and miR-223-3p correlated with tacrolimus dose (p < 0.05), miR-223-3p with serum creatinine (p < 0.05), and miR-223-3p and miR-1228-3p with blood leukocytes (p < 0.05). 12 miRNAs have predicted targets involved in cell proliferation, apoptosis, stress response, PIK3/AKT/mTOR and TGF-β signaling pathways. Conclusion: Differentially expressed urinary exo-miRs may be useful markers to monitor tacrolimus therapy and graft function in kidney transplantation.
Collapse
Affiliation(s)
- Renata Caroline Costa Freitas
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Fabiana Dalla Vecchia Genvigir
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Vivian Bonezi
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Thiago Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Claudia Rosso Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo 04038-002, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo 04038-002, Brazil
| | | | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Temuco 4810296, Chile
| | - Sonia Quateli Doi
- School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Mario Hiroyuki Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
5
|
Genvigir FDV, Campos-Salazar AB, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Doi SDQ, Cerda A, Hirata MH, Herrero MJ, Aliño SF, Hirata RDC. CYP3A5*3 and CYP2C8*3 variants influence exposure and clinical outcomes of tacrolimus-based therapy. Pharmacogenomics 2020; 21:7-21. [PMID: 31849280 DOI: 10.2217/pgs-2019-0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The influence of variants in pharmacokinetics-related genes on long-term exposure to tacrolimus (TAC)-based therapy and clinical outcomes was investigated. Patients & methods: Brazilian kidney recipients were treated with TAC combined with everolimus (n = 178) or mycophenolate sodium (n = 97). The variants in CYP2C8, CYP2J2, CYP3A4, CYP3A5, POR, ABCB1, ABCC2, ABCG2, SLCO1B1 and SLCO2B1 were analyzed. Main results: CYP3A5*3/*3 genotype influenced increase in TAC concentration from week 1 to month 6 post-transplantation (p < 0.05). The living donor and CYP2C8*3 variant were associated with reduced risk for delayed graft function (OR = 0.07; 95% CI = 0.03-0.18 and OR = 0.45; 95% CI = 0.20-0.99, respectively, p < 0.05). Conclusion: The CYP3A5*3 variant is associated with increased early exposure to TAC. Living donor and CYP2C8*3 variant seem to be protective factors for delayed graft function in kidney recipients.
Collapse
Affiliation(s)
- Fabiana Dalla Vecchia Genvigir
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Antony Brayan Campos-Salazar
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Bioinformatics & Pharmacogenetics Laboratory, METOSMOD Research Group, School of Pharmacy & Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Claudia Rosso Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Sonia de Quateli Doi
- Nephrology Research Laboratory, School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Mario Hiroyuki Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - María José Herrero
- Department of Pharmacology, University of Valencia. Pharmacogenetics, Instituto Investigación Sanitaria y Hospital La Fe, Valencia, Spain
| | - Salvador Francisco Aliño
- Department of Pharmacology, University of Valencia. Pharmacogenetics, Instituto Investigación Sanitaria y Hospital La Fe, Valencia, Spain
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Bonezi V, Genvigir FDV, Salgado PDC, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Cerda A, Doi SQ, Hirata MH, Hirata RDC. Differential expression of genes related to calcineurin and mTOR signaling and regulatory miRNAs in peripheral blood from kidney recipients under tacrolimus-based therapy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1051. [PMID: 33145270 PMCID: PMC7575939 DOI: 10.21037/atm-20-1757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Genetic and epigenetics factors have been implicated in drug response, graft function and rejection in solid organ transplantation. Differential expression of genes involved in calcineurin and mTOR signaling pathway and regulatory miRNAs was analyzed in the peripheral blood of kidney recipient cohort (n=36) under tacrolimus-based therapy. Methods PPP3CA, PPP3CB, MTOR, FKBP1A, FKBP1B and FKBP5 mRNA expression and polymorphisms in PPP3CA and MTOR were analyzed by qPCR. Expression of miRNAs targeting PPP3CA (miR-30a, miR-145), PPP3CB (miR-10b), MTOR (miR-99a, miR-100), and FKBP1A (miR-103a) was measured by qPCR array. Results PPP3CA and MTOR mRNA levels were reduced in the first three months of treatment compared to pre-transplant (P<0.05). PPP3CB, FKBP1A, FKBP1B, and FKBP5 expression was not changed. In the 3rd month of treatment, the expression of miR-99a, which targets MTOR, increased compared to pre-transplant (P<0.05). PPP3CA c.249G>A (GG genotype) and MTOR c.2997C>T (TT genotype) were associated with reduced expression of PPP3CA mRNA and MTOR, respectively. FKBP1B mRNA levels were higher in patients with acute rejection (P=0.026). Conclusions The expression of PPP3CA, MTOR and miR-99a in the peripheral blood of renal recipients is influenced by tacrolimus-based therapy and by PPP3CA and MTOR variants. These molecules can be potential biomarkers for pharmacotherapy monitoring.
Collapse
Affiliation(s)
- Vivian Bonezi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabiana Dalla Vecchia Genvigir
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia de Cássia Salgado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudia Rosso Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Sonia Quateli Doi
- School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Saravani M, Shahraki-Ghadimi H, Maruei-Milan R, Mehrabani M, Mirzamohammadi S, Nematollahi MH. Effects of the mTOR and AKT genes polymorphisms on systemic lupus erythematosus risk. Mol Biol Rep 2020; 47:3551-3556. [PMID: 32319007 DOI: 10.1007/s11033-020-05446-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023]
Abstract
The systemic lupus erythematosus (SLE) is an autoimmune disease, leading to inflammatory response and systemic consequences. The mammalian target of rapamycin (mTOR) is a therapeutic target for autoimmune diseases like SLE. The aim of this study was to evaluate the effects of the mTOR rs2295080 and rs2536 polymorphisms and AKT1 rs2494732 gene polymorphism on SLE development. 2 ml of peripheral blood was collected from 165 SLE patients and 170 controls in EDTA-containing tubes. The salting-out and PCR-RFLP methods were used for DNA extraction and genotype analysis, respectively. Based on the regression analysis, the frequency of TT genotype of mTOR rs2295080 polymorphism was significantly higher in the case group than that of the control group, with a 2.6-fold increased risk of SLE. There was also a significant difference between the two groups in terms of allelic distribution. No statistically significant association was found between The AKT1 rs2494732 and mTOR rs2536 polymorphisms and SLE development. Our results showed that the TT genotype and T allele of mTOR rs2295080 polymorphism were risk factors for developing SLE. However, there was no significant association between mTOR rs2536 and AKT1 rs2494732 polymorphisms and the SLE risk.
Collapse
Affiliation(s)
- Mohsen Saravani
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Shahraki-Ghadimi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Rostam Maruei-Milan
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehrnaz Mehrabani
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Solmaz Mirzamohammadi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|