1
|
Song ZN, Cheng Y, Wang DD, Li MJ, Zhao XR, Li FW, Liu Z, Zhu XR, Jia XD, Wang YF, Liang FF. Whole exome sequencing identifies risk variants associated with intracranial epidermoid cyst deterioration: A case report. World J Clin Oncol 2024; 15:1428-1434. [PMID: 39582614 PMCID: PMC11514425 DOI: 10.5306/wjco.v15.i11.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Intracranial epidermoid cyst (IEC) transformation to malignant squamous cell carcinoma (SCC) is extremely rare, and its etiology is yet unknown. Currently, SCC is treated by performing surgery, followed by a combination of radiotherapy and chemotherapy. It is crucial to identify efficient and trustworthy therapeutic targets for SCC to improve its diagnosis, prognosis, and treatment. CASE SUMMARY In this study, we report the case of a 47-year-old female patient with SCC, which progressed from IEC in the left internal capsule region. The patient was sought treatment at our hospital for severe diplopic vision, accompanied with speech disorder and memory loss. Based on the clinical and postoperative pathology, this patient was finally diagnosed with SCC. To identify disease-causing variants, whole exome sequencing (WES) was performed on the proband. WES revealed two pathogenic missense mutations on Gap junction protein beta 2 (GJB2) (c.257C>T) and Toll-like receptor 2 (TLR2) (c.1039A>G), respectively. CONCLUSION This study provided the first clinical evidence for demonstrating the role of GJB2 and TLR2 in IEC development and treatment. We further confirmed WES as a robust and reliable technique for underlying rare and complex disease-related genetic factor identification.
Collapse
Affiliation(s)
- Zhao-Na Song
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Yan Cheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Dan-Dan Wang
- Harbin Genars Technology Co., Ltd., Harbin 150060, Heilongjiang Province, China
| | - Ming-Jun Li
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Xiang-Rong Zhao
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Fa-Wang Li
- Department of Medical laboratory, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253600, Shandong Province, China
| | - Zhen Liu
- Harbin Genars Technology Co., Ltd., Harbin 150060, Heilongjiang Province, China
| | - Xiao-Ru Zhu
- Harbin Genars Technology Co., Ltd., Harbin 150060, Heilongjiang Province, China
| | - Xiao-Dong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Yu-Fang Wang
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Feng-Fan Liang
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| |
Collapse
|
2
|
Yan J, Huang Y, Cao L, Dong Y, Xu Z, Wang F, Gao Y, Feng D, Zhang M. Clinical, pathological and genetic characteristics of 17 unrelated children with Alagille Syndrome. BMC Pediatr 2024; 24:532. [PMID: 39164659 PMCID: PMC11334458 DOI: 10.1186/s12887-024-04973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Alagille syndrome (ALGS) is a multisystem genetic disorder frequently characterized by hepatic manifestations. This study analyzed the clinical, pathological, and molecular genetic features of ALGS to improve the efficiency of clinical diagnosis. METHODS We retrospectively analyzed the clinical manifestations, pathological examination findings, and genetic testing results of 17 children diagnosed with ALGS based on the revised criteria and hospitalized at our center from January 2012 to January 2022. RESULTS The clinical manifestations are as follows: Cholestasis (16/17, 94%), characteristic facies (15/17, 88%), heart disease (12/16, 75%), butterfly vertebrae (12/17, 71%) and posterior embryotoxon (7/12, 58%). Among the 15 patients who underwent liver pathology examination, 13 (87%) were found to have varying degrees of bile duct paucity. Genetic testing was performed on 15 children, and pathogenic variants of the jagged canonical Notch ligand 1 (JAG1) gene were identified in 13 individuals, including 4 novel variants. No pathogenic variant in the notch homolog 2 (NOTCH2) gene were identified, and 2 children exhibited none of the aforementioned gene pathogenic variants. The median follow-up duration was 7 years. Of the remaining 15 patients (excluding 2 lost to follow-up), 11 remained stable, 4 deteriorated, and no patient died during the follow-up period. CONCLUSIONS Among children diagnosed with ALGS, cholestasis stands as the most common feature. To minimize the risk of misdiagnosis, genetic testing should be performed on children exhibiting cholestasis, followed by the application of the revised diagnostic criteria for ALGS. While pharmacological therapy has shown effectiveness for ALGS patients, liver transplantation may be considered in instances of severe pruritus.
Collapse
Affiliation(s)
- Jianguo Yan
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanzhi Huang
- Peking University 302 Clinical Medical School, 38 Xueyuan Road, 100191, Beijing, China
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lili Cao
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi Dong
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiqiang Xu
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fuchuan Wang
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yinjie Gao
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Danni Feng
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Zhang
- Peking University 302 Clinical Medical School, 38 Xueyuan Road, 100191, Beijing, China.
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Ma H, Zhu L, Yang X, Ao M, Zhang S, Guo M, Dai X, Ma X, Zhang X. Genetic and phenotypic analysis of 225 Chinese children with developmental delay and/or intellectual disability using whole-exome sequencing. BMC Genomics 2024; 25:391. [PMID: 38649797 PMCID: PMC11034079 DOI: 10.1186/s12864-024-10279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Developmental delay (DD), or intellectual disability (ID) is a very large group of early onset disorders that affects 1-2% of children worldwide, which have diverse genetic causes that should be identified. Genetic studies can elucidate the pathogenesis underlying DD/ID. In this study, whole-exome sequencing (WES) was performed on 225 Chinese DD/ID children (208 cases were sequenced as proband-parent trio) who were classified into seven phenotype subgroups. The phenotype and genomic data of patients with DD/ID were further retrospectively analyzed. There were 96/225 (42.67%; 95% confidence interval [CI] 36.15-49.18%) patients were found to have causative single nucleotide variants (SNVs) and small insertions/deletions (Indels) associated with DD/ID based on WES data. The diagnostic yields among the seven subgroups ranged from 31.25 to 71.43%. Three specific clinical features, hearing loss, visual loss, and facial dysmorphism, can significantly increase the diagnostic yield of WES in patients with DD/ID (P = 0.005, P = 0.005, and P = 0.039, respectively). Of note, hearing loss (odds ratio [OR] = 1.86%; 95% CI = 1.00-3.46, P = 0.046) or abnormal brainstem auditory evoked potential (BAEP) (OR = 1.91, 95% CI = 1.02-3.50, P = 0.042) was independently associated with causative genetic variants in DD/ID children. Our findings enrich the variation spectrums of SNVs/Indels associated with DD/ID, highlight the value genetic testing for DD/ID children, stress the importance of BAEP screen in DD/ID children, and help to facilitate early diagnose, clinical management and reproductive decisions, improve therapeutic response to medical treatment.
Collapse
Affiliation(s)
- Heqian Ma
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Lina Zhu
- Faculty of Pediatrics, The Chinese PLA General Hospital, 100700, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 100700, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, 100700, Beijing, China
| | - Xiao Yang
- Faculty of Pediatrics, The Chinese PLA General Hospital, 100700, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 100700, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, 100700, Beijing, China
| | - Meng Ao
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Shunxiang Zhang
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Meizhen Guo
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Xuelin Dai
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Xiuwei Ma
- Faculty of Pediatrics, The Chinese PLA General Hospital, 100700, Beijing, China.
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 100700, Beijing, China.
- Beijing Key Laboratory of Pediatric Organ Failure, 100700, Beijing, China.
| | - Xiaoying Zhang
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China.
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China.
| |
Collapse
|
4
|
Nomura F, Shimizu A, Togi S, Ura H, Niida Y. SNP Array Screening and Long Range PCR-Based Targeted Next Generation Sequencing for Autosomal Recessive Disease with Consanguinity: Insight from a Case of Xeroderma Pigmentosum Group C. Genes (Basel) 2023; 14:2079. [PMID: 38003022 PMCID: PMC10671442 DOI: 10.3390/genes14112079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Advances in genetic technologies have made genetic testing more accessible than ever before. However, depending on national, regional, legal, and health insurance circumstances, testing procedures may still need to be streamlined in real-world clinical practice. In cases of autosomal recessive disease with consanguinity, the mutation locus is necessarily isodisomy because both alleles originate from a common ancestral chromosome. Based on this premise, we implemented integrated genetic diagnostic methods using SNP array screening and long range PCR-based targeted NGS in a Japanese patient with xeroderma pigmentosum (XP) under the limitation of the national health insurance system. SNP array results showed isodisomy only in XPC and ERCC4 loci. NGS, with a minimal set of long-range PCR primers, detected a homozygous frameshift mutation in XPC; NM_004628.5:c.218_219insT p.(Lys73AsnfsTer9), confirmed by Sanger sequencing, leading to a rapid diagnosis of XP group C. This shortcut strategy is applicable to all autosomal recessive diseases caused by consanguineous marriages, especially in scenarios with a moderate number of genes to test, a common occurrence in clinical genetic practice.
Collapse
Affiliation(s)
- Fumie Nomura
- Department of Dermatology, Kanazawa Medical University, Uchinada 920-0293, Japan (A.S.)
| | - Akira Shimizu
- Department of Dermatology, Kanazawa Medical University, Uchinada 920-0293, Japan (A.S.)
| | - Sumihito Togi
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada 920-0293, Japan (H.U.)
- Department of Advanced Medicine, Division of Genomic Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada 920-0293, Japan (H.U.)
- Department of Advanced Medicine, Division of Genomic Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada 920-0293, Japan (H.U.)
- Department of Advanced Medicine, Division of Genomic Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| |
Collapse
|
5
|
Fellner A, Goldberg Y, Basel-Salmon L. Ordering genetic testing by neurologists: points to consider. J Neurol 2023:10.1007/s00415-023-11758-3. [PMID: 37154893 DOI: 10.1007/s00415-023-11758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
A significant challenge limiting the comprehensive utilization of genomic medicine is the lack of timely access to genetics specialists. Although neurologists see patients for whom genetic testing should be considered, the knowledge regarding the choice of the optimal genetic test for each case and the management of the test results are out of the scope of their everyday practice. In this review, we provide a step-by-step guide for non-geneticist physicians through the decision-making process when ordering diagnostic genetic testing for monogenic neurological diseases and when dealing with their results.
Collapse
Affiliation(s)
- Avi Fellner
- The Neurogenetics Clinic, Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel.
| | - Yael Goldberg
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lina Basel-Salmon
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
6
|
Perrier S, Guerrero K, Tran LT, Michell-Robinson MA, Legault G, Brais B, Sylvain M, Dorman J, Demos M, Köhler W, Pastinen T, Thiffault I, Bernard G. Solving inherited white matter disorder etiologies in the neurology clinic: Challenges and lessons learned using next-generation sequencing. Front Neurol 2023; 14:1148377. [PMID: 37077564 PMCID: PMC10108901 DOI: 10.3389/fneur.2023.1148377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/23/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionRare neurodevelopmental disorders, including inherited white matter disorders or leukodystrophies, often present a diagnostic challenge on a genetic level given the large number of causal genes associated with a range of disease subtypes. This study aims to demonstrate the challenges and lessons learned in the genetic investigations of leukodystrophies through presentation of a series of cases solved using exome or genome sequencing.MethodsEach of the six patients had a leukodystrophy associated with hypomyelination or delayed myelination on MRI, and inconclusive clinical diagnostic genetic testing results. We performed next generation sequencing (case-based exome or genome sequencing) to further investigate the genetic cause of disease.ResultsFollowing different lines of investigation, molecular diagnoses were obtained for each case, with patients harboring pathogenic variants in a range of genes including TMEM106B, GJA1, AGA, POLR3A, and TUBB4A. We describe the lessons learned in reaching the genetic diagnosis, including the importance of (a) utilizing proper multi-gene panels in clinical testing, (b) assessing the reliability of biochemical assays in supporting diagnoses, and (c) understanding the limitations of exome sequencing methods in regard to CNV detection and region coverage in GC-rich areas.DiscussionThis study illustrates the importance of applying a collaborative diagnostic approach by combining detailed phenotyping data and metabolic results from the clinical environment with advanced next generation sequencing analysis techniques from the research environment to increase the diagnostic yield in patients with genetically unresolved leukodystrophies.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Kether Guerrero
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Luan T. Tran
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mackenzie A. Michell-Robinson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Geneviève Legault
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Michel Sylvain
- Division of Pediatric Neurology, Centre Mère-Enfant Soleil du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - James Dorman
- John H. Stroger Jr. Hospital of Cook County, Chicago, IL, United States
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, United States
| | - Michelle Demos
- Division of Neurology, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, BC, Canada
| | - Wolfgang Köhler
- Leukodystrophy Center, University of Leipzig Medical Center, Leipzig, Germany
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, United States
- University of Missouri Kansas City School of Medicine, Kansas City, MO, United States
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, United States
- University of Missouri Kansas City School of Medicine, Kansas City, MO, United States
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, United States
- Isabelle Thiffault
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- *Correspondence: Geneviève Bernard
| |
Collapse
|
7
|
Garofalo M, Vansenne F, Verbeek DS, Sival DA. The pathogenetic basis for a disease continuum in early- and late-onset ataxia-dystonia supports a unified genetic diagnostic approach. Eur J Paediatr Neurol 2023; 43:44-51. [PMID: 36905829 DOI: 10.1016/j.ejpn.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
INTRODUCTION Genetically inherited ataxic disorders are classified by their age of disease presentation into early- and late-onset ataxia (EOA and LOA, presenting before or after the 25th year-of-life). In both disease groups, comorbid dystonia co-occurs frequently. Despite overlapping genes and pathogenetic features, EOA, LOA and dystonia are considered as different genetic entities with a separate diagnostic approach. This often leads to diagnostic delay. So far, the possibility of a disease continuum between EOA, LOA and mixed ataxia-dystonia has not been explored in silico. In the present study, we analyzed the pathogenetic mechanisms underlying EOA, LOA and mixed ataxia-dystonia. METHODS We analyzed the association of 267 ataxia genes with comorbid dystonia and anatomical MRI lesions in literature. We compared anatomical damage, biological pathways, and temporal cerebellar gene expression between EOA, LOA and mixed ataxia-dystonia. RESULTS The majority (≈65%) of ataxia genes were associated with comorbid dystonia in literature. Both EOA and LOA gene groups with comorbid dystonia were significantly associated with lesions in the cortico-basal-ganglia-pontocerebellar network. EOA, LOA and mixed ataxia-dystonia gene groups were enriched for biological pathways related to nervous system development, neural signaling and cellular processes. All genes revealed similar cerebellar gene expression levels before and after 25 years of age and during cerebellar development. CONCLUSION In EOA, LOA and mixed ataxia-dystonia gene groups, our findings show similar anatomical damage, underlying biological pathways and temporal cerebellar gene expression patterns. These findings may suggest the existence of a disease continuum, supporting the diagnostic use of a unified genetic approach.
Collapse
Affiliation(s)
- M Garofalo
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - F Vansenne
- Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - D S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - D A Sival
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Novel Loss-of-Function Variants in CHD2 Cause Childhood-Onset Epileptic Encephalopathy in Chinese Patients. Genes (Basel) 2022; 13:genes13050908. [PMID: 35627293 PMCID: PMC9140428 DOI: 10.3390/genes13050908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Developmental and epileptic encephalopathy-94 (DEE94) is a severe form of epilepsy characterized by a broad spectrum of neurodevelopmental disorders. It is caused by pathogenic CHD2 variants. While only a few pathogenic CHD2 variants have been reported with detailed clinical phenotypes, most of which lack molecular analysis. In this study, next-generation sequencing (NGS) was performed to identify likely pathogenic CHD2 variants in patients with epilepsy. Three likely pathogenic variants were finally identified in different patients. The seizure onset ages were from two years to six years. Patients 1 and 2 had developmental delays before epilepsy, while patient 3 had intellectual regression after the first seizure onset. The observed seizures were myoclonic, febrile, and generalized tonic-clonic, which had been controlled by different combinations of antiepileptic drugs. Two de novo (c.1809_1809+1delGGinsTT, p.? and c.3455+2_3455+3insTG, p.?) and one maternal (c.3783G>A, p.W1261*) variant were identified, which were all predicted to be pathogenic/likely pathogenic. Molecular analysis was performed in patient 1, and we detected aberrantly spliced products, proving the pathogenicity of this CHD2 variant. New cases with novel variants, along with a detailed clinical and molecular analysis, are important for a better understanding of CHD2-related epileptic encephalopathy.
Collapse
|
9
|
Chen S, Zou JL, He S, Li W, Zhang JW, Li SJ. More autosomal dominant SPG18 cases than recessive? The first AD-SPG18 pedigree in Chinese and literature review. Brain Behav 2021; 11:e32395. [PMID: 34734492 PMCID: PMC8671789 DOI: 10.1002/brb3.2395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Hereditary spastic paraplegia (HSP) due to ERLIN2 gene mutations was designated as spastic paraplegia 18 (SPG18). To date, SPG18 families/cases are still rarely reported. All early reported cases shared the autosomal recessive (AR) inheritance pattern. Over the past 3 years, autosomal dominant (AD) or sporadic SPG18 cases had been continuously reported. Here, we reported the clinical and genetic features of the first autosomal dominant SPG18 pedigree in Chinese. METHODS We conducted detailed medical history inquiry, neurological examinations of the proband and his family members, and charted the family tree. The proband underwent brain and cervical magnetic resonance imaging (MRI), electromyography (EMG), and whole exome sequencing. Sanger sequencing was performed to verify the genetic variation in the proband and some family members. A literature review of all reported SPG18 families/cases was carried out to summarize the clinical-genetic characteristics of SPG18 under different inheritance patterns. RESULTS Four patients were clinically diagnosed as chronic spastic paraplegia in three consecutive generations with the autosomal dominant inheritance model. All the patients presented juvenile-adolescent onset and gradually worsening pure HSP phenotype. Clinical phenotypes were consistent within the family. Whole exome sequencing in the proband identified a previously reported heterozygous c.502G > A (p.V168M) mutation in exon 8 of ERLIN2 gene. This mutation was cosegregated with the phenotype in the family and was classified as likely pathogenic according to American College of Medical Genetics and Genomics (ACMG) guidelines. To date, eight AR-SPG18 families, five AD-SPG18 families, and three sporadic cases had been reported. Clinical phenotype of AD-SPG18 was juvenile-adolescent onset pure HSP, while the phenotype of AR-SPG18 was mostly complicated HSP with earlier onset and more severe conditions. In rare cases, the initial spastic paraplegia could evolve to rapidly progressive amyotrophic lateral sclerosis (ALS). CONCLUSIONS We reported the first autosomal dominant SPG18 pedigree in Chinese Han population, which added more pathogenic evidence for V168M mutation. As more SPG18 cases reported, the essentials of SPG18 need to be updated in clinical practice. Special attentions should be given in gene test for upper motor neuron disorders in case of missing heterozygous mutations in ERLIN2.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Jin-Long Zou
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Shuang He
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Wei Li
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Jie-Wen Zhang
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China
| | - Shu-Jian Li
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, China.,Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Kang Q, Yang L, Liao H, Wu L, Chen B, Yang S, Kuang X, Yang H, Liao C. CNKSR2 gene mutation leads to Houge type of X-linked syndromic mental retardation: A case report and review of literature. Medicine (Baltimore) 2021; 100:e26093. [PMID: 34114993 PMCID: PMC8202604 DOI: 10.1097/md.0000000000026093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Mutations of connector enhancer of kinase suppressor of Ras-2 (CNKSR2) gene were identified as the cause of Houge type of X-linked syndromic mental retardation. The mutations of CNKSR2 gene are rare, we reporta patient carrying a novel nonsense mutation of CNKSR2,c.625C > T(p.Gln209∗) and review the clinical features and mutations of CNKSR2 gene for this rare condition considering previous literature. PATIENT CONCERNS We report a case of a 7-year and 5-month-old Chinese patient with clinical symptoms of intellectual disability, language defect, epilepsy and hyperactivity. Genetic study revealed a novel nonsense variant of CNKSR2, which has not been reported yet. DIAGNOSIS According to clinical manifestations, genetic pattern and ACMG classification of mutation site as Class 1-cause disease, the patient was diagnosed as Houge type of X-linked syndromic mental retardation caused by CNKSR2 gene mutation. INTERVENTIONS The patient was administrated with a gradual titration of valproic acid (VPA). OUTCOMES On administration of valproic acid, he had no further seizures. LESSONS This is the first time to report a nonsense variant in CNKSR2, c.625C > T(p.Gln209∗), this finding could expand the spectrum of CNKSR2 mutations and might also support the further study of Houge type of X-linked syndromic mental retardation.
Collapse
|
11
|
Kang Q, Yang L, Liao H, Yang S, Kuang X, Ning Z, Liao C, Chen B. A Chinese patient with developmental and epileptic encephalopathies (DEE) carrying a TRPM3 gene mutation: a paediatric case report. BMC Pediatr 2021; 21:256. [PMID: 34074259 PMCID: PMC8167971 DOI: 10.1186/s12887-021-02719-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/18/2021] [Indexed: 11/11/2022] Open
Abstract
Background Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of chronic encephalopathies characterized by epilepsy with comorbid intellectual disability that are frequently associated with de novo nonsynonymous coding variants in ion channels, cell-surface receptors, and other neuronally expressed genes. Mutations in TRPM3 were identified as the cause of DEE. We report a novel patient with DEE carrying a de novo missense mutation in TRPM3, p.(S1202T); this missense mutation has never been reported. Case presentation A 7-year and 2-month-old Chinese patient who had recurrent polymorphic seizures was clinically diagnosed with DEE. A de novo missense mutation in TRPM3, which has not yet been reported, was identified in this case. The patient had a clinical phenotype consistent with previous reports. Conclusions These findings could expand the spectrum of TRPM3 mutations and might also support that de novo substitutions of TRPM3 are a cause of DEE.
Collapse
Affiliation(s)
- Qingyun Kang
- Department of Neurology, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Liming Yang
- Department of Neurology, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Hongmei Liao
- Department of Neurology, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Sai Yang
- Department of Neurology, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Xiaojun Kuang
- Department of Neurology, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Zeshu Ning
- Department of Neurology, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Caishi Liao
- Department of Neurology, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Bo Chen
- Department of Neurology, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Sun H, Shen XR, Fang ZB, Jiang ZZ, Wei XJ, Wang ZY, Yu XF. Next-Generation Sequencing Technologies and Neurogenetic Diseases. Life (Basel) 2021; 11:life11040361. [PMID: 33921670 PMCID: PMC8072598 DOI: 10.3390/life11040361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Next-generation sequencing (NGS) technology has led to great advances in understanding the causes of Mendelian and complex neurological diseases. Owing to the complexity of genetic diseases, the genetic factors contributing to many rare and common neurological diseases remain poorly understood. Selecting the correct genetic test based on cost-effectiveness, coverage area, and sequencing range can improve diagnosis, treatments, and prevention. Whole-exome sequencing and whole-genome sequencing are suitable methods for finding new mutations, and gene panels are suitable for exploring the roles of specific genes in neurogenetic diseases. Here, we provide an overview of the classifications, applications, advantages, and limitations of NGS in research on neurological diseases. We further provide examples of NGS-based explorations and insights of the genetic causes of neurogenetic diseases, including Charcot-Marie-Tooth disease, spinocerebellar ataxias, epilepsy, and multiple sclerosis. In addition, we focus on issues related to NGS-based analyses, including interpretations of variants of uncertain significance, de novo mutations, congenital genetic diseases with complex phenotypes, and single-molecule real-time approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xue-Fan Yu
- Correspondence: ; Tel.: +86-157-5430-1836
| |
Collapse
|
13
|
Vinkšel M, Writzl K, Maver A, Peterlin B. Improving diagnostics of rare genetic diseases with NGS approaches. J Community Genet 2021; 12:247-256. [PMID: 33452619 PMCID: PMC8141085 DOI: 10.1007/s12687-020-00500-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
According to a rough estimate, one in fifteen people worldwide is affected by a rare disease. Rare diseases are therefore common in clinical practice; however, timely diagnosis of rare diseases is still challenging. Introduction of novel methods based on next-generation sequencing (NGS) technology offers a successful diagnosis of genetically heterogeneous disorders, even in case of unclear clinical diagnostic hypothesis. However, the application of novel technology differs among the centres and health systems significantly. Our goal is to discuss the impact of the implementation of NGS in the diagnosis of rare diseases and present advantages along with challenges of diagnostic approach. Systematic implementation of NGS in health systems can significantly improve the access of patients with rare diseases to diagnosis and reduce the dependence of national health systems for cross-border collaboration.
Collapse
Affiliation(s)
- Mateja Vinkšel
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University medical Centre Ljubljana, Zaloška cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Kang Q, Yang L, Liao H, Yang S, Yang H, Ning Z, Liao C, Wu L. Case Report: Compound Heterozygous Variants of SLC13A3 Identified in a Chinese Patient With Acute Reversible Leukoencephalopathy and α-Ketoglutarate Accumulation. Front Pediatr 2021; 9:801719. [PMID: 34966709 PMCID: PMC8710692 DOI: 10.3389/fped.2021.801719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background: SLC13A3 gene encodes the Na+/dicarboxylate cotransporter 3 (NaDC3), which locates on the plasma membrane and is mainly expressed in kidney, astrocytes and the choroid plexus. It imports four to six carbon dicarboxylates together with three Na+ ions into the cytosol. Nowadays, pathogenic variants of SLC13A3 gene were found to cause acute reversible leukoencephalopathy and α-ketoglutarate accumulation (ARLIAK) in patients. Here, we report two novel SLC13A3 variants c.185C>T (p.T62M) and c.331C>T (p.R111*) identified in a Chinese patient with ARLIAK. Case Presentation: The patient was a Chinese girl aged 13 years and 7 months old, who had acute, recurrent neurological deterioration during two febrile episodes. She presented with reversible leukoencephalopathy and increased urinary excretion of α-ketoglutarate. Genetic studies revealed compound heterozygous variants (c.185C>T, p.T62M, and c.331C>T, p.R111*) in SLC13A3, which had not been reported previously. Conclusions: These findings expand the variant spectrum of SLC13A3, providing the basis for the further study of this rare disease.
Collapse
Affiliation(s)
- Qingyun Kang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Liming Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Hongmei Liao
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Sai Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Haiyang Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Zeshu Ning
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Caishi Liao
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
15
|
Yang S, Shen X, Kang Q, Kuang X, Ning Z, Liu S, Liao H, Cao Z, Yang L. Clinical and Genetic Study on a Chinese Patient with Infantile Onset Epileptic Encephalopathy carrying a PPP3CA Null Variant: a case report. BMC Pediatr 2020; 20:315. [PMID: 32593294 PMCID: PMC7320544 DOI: 10.1186/s12887-020-02213-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background PPP3CA gene encodes the catalytic subunit A of a calcium-dependent protein phosphatase called calcineurin. However, two distinct mechanisms in PPP3CA deficiency would cause two clinically different diseases. Gain-of-function mutations in the autoinhibitory domain at the C-terminus would cause ACCIID that stands for arthrogryposis, cleft palate, craniosynostosis and impaired intellectual development. While loss-of-function mutations in PPP3CA would cause infantile or early childhood onset epileptic encephalopathy1, named as IECEE1. IECEE1 is a severe epileptic neurodevelopmental disorder and mainly characterized by psychomotor delay. Here, we report a Chinese patient who was clinically and genetically diagnosed as IECEE1. We also extensively analyzed electroencephalogram (EEG) features of the patient in this study. Case presentation A 2-year-old Chinese patient who had recurrent polymorphic seizures was clinically and genetically diagnosed as IECEE1. A frameshift variant c.1283insC (p.T429NfsX22) was identified in this case. Multiple types of abnormal features were observed in the EEG, comparing with the previous reports. Conclusions These findings could expand the spectrum of PPP3CA mutations and might also support the diagnosis and further study of IECEE1.
Collapse
Affiliation(s)
- Sai Yang
- Department of Pediatrics, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Xiang Shen
- Running Gene Inc., Haohai Mansion, No.7 Shangdi 5th Street, Haidian District, Beijing, China
| | - Qingyun Kang
- Department of Pediatrics, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Xiaojun Kuang
- Department of Pediatrics, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Zeshu Ning
- Department of Pediatrics, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Shulei Liu
- Department of Pediatrics, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Hongmei Liao
- Department of Pediatrics, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Zhenhua Cao
- Running Gene Inc., Haohai Mansion, No.7 Shangdi 5th Street, Haidian District, Beijing, China
| | - Liming Yang
- Department of Pediatrics, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China.
| |
Collapse
|
16
|
Alsubaie L, Aloraini T, Amoudi M, Swaid A, Eyiad W, Al Mutairi F, Ababneh F, Alrifai MT, Baarmah D, Altwaijri W, Alotaibi N, Harthi A, Rumayyan A, Alanazi A, Qrimli M, Alfadhel M, Alfares A. Genomic testing and counseling: The contribution of next-generation sequencing to epilepsy genetics. Ann Hum Genet 2020; 84:431-436. [PMID: 32533790 DOI: 10.1111/ahg.12397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Currently, next-generation sequencing (NGS) technology is more accessible and available to detect the genetic causation of diseases. Though NGS technology benefited some clinical phenotypes, for some clinical diagnoses such as seizures and epileptic disorders, adaptation occurred slowly. The genetic diagnosis was mainly based on epilepsy gene panels and not on whole exome and/or genome sequencing. METHOD We retrospectively analyzed 420 index cases, referred for NGS over a period of 18 months, to investigate the challenges in diagnosing epilepsy. RESULT Of the 420 cases, 65 (15%) were referred due to epilepsy with one third having a positive family history. The result of the NGS was 14 positive cases (21.5%), 16 inconclusive cases (24%), and 35 (53%) negative cases. No gene has been detected twice in the inconclusive and positive groups. Comparative genomic hybridization has been performed for all 30 NGS negative cases and four cases with pathogenic variants (deletion in 15q11.213.1, deletion of 2p16.3, deletion in Xq22.1, and deletion in 17p13.3) were identified. CONCLUSION These findings have implications for our understanding of the approach to genetic testing and counseling of patients affected with seizures and epilepsy disorders. The overall diagnostic yield of exome/genome sequencing in our cohort was 23%. The main characteristic is genetic heterogeneity, supporting NGS technology as a suitable testing approach for seizures and epilepsy disorders. Genetic counseling for newly identified disease-causing variants depends on the pedigree interpretation, within the context of disease penetrance and variable expressivity.
Collapse
Affiliation(s)
- Lamia Alsubaie
- Department of Pediatrics, Division of Genetics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Taghrid Aloraini
- Department of Lab Medicine, Division of Translational Pathology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Manal Amoudi
- Department of Lab Medicine, Division of Translational Pathology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Abdulrahman Swaid
- Department of Pediatrics, Division of Genetics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Wafaa Eyiad
- Department of Pediatrics, Division of Genetics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Department of Pediatrics, Division of Genetics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Farouq Ababneh
- Department of Pediatrics, Division of Genetics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Muhammad Talal Alrifai
- Department of Pediatrics, Division of Neurology, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Duaa Baarmah
- Department of Pediatrics, Division of Neurology, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Waleed Altwaijri
- Department of Pediatrics, Division of Neurology, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Naser Alotaibi
- Department of Medicine, Division of Neurology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ashraf Harthi
- Department of Medicine, Division of Neurology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmad Rumayyan
- Department of Pediatrics, Division of Neurology, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ali Alanazi
- Department of Medicine, Division of Neurology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohammad Qrimli
- Department of Medicine, Division of Neurology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Department of Pediatrics, Division of Genetics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmed Alfares
- Department of Lab Medicine, Division of Translational Pathology, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Department of Pediatrics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
17
|
Liu X, Duan X, Zhang Y, Sun A, Fan D. Molecular analysis and clinical diversity of distal hereditary motor neuropathy. Eur J Neurol 2020; 27:1319-1326. [PMID: 32298515 DOI: 10.1111/ene.14260] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 12/05/2019] [Accepted: 04/07/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Distal hereditary motor neuropathies (dHMNs) are a clinically and genetically heterogeneous group of disorders. The purpose of this study was to identify the genetic distribution of dHMNs in a large cohort of Chinese patients and provide insight into the underlying common pathophysiology of dHMNs. METHODS Multi-gene panel testing or whole-exome sequencing was performed in 70 index patients with clinically diagnosed dHMN between January 2007 and December 2018. The clinical features, Charcot-Marie-Tooth (CMT) neuropathy scores and electrophysiological data at diagnosis were recorded. RESULTS Twenty-four causative mutations were identified in 70 index patients with dHMN (34.3%). Mutation in the HSPB1 gene was the most common cause of dHMN. Some CMT genes (MPZ, SH3TC2, GDAP1) were found to be related to dHMN with minor sensory involvement. Patients with a dHMN-plus phenotype (distal motor neuropathy and additional neurological deficits) carried variants in genes related to hereditary spastic paraplegia, amyotrophic lateral sclerosis and spinal muscular atrophy (FUS, KIF5A, KIF1B, ZFYVE26, DNAJB2). CONCLUSIONS Comprehensive genetic testing of dHMN patients allows for identification of the pathogenic mutation in one-third of cases. Pure motor neuropathies and motor neuropathies with minor sensory involvement share many genes with CMT disease. Causes for dHMN-plus phenotypes overlap with motor neuron disease.
Collapse
Affiliation(s)
- X Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - X Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Y Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - A Sun
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - D Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
18
|
Thuriot F, Gravel E, Buote C, Doyon M, Lapointe E, Marcoux L, Larue S, Nadeau A, Chénier S, Waters PJ, Jacques PÉ, Gravel S, Lévesque S. Molecular diagnosis of muscular diseases in outpatient clinics: A Canadian perspective. NEUROLOGY-GENETICS 2020; 6:e408. [PMID: 32337335 PMCID: PMC7164974 DOI: 10.1212/nxg.0000000000000408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Objective To evaluate the diagnostic yield of an 89-gene panel in a large cohort of patients with suspected muscle disorders and to compare the diagnostic yield of gene panel and exome sequencing approaches. Methods We tested 1,236 patients from outpatient clinics across Canada using a gene panel and performed exome sequencing for 46 other patients with sequential analysis of 89 genes followed by all mendelian genes. Sequencing and analysis were performed in patients with muscle weakness or symptoms suggestive of a muscle disorder and showing at least 1 supporting clinical laboratory. Results We identified a molecular diagnosis in 187 (15.1%) of the 1,236 patients tested with the 89-gene panel. Diagnoses were distributed across 40 different genes, but 6 (DMD, RYR1, CAPN3, PYGM, DYSF, and FKRP) explained about half of all cases. Cardiac anomalies, positive family history, age <60 years, and creatine kinase >1,000 IU/L were all associated with increased diagnostic yield. Exome sequencing identified a diagnosis in 10 (21.7%) of the 46 patients tested. Among these, 3 were attributed to genes not included in the 89-gene panel. Despite differences in median coverage, only 1 of the 187 diagnoses that were identified on gene panel in the 1,236 patients could have been potentially missed if exome sequencing had been performed instead. Conclusions Our study supports the use of gene panel testing in patients with suspected muscle disorders from outpatient clinics. It also shows that exome sequencing has a low risk of missing diagnoses compared with gene panel, while potentially increasing the diagnostic yield of patients with muscle disorders.
Collapse
Affiliation(s)
- Fanny Thuriot
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| | - Elaine Gravel
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| | - Caroline Buote
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| | - Marianne Doyon
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| | - Elvy Lapointe
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| | - Lydia Marcoux
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| | - Sandrine Larue
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| | - Amélie Nadeau
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| | - Sébastien Chénier
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| | - Paula J Waters
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| | - Pierre-Étienne Jacques
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| | - Serge Gravel
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| | - Sébastien Lévesque
- Department of Pediatrics (F.T., E.G., C.B., M.D., L.M., A.N., S.C., P.J.W., S.G., S. Lévesque), Université de Sherbrooke; Sherbrooke Genomic Medicine (F.T., E.G., C.B., S.G., S. Lévesque); RNomic's Platform (E.L.), Université de Sherbrooke; Department of Neurology (S. Larue), Notre-Dame Hospital, Université de Montréal; Department of Biology (P.-É.J.), Université de Sherbrooke; and Department of Computer Sciences (P.-É.J.), Université de Sherbrooke, Quebec, Canada
| |
Collapse
|