1
|
Freitas ADS, Barroso FAL, Campos GM, Américo MF, Viegas RCDS, Gomes GC, Vital KD, Fernandes SOA, Carvalho RDDO, Jardin J, Miranda APGDS, Ferreira E, Martins FS, Laguna JG, Jan G, Azevedo V, de Jesus LCL. Exploring the anti-inflammatory effects of postbiotic proteins from Lactobacillus delbrueckii CIDCA 133 on inflammatory bowel disease model. Int J Biol Macromol 2024; 277:134216. [PMID: 39069058 DOI: 10.1016/j.ijbiomac.2024.134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Lactobacillus delbrueckii CIDCA 133 is a promising health-promoting bacterium shown to alleviate intestinal inflammation. However, the specific bacterial components responsible for these effects remain largely unknown. Here, we demonstrated that consuming extractable proteins from the CIDCA 133 strain effectively relieved acute ulcerative colitis in mice. This postbiotic protein fraction reduced the disease activity index and prevented colon shortening in mice. Furthermore, histological analysis revealed colitis prevention with reduced inflammatory cell infiltration into the colon mucosa. Postbiotic consumption also induced an immunomodulatory profile in colitic mice, as evidenced by both mRNA transcript levels (Tlr2, Nfkb1, Nlpr3, Tnf, and Il6) and cytokines concentration (IL1β, TGFβ, and IL10). Additionally, it enhanced the levels of secretory IgA, upregulated the transcript levels of tight junction proteins (Hp and F11r), and improved paracellular intestinal permeability. More interestingly, the consumption of postbiotic proteins modulated the gut microbiota (Bacteroides, Arkkemansia, Dorea, and Oscillospira). Pearson correlation analysis indicated that IL10 and IL1β levels were positively associated with Bacteroides and Arkkemansia_Lactobacillus abundance. Our study reveals that CIDCA 133-derived proteins possess anti-inflammatory properties in colonic inflammation.
Collapse
Affiliation(s)
- Andria Dos Santos Freitas
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gabriela Munis Campos
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Monique Ferrary Américo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gabriel Camargos Gomes
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Kátia Duarte Vital
- Federal University of Minas Gerais, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Enio Ferreira
- Federal University of Minas Gerais, Department of General Pathology, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano Santos Martins
- Federal University of Minas Gerais, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Guimarães Laguna
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Vasco Azevedo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| | - Luís Cláudio Lima de Jesus
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Basso PJ, Gauthier T, Palomares F, López-Enríquez S, Tsai S. Editorial: Immunometabolism: bridging the gap between immunology and nutrition. Front Nutr 2024; 11:1436894. [PMID: 38933887 PMCID: PMC11203395 DOI: 10.3389/fnut.2024.1436894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Paulo José Basso
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Thierry Gauthier
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, MD, United States
| | - Francisca Palomares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Virgen Macarena University Hospital, University of Seville, CSIC, Seville, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Virgen Macarena University Hospital, University of Seville, CSIC, Seville, Spain
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Kasapoglu M, Yadavalli R, Nawaz S, Althwanay A, AlEdani EM, Kaur H, Butt S. The Impact of Microbiome Interventions on the Progression and Severity of Inflammatory Bowel Disease: A Systematic Review. Cureus 2024; 16:e60786. [PMID: 38779440 PMCID: PMC11110475 DOI: 10.7759/cureus.60786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is characterized by chronic intestinal inflammation. The dysbiotic gut microbiome likely contributes to IBD pathogenesis. Microbiome-directed therapies such as fecal microbiota transplantation (FMT), probiotics, and synbiotics may help induce and maintain remission. This systematic review aimed to determine the efficacy of microbiome interventions compared to standard therapy or placebo for IBD treatment. PubMed, EMBASE, Cochrane CENTRAL, and Web of Science were searched for randomized controlled trials on microbiome interventions in IBD from inception to October 2023. The risk of bias was assessed using Cochrane tools. Outcomes included disease activity, endoscopy, histology, quality of life, and adverse events. A total of 18 randomized controlled trials were included. Three trials found intensive (i.e., high frequency of administration and/or large volumes of fecal material) multi-donor FMT superior to autologous FMT or glucocorticoids for UC remission induction. Seven placebo-controlled trials demonstrated higher remission rates with FMT, especially intensive protocols, versus control for mild-to-moderate UC. However, a single FMT did not prevent relapses. Seven probiotic trials showed the potential to improve UC activity and maintain remission. One synbiotic trial reported reduced inflammation and symptoms versus placebo. Serious adverse events were rare. Small sample sizes and protocol heterogeneity limited the conclusions. Current evidence indicates the potential benefits of microbiome interventions, particularly intensive multi-donor FMT, for inducing and maintaining remission in UC. Probiotics may also improve outcomes. Adequately powered trials using standardized protocols are still needed to firmly establish efficacy and safety. Microbiome-directed therapies represent a promising approach for improving IBD outcomes.
Collapse
Affiliation(s)
- Malik Kasapoglu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rajesh Yadavalli
- Internal Medicine, Rajiv Gandhi Institute of Medical Sciences, Adilabad, IND
| | - Sarosh Nawaz
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Abdulaziz Althwanay
- Dermatology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | - Esraa M AlEdani
- Dermatology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Harleen Kaur
- Medicine and Surgery, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, IND
| | - Samia Butt
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
4
|
Li S, Zhang YX. Sensitive delivery systems and novel encapsulation technologies for live biotherapeutic products and probiotics. Crit Rev Microbiol 2024; 50:371-384. [PMID: 37074732 DOI: 10.1080/1040841x.2023.2202237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/06/2023] [Indexed: 04/20/2023]
Abstract
Live biotherapeutic product (LBP), a type of biological product, holds promise for the prevention or treatment of metabolic disease and pathogenic infection. Probiotics are live microorganisms that improve the intestinal microbial balance and beneficially affect the health of the host when ingested in sufficient numbers. These biological products possess the advantages of inhibition of pathogens, degradation of toxins, and modulation of immunity. The application of LBP and probiotic delivery systems has attracted great interest to researchers. The initial used technologies for LBP and probiotic encapsulation are traditional capsules and microcapsules. However, the stability and targeted delivery capability require further improved. The specific sensitive materials can greatly improve the delivery efficiency of LBPs and probiotics. The specific sensitive delivery systems show advantages over traditional ones due to their better properties of biocompatibility, biodegradability, innocuousness, and stability. Moreover, some new technologies, including layer-by-layer encapsulation, polyelectrolyte complexation, and electrohydrodynamic technology, show great potential in LBP and probiotic delivery. In this review, novel delivery systems and new technologies of LBPs and probiotics were presented, and the challenges and prospects were explored in specific sensitive materials for LBP and probiotic delivery.
Collapse
Affiliation(s)
- Shuang Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
5
|
Zhao N, Huang X, Liu Z, Gao Y, Teng J, Yu T, Yan F. Probiotic characterization of Bacillus smithii: Research advances, concerns, and prospective trends. Compr Rev Food Sci Food Saf 2024; 23:e13308. [PMID: 38369927 DOI: 10.1111/1541-4337.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Bacillus smithii is a thermophilic Bacillus that can be isolated from white wine, hot spring soil, high-temperature compost, and coffee grounds, with various biofunctions and wide applications. It is resistant to both gastric acid and high temperature, which makes it easier to perform probiotic effects than traditional commercial probiotics, so it can maintain good vitality during food processing and has great application prospects. This paper starts with the taxonomy and genetics and focuses on aspects, including genetic transformation, functional enzyme production, waste utilization, and application in the field of food science as a potential probiotic. According to available studies during the past 30 years, we considered that B. smithii is a novel class of microorganisms with a wide range of functional enzymes such as hydrolytic enzymes and hydrolases, as well as resistance to pathogenic bacteria. It is available in waste degradation, organic fertilizer production, the feed and chemical industries, the pharmaceutical sector, and food fortification. Moreover, B. smithii has great potentials for applications in the food industry, as it presents high resistance to the technological processes that guarantee its health benefits. It is also necessary to systematically evaluate the safety, flavor, and texture of B. smithii and explore its biological mechanism of action, which is of great value for further application in multiple fields, especially in food and medicine.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xuedi Huang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongyang Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jialuo Teng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Kavita, Om H, Chand U, Kushawaha PK. Postbiotics: An alternative and innovative intervention for the therapy of inflammatory bowel disease. Microbiol Res 2024; 279:127550. [PMID: 38016379 DOI: 10.1016/j.micres.2023.127550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a persistent gastrointestinal (GI) tract inflammatory disease characterized by downregulated mucosal immune activities and a disrupted microbiota environment in the intestinal lumen. The involvement of bacterium postbiotics as mediators between the immune system and gut microbiome could be critical in determining why host-microbial relationships are disrupted in IBD. Postbiotics including Short-chain fatty acids (SCFAs), Organic acids, Proteins, Vitamins, Bacteriocins, and Tryptophan (Trp) are beneficial bioactive compounds formed via commensal microbiota in the gut environment during the fermentation process that can be used to improve consumer health. The use of metabolites or fragments from microorganisms can be a very attractive treatment and prevention technique in modern medicine. Postbiotics are essential in the immune system's development since they alter the barrier tightness, and the gut ecology and indirectly shape the microbiota's structure. As a result, postbiotics may be beneficial in treating or preventing various diseases, even some for which there is no effective causative medication. Postbiotics may be a promising tool for the treatment of IBD in individuals of all ages, genders, and even geographical locations. Direct distribution of postbiotics may provide a new frontier in microbiome-based therapy for IBD since it allows both the management of host homeostasis and the correction of the negative implications of dysbiosis. Further studies of the biological effects of these metabolites are expected to reveal innovative applications in medicine and beyond. This review attempts to explore the possible postbiotic-based interventions for the treatment of IBD.
Collapse
Affiliation(s)
- Kavita
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Hari Om
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Umesh Chand
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
7
|
Jadhav A, Jagtap S, Vyavahare S, Sharbidre A, Kunchiraman B. Reviewing the potential of probiotics, prebiotics and synbiotics: advancements in treatment of ulcerative colitis. Front Cell Infect Microbiol 2023; 13:1268041. [PMID: 38145046 PMCID: PMC10739422 DOI: 10.3389/fcimb.2023.1268041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Inflammatory bowel diseases (IBD) like Crohn's and ulcerative colitis (UC) are multifactorial pathologies caused by environmental factors and genetic background. UC is a chronic inflammatory disorder that specifically targets the colon, resulting in inflammation. Various chemical interventions, including aminosalicylates, corticosteroids, immunomodulators, and biological therapies, have been extensively employed for the purpose of managing symptoms associated with UC. Nevertheless, it is important to note that these therapeutic interventions may give rise to undesirable consequences, including, but not limited to, the potential for weight gain, fluid retention, and heightened vulnerability to infections. Emerging therapeutic approaches for UC are costly due to their chronic nature. Alternatives like synbiotic therapy, combining prebiotics and probiotics, have gained attention for mitigating dysbiosis in UC patients. Prebiotics promote beneficial bacteria proliferation, while probiotics establish a balanced gut microbiota and regulate immune system functionality. The utilisation of synbiotics has been shown to improve the inflammatory response and promote the resolution of symptoms in individuals with UC through the stimulation of beneficial bacteria growth and the enhancement of intestinal barrier integrity. Hence, this review article aims to explore the potential benefits and underlying reasons for incorporating alternative approaches in the management of UC with studies performed using prebiotics, probiotics, and synbiotics to treat ulcerative colitis and to highlight safety and considerations in UC and future perspectives. This will facilitate the utilisation of novel treatment strategies for the safer and more efficacious management of patients with UC.
Collapse
Affiliation(s)
- Apurva Jadhav
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Vyavahare
- Sai Ayurved Medical College, Maharashtra University of Health Sciences, Solapur, Maharashtra, India
| | - Archana Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Bipinraj Kunchiraman
- Microbial Biotechnology, Rajiv Gandhi Institute of IT & Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
8
|
Han M, Liao W, Dong Y, Fei T, Gai Z. Sustained ameliorative effect of Lactobacillus acidophilus LA85 on dextran sulfate sodium-induced colitis in mice. J Food Sci 2023; 88:3893-3904. [PMID: 37548631 DOI: 10.1111/1750-3841.16723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/28/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease associated with immune system dysfunction caused by gut dysbiosis. This study aimed to investigate the alleviating effect of Lactobacillus acidophilus LA85 on colitis and its underlying mechanism using mouse models of dextran sulfate sodium (DSS)-induced UC. The UC mouse models were established by treating C57BL/6J male mice with 2.5% (w/v) DSS in drinking water for 7 days. These mice received supplementation with either L. acidophilus LA85 (1 × 109 colony-forming units/day) or 200 µL of sterile water once daily (LA85-treated and UC model mice, respectively). The disease activity index (DAI), colon length, and histological changes in the colons of mice were then analyzed at Day 21, and the effects of L. acidophilus LA85 on the gut microbiota and serum inflammatory cytokines were also investigated. Compared with the UC model mice, L. acidophilus LA85-treated UC mice showed significant reductions in a variety of colitis symptoms, including weight loss, the DAI score, colon shortening, and colon tissue damage. Lactobacillus acidophilus LA85 supplementation also significantly decreased the serum concentrations of tumor necrosis factor α and interleukin-6 while increasing the serum concentration of IL-10. Furthermore, LA85 supplementation improved the diversity and composition of the gut microbiota, both of which had been decreased by DSS. In particular, L. acidophilus LA85-treated UC mice showed higher relative abundances of Akkermansia and Romboutsia than the UC model mice. These results demonstrate that L. acidophilus LA85 can alleviate inflammatory diseases of the intestine, such as inflammatory bowel disease, by regulating immune responses and restoring the gut microbiota. PRACTICAL APPLICATION: Ulcerative colitis is a type of inflammatory bowel disease caused by imbalance of gut microbiota. This study showed that L. acidophilus LA85 can alleviate DSS-induced colitis in mice through regulation of inflammatory cytokines, protection of intestinal barrier, and regulation of specific gut microbiota. L. acidophilus LA85 is a promising probiotic candidate for the treatment of UC.
Collapse
Affiliation(s)
- Mei Han
- Shanghai Business School, Shanghai, China
| | - Wenyan Liao
- State Key Laboratory of Dairy Biotechnology, Technology Center Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Teng Fei
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| |
Collapse
|
9
|
Ikeda Y, Tsuji A, Matsuda S. Gut Protective Effect from Newly Isolated Bacteria as Probiotics against Dextran Sulfate Sodium and Carrageenan-Induced Ulcerative Colitis. Microorganisms 2023; 11:1858. [PMID: 37513030 PMCID: PMC10386561 DOI: 10.3390/microorganisms11071858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Gut microbiome dysbiosis might be linked to certain diseases such as inflammatory bowel diseases (IBDs), which are categorized by vigorous inflammation of the gastrointestinal tract. Several studies have shown the favorable anti-inflammatory effect of certain probiotics in IBD therapy. In the present investigation, the possible gut protective effects of commensal bacteria were examined in an IBD model mouse that was cost-effectively induced with low molecular weight dextran sulfate sodium (DSS) and kappa carrageenan. Our conclusions show that certain probiotic supplementation could result in the attenuation of the disease condition in the IBD mouse, suggesting a favorable therapeutic capability for considerably improving symptoms of gut inflammation with an impact on the IBD therapy. However, the molecular mechanisms require further investigation.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
10
|
Lynch JP, González-Prieto C, Reeves AZ, Bae S, Powale U, Godbole NP, Tremblay JM, Schmidt FI, Ploegh HL, Kansra V, Glickman JN, Leong JM, Shoemaker CB, Garrett WS, Lesser CF. Engineered Escherichia coli for the in situ secretion of therapeutic nanobodies in the gut. Cell Host Microbe 2023; 31:634-649.e8. [PMID: 37003258 PMCID: PMC10101937 DOI: 10.1016/j.chom.2023.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/20/2022] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
Drug platforms that enable the directed delivery of therapeutics to sites of diseases to maximize efficacy and limit off-target effects are needed. Here, we report the development of PROT3EcT, a suite of commensal Escherichia coli engineered to secrete proteins directly into their surroundings. These bacteria consist of three modular components: a modified bacterial protein secretion system, the associated regulatable transcriptional activator, and a secreted therapeutic payload. PROT3EcT secrete functional single-domain antibodies, nanobodies (Nbs), and stably colonize and maintain an active secretion system within the intestines of mice. Furthermore, a single prophylactic dose of a variant of PROT3EcT that secretes a tumor necrosis factor-alpha (TNF-α)-neutralizing Nb is sufficient to ablate pro-inflammatory TNF levels and prevent the development of injury and inflammation in a chemically induced model of colitis. This work lays the foundation for developing PROT3EcT as a platform for the treatment of gastrointestinal-based diseases.
Collapse
Affiliation(s)
- Jason P Lynch
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Coral González-Prieto
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Analise Z Reeves
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sena Bae
- Departments of Immunology and Infectious Diseases and Harvard T.H. Chan Center for the Microbiome in Public Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Urmila Powale
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Neha P Godbole
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jacqueline M Tremblay
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Hidde L Ploegh
- Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Jonathan N Glickman
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Tufts Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA 02111, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA; Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wendy S Garrett
- Departments of Immunology and Infectious Diseases and Harvard T.H. Chan Center for the Microbiome in Public Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Ragon Institute of Harvard and MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Xu X, Wu J, Jin Y, Huang K, Zhang Y, Liang Z. Both Saccharomyces boulardii and Its Postbiotics Alleviate Dextran Sulfate Sodium-Induced Colitis in Mice, Association with Modulating Inflammation and Intestinal Microbiota. Nutrients 2023; 15:nu15061484. [PMID: 36986214 PMCID: PMC10055518 DOI: 10.3390/nu15061484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE To investigate the effect of Saccharomyces boulardii and its freeze-dried and spray-dried postbiotics on the intervention and potential mechanism of dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. [Methods] After the acclimation period of C67BL/6J mice, a colitis model was constructed by applying 2% DSS for 7 d, followed by 7 d of intervention. Subsequently, the disease activity index (DAI), organ index, colon length, colon HE staining of pathological sections, ELISA for blood inflammatory factors (Interleukin (IL)-1β, IL-6, IL-10, Tumor necrosis factor (TNF)-α), Real time quantitative polymerase chain reaction (RT-qPCR) to determine the levels of colonic inflammatory factors (IL-1β, IL-6, IL-10, TNF-α), Occludin gene expression, and intestinal flora were assessed to evaluate the protective effects of S. boulardii and its postbiotics on colitis in mice. RESULTS Compared with the DSS group, S. boulardii and the postbiotics interventions effectively improved colonic shortening and tissue damage, increased the expression of intestinal tight junction protein, reduced the secretion of pro-inflammatory factors, increased the secretion of anti-inflammatory factors, and maintained the homeostasis of intestinal microorganisms. Postbiotics intervention is better than probiotics. CONCLUSIONS S. boulardii and its postbiotics can effectively alleviate DSS-induced colitis in mice through modulating host immunity and maintaining intestinal homeostasis. Postbiotics are promising next-generation biotherapeutics for ulcerative colitis treatment.
Collapse
Affiliation(s)
- Xinge Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingwei Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuxin Jin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Zoo Captive Wildlife Technology, Beijing 100044, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
12
|
Peng Y, Dong W, Chen G, Mi J, Lu L, Xie Z, Xu W, Zhou W, Sun Y, Zeng X, Cao Y, Yan Y. Anthocyanins from Lycium ruthenicum Murray Ameliorated High-Fructose Diet-Induced Neuroinflammation through the Promotion of the Integrity of the Intestinal Barrier and the Proliferation of Lactobacillus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2864-2882. [PMID: 36725206 DOI: 10.1021/acs.jafc.2c06713] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the present study, we found that anthocyanins from Lycium ruthenicum Murray (ACN) potently ameliorated a high-fructose diet (HFrD)-induced neuroinflammation in mice. ACN improved the integrity of the intestinal barrier and suppressed the toll-like receptor 4 (TLR4) signaling pathway to ameliorate the neuroinflammation, which was verified by Tlr4-/- mice. Furthermore, ACN could modulate the HFrD-induced dysbiosis of gut microbiota. The fecal microbiota transplantation from ACN-induced mice was sufficient to attenuate the neuroinflammation, while the amelioration of neuroinflammation by ACN was blocked upon gut microbiota depletion. In addition, ACN-induced increment of the relative abundance of Lactobacillus might be responsible for the alleviation of the neuroinflammation, which was further confirmed in the promoting effect of ACN on the growth of Lactobacillus in vitro. Overall, these results provided the evidence of a comprehensive cross-talk mechanism between ACN and neuroinflammation in HFrD-fed mice, which was mediated by reducing gut microbiota dysbiosis and maintaining the intestinal barrier integrity.
Collapse
Affiliation(s)
- Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
- National Wolfberry Engineering Research Center, Yinchuan, Ningxia 750002, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
- National Wolfberry Engineering Research Center, Yinchuan, Ningxia 750002, China
| | - Zhiyong Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| |
Collapse
|
13
|
Manna L, Rizzi E, Bafile E, Cappelleri A, Ruscica M, Macchi C, Podaliri Vulpiani M, Salini R, Rossi E, Panebianco C, Perri F, Pazienza V, Federici F. Lentilactobacillus kefiri SGL 13 and Andrographis paniculata alleviate dextran sulfate sodium induced colitis in mice. Front Nutr 2023; 10:1072334. [PMID: 36860688 PMCID: PMC9968723 DOI: 10.3389/fnut.2023.1072334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction Inflammatory bowel diseases (IBD) are chronic inflammatory conditions that typically involve diarrhea, abdominal pain, fatigue, and weight loss, with a dramatic impact on patients' quality of life. Standard medications are often associated with adverse side effects. Thus, alternative treatments such as probiotics are of great interest. The purpose of the present study was to evaluate the effects of oral administration of Lentilactobacillus kefiri (basonym: Lactobacillus kefiri) SGL 13 and Andrographis paniculata, namely, Paniculin 13™, on dextran sodium sulfate (DSS)- treated C57BL/6J mice. Methods Colitis was induced by administering 1.5% DSS in drinking water for 9 days. Forty male mice were divided into four groups, receiving PBS (control), 1.5% DSS, Paniculin 13™ and 1.5% DSS + Paniculin 13™. Results The results showed that body weight loss and Disease Activity Index (DAI) score were improved by Paniculin 13™. Moreover, Paniculin 13™ ameliorated DSS-induced dysbiosis, by modulating the gut microbiota composition. The gene expression of MPO, TNFα and iNOS in colon tissue was reduced and these data matched with the histological results, supporting the efficacy of Paniculin 13™ in reducing the inflammatory response. No adverse effects were associated to Paniculin 13™ administration. Discussion In conclusion, Paniculin 13™ could be an effective add-on approach to conventional therapies for IBD.
Collapse
Affiliation(s)
- Laura Manna
- PNK Farmaceutici S.p.a., Castelnuovo Vomano, Italy
| | | | | | - Andrea Cappelleri
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy,Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UNIMI, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Michele Podaliri Vulpiani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), Teramo, Italy
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), Teramo, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), Teramo, Italy
| | - Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Federica Federici
- PNK Farmaceutici S.p.a., Castelnuovo Vomano, Italy,*Correspondence: Federica Federici,
| |
Collapse
|
14
|
Liu Q, Jian W, Wang L, Yang S, Niu Y, Xie S, Hayer K, Chen K, Zhang Y, Guo Y, Tu Z. Alleviation of DSS-induced colitis in mice by a new-isolated Lactobacillus acidophilus C4. Front Microbiol 2023; 14:1137701. [PMID: 37152759 PMCID: PMC10157218 DOI: 10.3389/fmicb.2023.1137701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Probiotic is adjuvant therapy for traditional drug treatment of ulcerative colitis (UC). In the present study, Lactobacillus acidophilus C4 with high acid and bile salt resistance has been isolated and screened, and the beneficial effect of L. acidophilus C4 on Dextran Sulfate Sodium (DSS)-induced colitis in mice has been evaluated. Our data showed that oral administration of L. acidophilus C4 remarkably alleviated colitis symptoms in mice and minimized colon tissue damage. Methods To elucidate the underlying mechanism, we have investigated the levels of inflammatory cytokines and intestinal tight junction (TJ) related proteins (occludin and ZO-1) in colon tissue, as well as the intestinal microbiota and short-chain fatty acids (SCFAs) in feces. Results Compared to the DSS group, the inflammatory cytokines IL-1β, IL-6, and TNF-α in L. acidophilus C4 group were reduced, while the antioxidant enzymes superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) were found to be elevated. In addition, proteins linked to TJ were elevated after L. acidophilus C4 intervention. Further study revealed that L. acidophilus C4 reversed the decrease in intestinal microbiota diversity caused by colitis and promoted the levels of SCFAs. Discussion This study demonstrate that L. acidophilus C4 effectively alleviated DSS-induced colitis in mice by repairing the mucosal barrier and maintaining the intestinal microecological balance. L. acidophilus C4 could be of great potential for colitis therapy.
Collapse
Affiliation(s)
- Qianqian Liu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Wenwen Jian
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Shenglin Yang
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Yutian Niu
- International Medical College, Chongqing Medical University, Chongqing, China
| | - ShuaiJing Xie
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Kim Hayer
- Leicester Medical School, University of Leicester, Leicester, United Kingdom
| | - Kun Chen
- College of Foreign Languages, Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yanan Guo
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Zeng Tu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
- *Correspondence: Zeng Tu,
| |
Collapse
|
15
|
Li Z, Zhang S, Xu L, Fang X, Wan Y, Yu D, Guo Y. A tetrapeptide from maize combined with probiotics exerted strong anti-inflammatory effects and modulated gut microbiota in DSS-induced colitis mice. Food Funct 2022; 13:12602-12618. [PMID: 36373867 DOI: 10.1039/d2fo02678c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by recurrent gastrointestinal inflammation caused by abnormal immune response, and patients usually have intestinal flora imbalance. At present, the pathogenesis of UC is not well understood, and it appears that there is chronic activation of the immune and inflammatory cascade in genetically susceptible individuals. Some food supplements such as specific peptides and probiotics have been investigated and shown the potential for the treatment of UC. The purpose of this study is to investigate the therapeutic effect and potential mechanism of tetrapeptide from maize (TPM) and probiotic treatment on dextran sulfate sodium (DSS)-induced UC in C57BL/6J mice. Our results indicated that the therapeutic effects of TPM and probiotics are positively associated with a reduction in pro-inflammatory cytokine levels and restoration of the gut microbiota. Treatment with TPM or probiotics effectively alleviated the adverse effects of UC, including weight loss, shortened colon length, and colon and kidney tissue damage in mice. Additionally, both TPM and probiotics significantly reduced pro-inflammatory cytokine levels and oxidative stress in UC mice, and the effect was more pronounced when both were used together. Moreover, co-treatment with TPM and probiotics increased the diversity of gut microbes in UC mice, reduced the ratio of Firmicutes to Bacteroidetes (F/B) and increased the abundance of bacterial species, including Muribaculaceae, Alistipes, Ligilactobacillus and Lactobacillus, and has been shown to be beneficial for a variety of pathological conditions.
Collapse
Affiliation(s)
- Zhiguo Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Shan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China 130033, P. R. China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
| |
Collapse
|
16
|
Talapko J, Včev A, Meštrović T, Pustijanac E, Jukić M, Škrlec I. Homeostasis and Dysbiosis of the Intestinal Microbiota: Comparing Hallmarks of a Healthy State with Changes in Inflammatory Bowel Disease. Microorganisms 2022; 10:microorganisms10122405. [PMID: 36557658 PMCID: PMC9781915 DOI: 10.3390/microorganisms10122405] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota, which represent a community of different microorganisms in the human intestinal tract, are crucial to preserving human health by participating in various physiological functions and acting as a metabolic organ. In physiological conditions, microbiota-host partnership exerts homeostatic stability; however, changes in intestinal microbiota composition (dysbiosis) are an important factor in the pathogenesis of inflammatory bowel disease and its two main disease entities: ulcerative colitis and Crohn's disease. The incidence and prevalence of these inflammatory conditions have increased rapidly in the last decade, becoming a significant problem for the healthcare system and a true challenge in finding novel therapeutic solutions. The issue is that, despite numerous studies, the etiopathogenesis of inflammatory bowel disease is not completely clear. Based on current knowledge, chronic intestinal inflammation occurs due to altered intestinal microbiota and environmental factors, as well as a complex interplay between the genetic predisposition of the host and an inappropriate innate and acquired immune response. It is important to note that the development of biological and immunomodulatory therapy has led to significant progress in treating inflammatory bowel disease. Certain lifestyle changes and novel approaches-including fecal microbiota transplantation and nutritional supplementation with probiotics, prebiotics, and synbiotics-have offered solutions for dysbiosis management and paved the way towards restoring a healthy microbiome, with only minimal long-term unfavorable effects.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
- Correspondence: (T.M.); (I.Š.)
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- Correspondence: (T.M.); (I.Š.)
| |
Collapse
|
17
|
Intraintestinal Analysis of the Functional Activity of Microbiomes and Its Application to the Common Marmoset Intestine. mSystems 2022; 7:e0052022. [PMID: 36005400 PMCID: PMC9601136 DOI: 10.1128/msystems.00520-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The intestinal microbiome is closely related to host health, and metatranscriptomic analysis can be used to assess the functional activity of microbiomes by quantifying microbial gene expression levels, helping elucidate the interactions between the microbiome and the environment. However, the functional changes in the microbiome along the host intestinal tract remain unknown, and previous analytical methods have limitations, such as potentially overlooking unknown genes due to dependence on existing databases. The objective of this study is to develop a computational pipeline combined with next-generation sequencing for spatial covariation analysis of the functional activity of microbiomes at multiple intestinal sites (biogeographic locations) within the same individual. This method reconstructs a reference metagenomic sequence across multiple intestinal sites and integrates the metagenome and metatranscriptome, allowing the gene expression levels of the microbiome, including unknown bacterial genes, to be compared among multiple sites. When this method was applied to metatranscriptomic analysis in the intestinal tract of common marmosets, a New World monkey, the reconstructed metagenome covered most of the expressed genes and revealed that the differences in microbial gene expression among the cecum, transverse colon, and feces were more dynamic and sensitive to environmental shifts than the abundances of the genes. In addition, metatranscriptomic profiling at three intestinal sites of the same individual enabled covariation analysis incorporating spatial relevance, accurately predicting the function of a total of 10,856 unknown genes. Our findings demonstrate that our proposed analytical method captures functional changes in microbiomes at the gene resolution level. IMPORTANCE We developed an analysis method that integrates metagenomes and metatranscriptomes from multiple intestinal sites to elucidate how microbial function varies along the intestinal tract. This method enables spatial covariation analysis of the functional activity of microbiomes and accurate identification of gene expression changes among intestinal sites, including changes in the expression of unknown bacterial genes. Moreover, we applied this method to the investigation of the common marmoset intestine, which is anatomically and pharmacologically similar to that of humans. Our findings indicate the expression pattern of the microbiome varies in response to changes in the internal environment along the intestinal tract, and this microbial change may affect the intestinal environment.
Collapse
|
18
|
Iqbal H, Kim GL, Kim JH, Ghosh P, Shah M, Lee W, Rhee DK. Pep27 Mutant Immunization Inhibits Caspase-14 Expression to Alleviate Inflammatory Bowel Disease via Treg Upregulation. Microorganisms 2022; 10:microorganisms10091871. [PMID: 36144473 PMCID: PMC9502188 DOI: 10.3390/microorganisms10091871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a highly prevalent gut inflammatory disorder. Complicated clinical outcomes prolong the use of conventional therapy and often lead to compromised immunity followed by adverse events and high relapse rates. Thus, a profound medical intervention is required. Previously, intranasal immunization of pneumococcal pep27 mutant (Δpep27) exhibited long-lasting protection against immune-related disorders. System biology analysis has predicted an inverse correlation between Δpep27 immunization and gastroenteritis. Recently, we established that Δpep27-elicited Tregs repressed Wnt5a expression and enhanced barrier integrity, suggesting the restoration of immunological tolerance. Therefore, we evaluated whether Δpep27 can alleviate IBD. Δpep27 dose-dependent response was analyzed in dextran sulfate sodium-induced mice using transcriptome analysis. Pro- and anti-inflammatory signatures were cross-correlated by quantitative PCR and western blot analyses. To address the hierarchy regulating the activity of caspase-14, an undefined marker in IBD, and regulatory T cells (Tregs), antibody-based neutralization studies were conducted. Fecal microbiome profiles were analyzed by 16S rRNA pyrosequencing. Δpep27 significantly attenuated dextran sulfate sodium-induced oxidative stress parameters, proinflammatory cytokines, caspase-14 expression level, and upregulated tight junction, anti-inflammatory genes IL-10 and TGF-β1 via upregulation of Tregs to restore healthy gut microbiota. Neutralization studies unveiled that ∆pep27 had a remedial effect via Treg upregulation. Caspase-14, being an important mediator in the pathogenesis of IBD, can be an alternate therapeutic target in IBD. ∆pep27-increased Tregs repressed caspase-14 expression and reversed gut microbial dysbiosis, aiding to re-establish immunological tolerance.
Collapse
Affiliation(s)
- Hamid Iqbal
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Gyu-Lee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | | | - Masaud Shah
- Department of Physiology, Ajou University, Suwon 16499, Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
- Research Center, DNBIO, Suwon 16419, Korea
- Correspondence:
| |
Collapse
|
19
|
Liu Z, Jiang Z, Zhang Z, Liu T, Fan Y, Liu T, Peng N. Bacillus coagulans in Combination with Chitooligosaccharides Regulates Gut Microbiota and Ameliorates the DSS-Induced Colitis in Mice. Microbiol Spectr 2022; 10:e0064122. [PMID: 35900082 PMCID: PMC9430726 DOI: 10.1128/spectrum.00641-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Ulcerative colitis (UC) are chronic inflammatory disorders, which may be caused by intestinal barrier dysfunction, immune system disorders and intestinal microbiota dysbiosis. Synbiotic, the combination of probiotics and prebiotics, is thought to be a pragmatic approach in mitigating inflammation in UC. Bacillus coagulans has been recognized as a potential probiotic for treating intestinal diseases because of its favorable industrial and probiotic properties, including sporulation and lactic acid production. In this study, we evaluated the treatment effects of the B. coagulans FCYS01 spores with or without the chitooligosaccharides (COSs) on UC generated using dextran sulfate sodium (DSS) in mice. Supplementation of B. coagulans spores, prebiotic COSs or the synbiotic (the spores + COSs) had a significant positive effect on DSS-induced UC. The disease activity index and histological damage score were significantly reduced after these supplementations. Compared to DSS group, these supplementations also significantly modulated the cytokines IL-4, IL-6, IL-8, IL-10, and C-reactive protein (CRP) levels and significantly maintained expressions of tight junction proteins and mucin protein and promotes recovery of the intestinal barrier. In addition, these supplementations regulate the composition of gut microbiota and improve the production of short-chain fatty acids (SCFAs), through enrichment of SCFA-producing bacteria, such as Akkermansia and Ruminococcus species. In summary, the synbiotic ameliorated the overall inflammatory status of the experimental UC model and showed a better treatment effect than B. coagulans or COSs did alone as revealed by the markers such as, colon length, IL-4 and Occludin levels. IMPORTANCE Probiotic and prebiotic are believed to be useful in alleviating the inflammatory, thereby resolving or preventing the severity of UC. Spore-forming bacteria Bacillus coagulans show advantages of stability and probiotic effects, being suggested as the important probiotics for UC treatment. Here, we demonstrate that administration of B. coagulans spores, chitooligosaccharides (COSs), or the synbiotic attenuates DSS-induced colitis and significantly correlates with altered gut immune responses. The treatment effect of the synbiotic is inferred to be relied on the enrichment of probiotic bacteria, such as Akkermansia and Ruminococcaceae species, which are reported to be crucial important for gut health. Our findings facilitate the development of therapeutic and preventive strategies for UC using spore-forming lactic acid bacteria in combination with COSs.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, People’s Republic of China
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ziyang Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zhenting Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Tong Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yurong Fan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Tao Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Nan Peng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, People’s Republic of China
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
20
|
Rudiansyah M, Abdalkareem Jasim S, S Azizov B, Samusenkov V, Kamal Abdelbasset W, Yasin G, Mohammad HJ, Jawad MA, Mahmudiono T, Hosseini-Fard SR, Mirzaei R, Karampoor S. The emerging microbiome-based approaches to IBD therapy: From SCFAs to urolithin A. J Dig Dis 2022; 23:412-434. [PMID: 36178158 DOI: 10.1111/1751-2980.13131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic gastrointestinal inflammatory conditions which can be life-threatening, affecting both children and adults. Crohn's disease and ulcerative colitis are the two main forms of IBD. The pathogenesis of IBD is complex and involves genetic background, environmental factors, alteration in gut microbiota, aberrant immune responses (innate and adaptive), and their interactions, all of which provide clues to the identification of innovative diagnostic or prognostic biomarkers and the development of novel treatments. Gut microbiota provide significant benefits to its host, most notably via maintaining immunological homeostasis. Furthermore, changes in gut microbial populations may promote immunological dysregulation, resulting in autoimmune diseases, including IBD. Investigating the interaction between gut microbiota and immune system of the host may lead to a better understanding of the pathophysiology of IBD as well as the development of innovative immune- or microbe-based therapeutics. In this review we summarized the most recent findings on innovative therapeutics for IBD, including microbiome-based therapies such as fecal microbiota transplantation, probiotics, live biotherapeutic products, short-chain fatty acids, bile acids, and urolithin A.
Collapse
Affiliation(s)
- Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat, Ulin Hospital, Banjarmasin, Indonesia
| | - Saade Abdalkareem Jasim
- Al-Maarif University College Medical Laboratory Techniques Department Al-Anbar-Ramadi, Ramadi, Iraq
| | - Bakhadir S Azizov
- Department of Therapeutic Disciplines No.1, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ghulam Yasin
- Department of Botany University of Bahauddin Zakariya University, Multan, Pakistan
| | | | | | - Trias Mahmudiono
- Department of Nutrition Faculty of Public Health Universitas, Airlangga, Indonesia
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Nearly one-third of patients with inflammatory bowel disease (IBD) do not achieve remission despite our best therapies. When this happens, it is critical to understand the reason for treatment failure. Once nonresponse is confirmed, these patients should be referred to an IBD centre for multidisciplinary care. This review will discuss the remaining treatment options, including escalation of biologics to unlicensed doses, combination biologics, nonvalidated therapies and surgical options. It will additionally provide updates in the management of acute severe ulcerative colitis (ASUC). RECENT FINDINGS There is an increasing interest in combination biologics to treat refractory IBD, although data supporting its safety and effectiveness are limited. The use of hyperbaric oxygen, mesenchymal stem cell therapy and dietary interventions also show early promise in this area. Studies have additionally focused on personalized therapy to identify aggressive phenotypes and predict treatment response in these challenging patients. In ASUC, infliximab and cyclosporine remain mainstays of treatment, and tofacitinib shows promise as a salvage therapy. SUMMARY Refractory IBD is common, yet large knowledge gaps remain. Recent and ongoing studies have focused on medical, surgical and dietary approaches with mixed success. Larger prospective studies are desperately needed to address this complex issue.
Collapse
|
22
|
Zhao Z, Xu S, Zhang W, Wu D, Yang G. Probiotic Escherichia coli NISSLE 1917 for inflammatory bowel disease applications. Food Funct 2022; 13:5914-5924. [PMID: 35583304 DOI: 10.1039/d2fo00226d] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Escherichia coli NISSLE 1917 (EcN) is a Gram-negative strain with many prominent probiotic properties in the treatment of intestinal diseases such as diarrhea and inflammatory bowel disease (IBD), in particular ulcerative colitis. EcN not only exhibits antagonistic effects on a variety of intestinal pathogenic bacteria, but also regulates the secretion of immune factors in vivo and enhances the ability of host immunity. In this review, the mechanisms of EcN in the remission of inflammatory bowel disease are proposed and recent advances on the functionalized EcN are compiled to provide novel therapeutic strategies for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Zejing Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Shumin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wangyang Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Danjun Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
23
|
Pantoja Angles A, Valle-Pérez AU, Hauser C, Mahfouz MM. Microbial Biocontainment Systems for Clinical, Agricultural, and Industrial Applications. Front Bioeng Biotechnol 2022; 10:830200. [PMID: 35186907 PMCID: PMC8847691 DOI: 10.3389/fbioe.2022.830200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Many applications of synthetic biology require biological systems in engineered microbes to be delivered into diverse environments, such as for in situ bioremediation, biosensing, and applications in medicine and agriculture. To avoid harming the target system (whether that is a farm field or the human gut), such applications require microbial biocontainment systems (MBSs) that inhibit the proliferation of engineered microbes. In the past decade, diverse molecular strategies have been implemented to develop MBSs that tightly control the proliferation of engineered microbes; this has enabled medical, industrial, and agricultural applications in which biological processes can be executed in situ. The customization of MBSs also facilitate the integration of sensing modules for which different compounds can be produced and delivered upon changes in environmental conditions. These achievements have accelerated the generation of novel microbial systems capable of responding to external stimuli with limited interference from the environment. In this review, we provide an overview of the current approaches used for MBSs, with a specific focus on applications that have an immediate impact on multiple fields.
Collapse
Affiliation(s)
- Aaron Pantoja Angles
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alexander U. Valle-Pérez
- Laboratory for Nanomedicine, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Charlotte Hauser
- Laboratory for Nanomedicine, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- *Correspondence: Magdy M. Mahfouz, ; Charlotte Hauser,
| | - Magdy M. Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- *Correspondence: Magdy M. Mahfouz, ; Charlotte Hauser,
| |
Collapse
|
24
|
Huang X, Ai F, Ji C, Tu P, Gao Y, Wu Y, Yan F, Yu T. A Rapid Screening Method of Candidate Probiotics for Inflammatory Bowel Diseases and the Anti-inflammatory Effect of the Selected Strain Bacillus smithii XY1. Front Microbiol 2022; 12:760385. [PMID: 34975786 PMCID: PMC8718878 DOI: 10.3389/fmicb.2021.760385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disease associated with the inflammatory gastrointestinal tract and microbiome dysbiosis. Probiotics are a promising intervention, and several probiotics have been reported to positively affect IBD remission and prevention, particularly on ulcerative colitis (UC). However, there is still a limitation in the knowledge of effectiveness and safety of probiotics therapies for IBD. Exploring more potential probiotics helps to find extensive evidence for probiotic intervention. This study established a rapid method for probiotics candidate screening and finally screened out one strain with the best protective effect. Forty strains isolated from four different sources were used for this screening. Hemolysis tests and acute toxic test evaluated strain safety. Zebrafish were first treated with dextran sodium sulfate (DSS) for colitis induction, and every bacteria were individually added to the fish water subsequently. Results showed eight strains could lower the larvae mortality within 3 days under a 0.6% DSS concentration, including Lacticaseibacillus rhamnosus GG, L. rhamnosus NBRC3425, Bacillus smithii DSM4216, B. smithii XY1, Bacillus coagulans NBRC12583, Bacillus coagulans XY2, Lactobacillus parafarraginis XYRR2, and Bacillus licheniformis XYT3. Among eight, B. smithii XY1 was the only strain having the equal ability to alleviate neutrophil infiltration in the larvae intestine with that ability of prednisolone under a 0.5% DSS concentration. Bacillus smithii XY1 restored intestinal epithelial cell integrity after DSS damage, as well as regulated the gene expression inflammation-related factors, indicating its bio-function of inflammatory response alleviation.
Collapse
Affiliation(s)
- Xuedi Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fang Ai
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chen Ji
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Pengcheng Tu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yufang Gao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yalan Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Yang M, Yang C, Zhang Y, Yan X, Ma Y, Zhang Y, Cao Y, Xu Q, Tu K, Zhang M. Orally pH-activated "nano-bomb" carrier combined with berberine by regulating gene silencing and gut microbiota for site-specific treatment of ulcerative colitis. Biomater Sci 2022; 10:1053-1067. [DOI: 10.1039/d1bm01765a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ulcerative colitis (UC) is a chronic, relapsing inflammatory bowel disease that features colonic epithelial barrier dysfunction and gut dysbiosis. Preclinical studies demonstrated that inhibiting the overexpression of CD98 via small...
Collapse
|
26
|
Najafi S, Sotoodehnejadnematalahi F, Amiri MM, Pourshafie MR, Rohani M. Decreased mucosal adhesion of Lactobacillus species in patients with inflammatory bowel disease. CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:713-720. [PMID: 36420328 PMCID: PMC9659839 DOI: 10.22088/cjim.13.4.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 08/14/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Probiotic Lactobacillus spp. modulate immune response via interactions of their binding proteins with epithelial cells. We studied the presence of attachment protein-encoding genes (mub1, mub2, and mapA) in Lactobacillus strains with probiotic features isolated from inflammatory bowel disease (IBD) patients and their attachment strength relative to healthy individuals. METHODS Bacterial strains have been isolated from stool samples of 35 healthy and 23 IBD volunteers. Lactobacillus spp. were identified using PCR. Strains with probiotic features were determined by testing resistance against acid and bile. Isolates were assigned as non-adhesive, adhesive, and strongly adhesive strains based on the number of attached bacteria to epithelial cells. Finally, PCR was used to detect the presence of mub1, mub2, and mapA genes. RESULTS Probiotic lactobacilli were isolated from 35/35 and 9/23 of healthy and IBD individuals and yielded a total of 87 and 28 strains, respectively. The Mub1 gene was detected in 95.4% and 100% (p>0.05), mub2 in 95.4% and 89.3% (p>0.05), and mapA in 94.3% and 78.6% (p<0.05) of healthy and IBD isolates, respectively. The numbers of bacteria attached to epithelial cells in healthy and IBD isolates were respectively 33.68±6.00 and 12.23±3.87 in non-adhesive, 71.3±10.83 and 42.17±1.33 in adhesive, 124.40±8.59 and 104.67±5.50 in the strongly adhesive group (p< 0.05). CONCLUSION Less Lactobacillus spp. with weaker attachments to epithelial cells colonize the gut in IBD than healthy individuals. These findings suggest the beneficial role of probiotics in the management of IBD.
Collapse
Affiliation(s)
- Saeideh Najafi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourshafie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran ,These authors contributed equally to this work
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran ,These authors contributed equally to this work,Correspondence: Mahdi Rohani, Department of Bacteriology, Pasteur Institute of Iran, 69 Pasteur Ave., 1316943551. Tehran, Iran. E-mail: , Tel: 0098 2166953311, Fax: 0098 2166405535
| |
Collapse
|
27
|
Costa GT, Vasconcelos QDJS, Aragão GF. Fructooligosaccharides on inflammation, immunomodulation, oxidative stress, and gut immune response: a systematic review. Nutr Rev 2021; 80:709-722. [PMID: 34966938 DOI: 10.1093/nutrit/nuab115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
CONTEXT Evidence shows that fructooligosaccharides (FOSs) can modulate inflammatory, oxidative, and immune activity in the gut, possibly leading to a systemic response, improving human health. OBJECTIVE To assess the present knowledge of the effects of FOSs on inflammation, immunomodulation, oxidative stress, and gut immune response. DATA SOURCES Studies published between December 2000 and January 2020 were systematically searched in four databases: MEDLINE, LILACS, Web of Science, and Scopus. After the screening of 1316 articles, 8 human studies and 20 animal models were included. DATA EXTRACTION Data were extracted separately by 2 reviewers. For each study, the design, population, exposures, main results, and conclusion were extracted. The research questions and the risk-of-bias information were also extracted. Additionally, the risk-of-bias were analyzed to guarantee the reliability of this review. DATA ANALYSIS A qualitative analysis revealed that FOSs can increase bifidobacteria counts and short-chain fatty acids in the gut, stimulate IgA secretion in the colon, and decrease proinflammatory cytokines, thus influencing metabolic diseases. CONCLUSION Studies suggest that FOS supplementation is positively associated with an anti-inflammatory and antioxidant effect, thus enhancing the gut immune system, which may be beneficial for the host's health. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration nos 42020209865 and 42020220369.
Collapse
Affiliation(s)
- Graciana T Costa
- G.T. Costa is with the Surgery Department, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. Q.D.J.S. Vasconcelos and G.F. Aragão are with the Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. G.F. Aragão is with the Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Quezia D J S Vasconcelos
- G.T. Costa is with the Surgery Department, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. Q.D.J.S. Vasconcelos and G.F. Aragão are with the Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. G.F. Aragão is with the Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Gislei F Aragão
- G.T. Costa is with the Surgery Department, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. Q.D.J.S. Vasconcelos and G.F. Aragão are with the Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil. G.F. Aragão is with the Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
28
|
Maioli TU, Trindade LM, Souza A, Torres L, Andrade MER, Cardoso VN, Generoso SV. Non-pharmacologic strategies for the management of intestinal inflammation. Biomed Pharmacother 2021; 145:112414. [PMID: 34808552 DOI: 10.1016/j.biopha.2021.112414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases, irritable bowel syndrome, and mucositis are characterized by intestinal inflammation, but vary according to their pathological mechanisms, severity, location, and etiology. Significant intestinal inflammation that occurs in these diseases induces weight loss, nutritional depletion, and gastrointestinal tract dysfunction. Nutritional support is important in alleviating symptoms and improving patients' quality of life. In this review, we summarize some nutritional components used to manage intestinal disorders. These include fatty acids, probiotics, parabiotics, postbiotics, prebiotics, synbiotics, and low FODMAP (LFD) diets. These components and LFD diets have been studied and clinical trials have been designed to develop new strategies to alleviate intestinal inflammation and improve the quality of life. Clinical trials on their use in intestinal inflammation do not allow firm conclusions to be drawn mainly because of the heterogeneity of the dose used and the study design or their inconclusive results. However, in the majority of cases, the use of omega-3, probiotics, parabiotics, postbiotics, prebiotics, synbiotics, and LFD improve the health.
Collapse
Affiliation(s)
- Tatiani Uceli Maioli
- Programa de Pós-Graduação em Nutrição e Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Brazil
| | - Luísa Martins Trindade
- Programa de Pós-Graduação em Ciência de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Aline Souza
- Programa de Pós-Graduação em Nutrição e Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Brazil
| | - Lícia Torres
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | | | | | - Simone Vasconcelos Generoso
- Programa de Pós-Graduação em Nutrição e Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
29
|
Cibulková I, Řehořová V, Hajer J, Duška F. Fecal Microbial Transplantation in Critically Ill Patients-Structured Review and Perspectives. Biomolecules 2021; 11:1459. [PMID: 34680092 PMCID: PMC8533499 DOI: 10.3390/biom11101459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
The human gut microbiota consists of bacteria, archaea, fungi, and viruses. It is a dynamic ecosystem shaped by several factors that play an essential role in both healthy and diseased states of humans. A disturbance of the gut microbiota, also termed "dysbiosis", is associated with increased host susceptibility to a range of diseases. Because of splanchnic ischemia, exposure to antibiotics, and/or the underlying disease, critically ill patients loose 90% of the commensal organisms in their gut within hours after the insult. This is followed by a rapid overgrowth of potentially pathogenic and pro-inflammatory bacteria that alter metabolic, immune, and even neurocognitive functions and that turn the gut into the driver of systemic inflammation and multiorgan failure. Indeed, restoring healthy microbiota by means of fecal microbiota transplantation (FMT) in the critically ill is an attractive and plausible concept in intensive care. Nonetheless, available data from controlled studies are limited to probiotics and FMT for severe C. difficile infection or severe inflammatory bowel disease. Case series and observational trials have generated hypotheses that FMT might be feasible and safe in immunocompromised patients, refractory sepsis, or severe antibiotic-associated diarrhea in ICU. There is a burning need to test these hypotheses in randomized controlled trials powered for the determination of patient-centered outcomes.
Collapse
Affiliation(s)
- Ivana Cibulková
- Third Faculty of Medicine, Charles University, 11000 Prague, Czech Republic; (I.C.); (V.Ř.); (J.H.)
- Department of Medicine, FNKV University Hospital, 10034 Prague, Czech Republic
| | - Veronika Řehořová
- Third Faculty of Medicine, Charles University, 11000 Prague, Czech Republic; (I.C.); (V.Ř.); (J.H.)
- Department of Anesthesiology and Intensive Care Medicine, FNKV University Hospital, 10034 Prague, Czech Republic
| | - Jan Hajer
- Third Faculty of Medicine, Charles University, 11000 Prague, Czech Republic; (I.C.); (V.Ř.); (J.H.)
- Department of Medicine, FNKV University Hospital, 10034 Prague, Czech Republic
| | - František Duška
- Third Faculty of Medicine, Charles University, 11000 Prague, Czech Republic; (I.C.); (V.Ř.); (J.H.)
- Department of Anesthesiology and Intensive Care Medicine, FNKV University Hospital, 10034 Prague, Czech Republic
| |
Collapse
|
30
|
Qin S, Huang Z, Wang Y, Pei L, Shen Y. Probiotic potential of Lactobacillus isolated from horses and its therapeutic effect on DSS-induced colitis in mice. Microb Pathog 2021; 165:105216. [PMID: 34600098 DOI: 10.1016/j.micpath.2021.105216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/17/2023]
Abstract
Inflammatory bowel disease (IBD) is a refractory disease that endangers both humans and animals. In recent times, Lactobacillus have been used to treat animal diseases. It may be a good choice to try to isolate Lactobacillus with probiotic potential to treat IBD. Equine, as a kind of hindgut fermentation animal has rich intestinal microflora, but data regarding this is scarce. The isolation of Lactobacillus with probiotic potential from equine may become a new method for the treatment of IBD. Four isolates of Lactobacillus were isolated from fresh feces of healthy male adult horses and analyzed their biological characteristics. According to the phylogenetic analysis, A2.5 and A7.1 were identified as Pediococcus pentosaceus, A3 as Lactobacillus plantarum, and B8.2 as Weissella cibaria. All four isolates showed tolerance to the environment of acid, bile salt concentration and simulated artificial gastrointestinal fluid. The hydrophobic rate and self-aggregation rate of A3 were close to 100%, and the adhesion rate was 28.85 ± 0.74%. Four isolates were negative in hemolysis test and sensitive to common antibiotics and different isolates had different sensitivity to antibiotics. The four isolates had antibacterial and antioxidant activities which can reflect their probiotic potential. Furthermore, they could regulate the LPS (Lipopolysaccharides) stimulated Caco-2 cells. We chose A3 as the treatment strain to intervene Dextran sulfate sodium salt (DSS)-induced mice. The results showed that compared with DSS group, DSS + A3 group exhibited reduced Disease activity index (DAI), increased colon length, reduced pathological score and regulated cytokine secretion at the level of gene expression. In this study, four isolates of Lactobacillus with probiotic potential were isolated, and Lactobacillus plantarum A3 with reduced ulcerative colitis in mice was screened. It might provide a potential treatment for IBD.
Collapse
Affiliation(s)
- Songkang Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghao Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingli Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lulu Pei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
31
|
Sun Z, Li J, Wang W, Liu Y, Liu J, Jiang H, Lu Q, Ding P, Shi R, Zhao X, Yuan W, Tan X, Shi X, Xing Y, Mao T. Qingchang Wenzhong Decoction Accelerates Intestinal Mucosal Healing Through Modulation of Dysregulated Gut Microbiome, Intestinal Barrier and Immune Responses in Mice. Front Pharmacol 2021; 12:738152. [PMID: 34557102 PMCID: PMC8452913 DOI: 10.3389/fphar.2021.738152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD), a group of multifactorial and inflammatory infirmities, is closely associated with dysregulation of gut microbiota and host metabolome, but effective treatments are currently limited. Qingchang Wenzhong Decoction (QCWZD) is an effective and classical traditional herbal prescription for the treatment of IBD and has been proved to attenuate intestinal inflammation in a model of acute colitis. However, the role of QCWZD in recovery phase of colitis is unclear. Here, we demonstrated that mice treated with QCWZD showed a faster recovery from dextran sulfate sodium (DSS)-induced epithelial injury, accompanied by reduced mucosal inflammation and attenuated intestinal dysbiosis using bacterial 16S rRNA amplicon sequencing compared to those receiving sterile water. The protective effects of QCWZD are gut microbiota dependent, as demonstrated by fecal microbiome transplantation and antibiotics treatment. Gut microbes transferred from QCWZD-treated mice displayed a similar role in mucosal protection and epithelial regeneration as QCWZD on colitis in mice, and depletion of the gut microbiota through antibiotics treatments diminished the beneficial effects of QCWZD on colitis mice. Moreover, metabolomic analysis revealed metabolic profiles alternations in response to the gut microbiota reprogrammed by QCWZD intervention, especially enhanced tryptophan metabolism, which may further accelerate intestinal stem cells-mediated epithelial regeneration to protect the integrity of intestinal mucosa through activation of Wnt/β-catenin signals. Collectively, our results suggested that orally administrated QCWZD accelerates intestinal mucosal healing through the modulation of dysregulated gut microbiota and metabolism, thus regulating intestinal stem cells-mediated epithelial proliferation, and hold promise for novel microbial-based therapies in the treatment of IBD.
Collapse
Affiliation(s)
- Zhongmei Sun
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Wang
- Department of Traditional Chinese Medicine, Beijing Yangfangdian Hospital, Beijing, China
| | - Yuyue Liu
- Department of Pathology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Jiang
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiongqiong Lu
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Panghua Ding
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Shi
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xingjie Zhao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Yuan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Tan
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojun Shi
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yunqi Xing
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tangyou Mao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
32
|
Improving the Gut Microbiota with Probiotics and Faecal Microbiota Transplantation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Probiotics are “live strains of strictly selected microorganisms which, when administered in adequate amounts, confer a health benefit on the host”. After birth, our intestine is colonized by microbes like Escherichia coli, Clostridium spp., Streptococcus spp., Lactobacillus spp., Bacteroides spp., and Bifidobacterium spp. Our intestine is an extremely complex living system that participates in the protection of host through a strong defence against external aggregations. The microbial ecosystem of the intestine includes many native species of Bacteroides and Firmicutes that permanently colonize the gastrointestinal tract. The composition of flora changes over time depending upon diet and medical emergencies which leads to the diseased condition. Probiotics exert their mode of action by altering the local environment of the gut by competing with the pathogens, bacteriocins production, H2O2 production etc. Obesity is one of the major health problems and is considered as the most prevalent form of inappropriate nutrition. Probiotics like Lactobacillus Sp., Bifidobacterium Sp., Streptococcus Sp. are successfully used in the treatment of obesity proved in clinical trials. Faecal microbiota transplant (FMT), also known as a stool transplant, is the process of transplantation of Faecal bacteria from a healthy donor into a recipient’s gut to restore normal flora in the recipient. The therapeutic principle on which FMT works is microbes and their functions and metabolites produced by them which are used to treat a variety of diseases. The present review focuses on the role of gastrointestinal microbiome, probiotic selection criteria, their applications and FMT to treat diseases.
Collapse
|
33
|
Arukha AP, Freguia CF, Mishra M, Jha JK, Kariyawasam S, Fanger NA, Zimmermann EM, Fanger GR, Sahay B. Lactococcus lactis Delivery of Surface Layer Protein A Protects Mice from Colitis by Re-Setting Host Immune Repertoire. Biomedicines 2021; 9:1098. [PMID: 34572293 PMCID: PMC8470720 DOI: 10.3390/biomedicines9091098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by gastrointestinal inflammation comprised of Crohn's disease and ulcerative colitis. Centers for Disease Control and Prevention report that 1.3% of the population of the United States (approximately 3 million people) were affected by the disease in 2015, and the number keeps increasing over time. IBD has a multifactorial etiology, from genetic to environmental factors. Most of the IBD treatments revolve around disease management, by reducing the inflammatory signals. We previously identified the surface layer protein A (SlpA) of Lactobacillus acidophilus that possesses anti-inflammatory properties to mitigate murine colitis. Herein, we expressed SlpA in a clinically relevant, food-grade Lactococcus lactis to further investigate and characterize the protective mechanisms of the actions of SlpA. Oral administration of SlpA-expressing L. lactis (R110) mitigated the symptoms of murine colitis. Oral delivery of R110 resulted in a higher expression of IL-27 by myeloid cells, with a synchronous increase in IL-10 and cMAF in T cells. Consistent with murine studies, human dendritic cells exposed to R110 showed exquisite differential gene regulation, including IL-27 transcription, suggesting a shared mechanism between the two species, hence positioning R110 as potentially effective at treating colitis in humans.
Collapse
Affiliation(s)
- Ananta Prasad Arukha
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA; (A.P.A.); (M.M.)
- Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL 32608, USA;
| | | | - Meerambika Mishra
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA; (A.P.A.); (M.M.)
| | - Jyoti K. Jha
- Rise Therapeutics, Rockville, MD 20850, USA; (C.F.F.); (J.K.J.); (G.R.F.)
| | - Subhashinie Kariyawasam
- Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL 32608, USA;
| | | | - Ellen M. Zimmermann
- Division of Gastroenterology, University of Florida College of Medicine, Gainesville, FL 32608, USA;
| | - Gary R. Fanger
- Rise Therapeutics, Rockville, MD 20850, USA; (C.F.F.); (J.K.J.); (G.R.F.)
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA; (A.P.A.); (M.M.)
| |
Collapse
|
34
|
He N, Yang Y, Wang H, Liu N, Yang Z, Li S. Unsaturated alginate oligosaccharides (UAOS) protects against dextran sulfate sodium-induced colitis associated with regulation of gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
35
|
Jo HG, Seo GS. [Efficacy and Safety of Fecal Microbiota Transplantation and Prospect of Microbe-based Therapies for Inflammatory Bowel Disease]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 78:31-36. [PMID: 34312355 DOI: 10.4166/kjg.2021.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/03/2022]
Abstract
The use of 5-ASA, immunomodulators, biologics, and small molecule drugs are the main treatment for inflammatory bowel disease (IBD), however, fecal microbiota transplantation (FMT) is also drawing attention as a treatment to improve intestinal dysbiosis by transplantaing normal human stool into patients with IBD. FMT demonstrates relatively good effects in inducing clinical remission in IBD, but unlike Clostridium difficile infection, multiple FMT can enhance the clinical effect. There are no reports of the long-term effectiveness and safety of FMT conducted in IBD yet, therefore, well-designed, prospective studies will be needed. Gut microbiota can affect inflammatory response, intestinal barrier function, and host metabolism, so microbe-based therapies are likely to be a new treatment option for IBD. The deeper the understanding of microbe products or effectors, the more likely it is to provide personalized therapy in IBD.
Collapse
Affiliation(s)
- Hoon Gil Jo
- Department of Internal Medicine and Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Korea
| | - Geom Seog Seo
- Department of Internal Medicine and Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Korea
| |
Collapse
|
36
|
Rodríguez-Padilla Á, Morales-Martín G, Pérez-Quintero R, Rada-Morgades R, Gómez-Salgado J, Ruiz-Frutos C. Diversion Colitis and Probiotic Stimulation: Effects of Bowel Stimulation Prior to Ileostomy Closure. Front Med (Lausanne) 2021; 8:654573. [PMID: 34249962 PMCID: PMC8267790 DOI: 10.3389/fmed.2021.654573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Diversion colitis is a non-specific inflammation of a defunctionalised segment of the colon after a temporary stoma has been performed. This inflammation is associated with a change in the colonic flora. Aim: To evaluate the efficacy and safety of preoperative stimulation of the efferent loop with probiotics prior to closure of the protective ileostomy in patients operated on colorectal carcinoma and its effect on diversion colitis. A prospective, randomised, double-blind, controlled study is carried out. Methods: Patients who underwent surgery for colorectal carcinoma with protective ileostomy pending reconstructive surgery and with diversion colitis as diagnosis are included. Randomised and divided into two groups. Histological and endoscopic changes were evaluated after stimulation, after restorative surgery and during the short-term follow-up after surgery. Results: Patients in CG were distributed according to the endoscopic index of severity in pre-stimulation/post-stimulation as follows: severe n = 9/9 (25.7%), moderate n = 23/23 (65.7%), and mild n = 3/3 (8.6%); compared to the distribution in SG, severe n = 9/0 (26.5/0%), moderate n = 23/3 (67.6/8.8%), mild n = 2/19 (5.9/55.9%) and normal colonoscopy in 0/12 patients (0/35.3%). Conclusion: Probiotic stimulation of the efferent loop is a safe and effective method, managing to reduce both macroscopic and microscopic colitis, as well as a decrease in symptoms in the short term after reconstructive surgery.
Collapse
Affiliation(s)
| | - Germán Morales-Martín
- Department of General Surgery, Infanta Elena University Clinical Hospital, Huelva, Spain
| | - Rocío Pérez-Quintero
- Department of General Surgery, Juan Ramón Jiménez University Clinical Hospital, Huelva, Spain
| | - Ricardo Rada-Morgades
- Department of General Surgery, Juan Ramón Jiménez University Clinical Hospital, Huelva, Spain
| | - Juan Gómez-Salgado
- Department of Sociology, Social Work and Public Health, Faculty of Labour Sciences, University of Huelva, Huelva, Spain
- Safety and Health Postgraduate Programme, Universidad Espíritu Santo, Guayaquil, Ecuador
| | - Carlos Ruiz-Frutos
- Department of Sociology, Social Work and Public Health, Faculty of Labour Sciences, University of Huelva, Huelva, Spain
- Safety and Health Postgraduate Programme, Universidad Espíritu Santo, Guayaquil, Ecuador
| |
Collapse
|
37
|
Probiotics: their action against pathogens can be turned around. Sci Rep 2021; 11:13247. [PMID: 34168166 PMCID: PMC8225825 DOI: 10.1038/s41598-021-91542-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022] Open
Abstract
Probiotics when applied in complex evolving (micro-)ecosystems, might be selectively beneficial or detrimental to pathogens when their prophylactic efficacies are prone to ambient interactions. Here, we document a counter-intuitive phenomenon that probiotic-treated zebrafish (Danio rerio) were respectively healthy at higher but succumbed at lower level of challenge with a pathogenic Vibrio isolate. This was confirmed by prominent dissimilarities in fish survival and histology. Based upon the profiling of the zebrafish microbiome, and the probiotic and the pathogen shared gene orthogroups (genetic niche overlaps in genomes), this consequently might have modified the probiotic metabolome as well as the virulence of the pathogen. Although it did not reshuffle the architecture of the commensal microbiome of the vertebrate host, it might have altered the probiotic-pathogen inter-genus and intra-species communications. Such in-depth analyses are needed to avoid counteractive phenomena of probiotics and to optimise their efficacies to magnify human and animal well-being. Moreover, such studies will be valuable to improve the relevant guidelines published by organisations such as FAO, OIE and WHO.
Collapse
|
38
|
Akutko K, Stawarski A. Probiotics, Prebiotics and Synbiotics in Inflammatory Bowel Diseases. J Clin Med 2021; 10:2466. [PMID: 34199428 PMCID: PMC8199601 DOI: 10.3390/jcm10112466] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory diseases of the digestive tract with periods of remission and relapses. The etiopathogenesis of IBD is multifactorial and has not been fully understood. Hence, only symptomatic treatment of these diseases is possible. The current pharmacological treatment has variable efficacy and is associated with the risk of significant side effects. Therefore, there is a constant need to search for new types of therapies with a high safety profile. Considering that the qualitative and quantitative profile of the gastrointestinal microbiome is often different in patients with IBD than in healthy individuals, there is a need for looking for therapies aimed at restoring intestinal microbiome homeostasis. Thus, the use of strictly defined probiotics, prebiotics and synbiotics may become an alternative form of IBD therapy. There is evidence that treatment with certain probiotic strains, e.g., VSL#3 and Escherischia coli Nissle 1917, is an effective form of therapy to induce remission in patients with mild to moderate UC. So far, the effectiveness of the use of probiotics, prebiotics and synbiotics in inducing or maintaining remission in patients with CD has not been confirmed. There are also reports of possible beneficial effects of fecal microbiota transplantation (FMT) on the course of IBD, especially UC. Further, well-planned studies on a large group of patients are needed to determine the role of specific probiotic strains, prebiotics, synbiotics and FMT in the treatment of IBD in adults and in children.
Collapse
Affiliation(s)
- Katarzyna Akutko
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Medical University of Wroclaw, M. Curie-Skłodowskiej St. 50/52, 50-369 Wrocław, Poland;
| | | |
Collapse
|
39
|
The Keystone commensal bacterium Christensenella minuta DSM 22607 displays anti-inflammatory properties both in vitro and in vivo. Sci Rep 2021; 11:11494. [PMID: 34075098 PMCID: PMC8169850 DOI: 10.1038/s41598-021-90885-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023] Open
Abstract
Christensenellaceae is a family of subdominant commensal bacteria found in humans. It is thought to play an important role in gut health by maintaining microbial symbiosis. Indeed, these bacteria occur at significantly lower levels or are absent in individuals suffering from inflammatory bowel diseases (IBDs). Here, we explored if type species Christensenella minuta (strain: DSM 22607) could have the potential to help treat IBDs. We assessed key properties displayed by the bacterium using a combination of in vitro and in vivo assays. We found that while C. minuta is a strict anaerobe, it is also oxygen tolerant. Additionally, we observed that the species produces high levels of acetate and moderate levels of butyrate. We performed deep phenotyping using Biolog microarrays. Using human intestinal cell lines, we discovered that C. minuta demonstrated strong anti-inflammatory activity, resulting in reduced levels of proinflammatory IL-8 cytokines via the inhibition of the NF-κB signaling pathway. Furthermore, C. minuta protected intestinal epithelial integrity in vitro. Finally, in two distinct animal models of acute colitis, C. minuta prevented intestinal damage, reduced colonic inflammation, and promoted mucosal healing. Together, these results indicate that C. minuta has potent immunomodulatory properties, underscoring its potential use in innovative microbiome-based IBD biotherapies.
Collapse
|
40
|
Potential Modulatory Microbiome Therapies for Prevention or Treatment of Inflammatory Bowel Diseases. Pharmaceuticals (Basel) 2021; 14:ph14060506. [PMID: 34073220 PMCID: PMC8229898 DOI: 10.3390/ph14060506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
A disturbed interaction between the gut microbiota and the mucosal immune system plays a pivotal role in the development of inflammatory bowel disease (IBD). Various compounds that are produced by the gut microbiota, from its metabolism of diverse dietary sources, have been found to possess anti-inflammatory and anti-oxidative properties in in vitro and in vivo models relevant to IBD. These gut microbiota-derived metabolites may have similar, or more potent gut homeostasis-promoting effects compared to the widely-studied short-chain fatty acids (SCFAs). Available data suggest that mainly members of the Firmicutes are responsible for producing metabolites with the aforementioned effects, a phylum that is generally underrepresented in the microbiota of IBD patients. Further efforts aiming at characterizing such metabolites and examining their properties may help to develop novel modulatory microbiome therapies to treat or prevent IBD.
Collapse
|
41
|
Serological Biomarkers and Diversion Colitis: Changes after Stimulation with Probiotics. Biomolecules 2021; 11:biom11050684. [PMID: 34063276 PMCID: PMC8147466 DOI: 10.3390/biom11050684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022] Open
Abstract
Diversion colitis is a non-specific inflammation of a defunctionalised segment of the colon after a temporary stoma has been performed. This inflammation is associated with an alteration of certain inflammatory serum markers. The aims of this study were, firstly, to evaluate the modification of inflammatory biomarkers after stimulation with probiotics prior to closure of the protective ileostomy. Secondly, to identify if a relationship could be established between the severity of diversion colitis and the alteration of inflammatory biomarkers in the blood. A prospective, randomized, double-blind, controlled study was conducted. Patients who underwent surgery for colorectal carcinoma with protective ileostomy between January 2017 and December 2018 were included, pending reconstructive surgery and with diversion colitis as diagnosis. The sample was randomly divided into a group stimulated with probiotics (SG) (n = 34) and a control group (CG) (n = 35). Histological and endoscopic changes were evaluated after stimulation, after restorative surgery and during the short-term follow-up after surgery, including the correlation with pro-inflammatory biomarkers in blood. As main findings, a significant decrease in C-reactive protein (CRP), Neutrophil/lymphocyte ratio (NLR ratio), and monocyte/lymphocyte ratio (LMR ratio) was observed in the SG versus the CG with a p < 0.001. A significant increase in transferrin values and in the platelet/lymphocyte ratio (PLR) was observed in the SG versus CG after stimulation with probiotics with a p < 0.001. A normalisation of CRP and transferrin levels was observed in the third month of follow-up after closure ileostomy, and NLR, LMR and PLR ratios were equal in both groups. Decreased modified Glasgow prognostic score was found in SG compared to CG after probiotic stimulation (p < 0.001). The endoscopic and histological severity of diversion colitis is associated with a greater alteration of blood inflammatory biomarkers. The stimulation with probiotics prior to reconstructive surgery promotes an early normalization of these parameters.
Collapse
|
42
|
Meyer J, Roos E, Ris F, Fearnhead N, Davies J. Does dairy product consumption impact the prevalence of inflammatory bowel disease? An ecological cross-sectional analysis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
43
|
Rodríguez-Padilla Á, Morales-Martín G, Pérez-Quintero R, Gómez-Salgado J, Rada-Morgades R, Ruiz-Frutos C. Diversion Colitis: Macro and Microscopic Findings after Probiotics Stimulation. BIOLOGY 2021; 10:biology10040303. [PMID: 33917556 PMCID: PMC8067519 DOI: 10.3390/biology10040303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary The observations presented in this study conclude that the preoperative stimulation with probiotics of the efferent loop through the dysfunctional bowel, to allow the slow infusion, can have a reducing effect on the endoscopic and histopathological alterations of diversion colitis. This procedure may be an alternative treatment to resolve the inflammation in patients where the surgical option is not feasible or available. Abstract The use of a loop ileostomy as the defunctioning procedure of choice to protect a distal colonic anastomosis causes histological and endoscopic changes in the intestinal mucosal architecture, which have been related to chronic inflammation and changes in the microflora that consequently impact the intestinal structure and function following fecal stream diversion. The aim of this study was to evaluate the histological and endoscopic changes on the colonic mucosa in patients with diversion colitis after stimulation of the efferent loop with probiotics prior to closure of the protective ileostomy. A prospective, randomized, double-blind, controlled study was designed. All patients who underwent surgery for colorectal carcinoma with protective ileostomy between January 2017 and December 2018 were included. These patients were pending reconstructive surgery and were diagnosed with endoscopic and histological diversion colitis. Divided into two groups, a group stimulated with probiotics (SG) and a control group (CG). 34 cases and 35 controls were included in the study. Histological and endoscopic changes were evaluated after stimulation, after restorative surgery and during the short-term follow-up after surgery. A decrease in endoscopic pathological findings (mucosal friability, mucous erosions, polyps, edema, erythema and stenosis) and in histological findings (follicular hyperplasia, eosinophils, cryptic abscesses, lymphocyte infiltration, plasma cell infiltration and architecture distortion) was observed in SG. These results were statistically significant with a p < 0.001. The stimulation of the efferent loop of the ileostomy in patients with diversion colitis produced a decrease of the endoscopic and histological severity of colitis in the short term.
Collapse
Affiliation(s)
- Ángela Rodríguez-Padilla
- Department of General Surgery, Infanta Elena University Clinical Hospital, 21080 Huelva, Spain; (Á.R.-P.); (G.M.-M.)
| | - Germán Morales-Martín
- Department of General Surgery, Infanta Elena University Clinical Hospital, 21080 Huelva, Spain; (Á.R.-P.); (G.M.-M.)
| | - Rocío Pérez-Quintero
- Department of General Surgery, Juan Ramón Jiménez University Clinical Hospital, 21005 Huelva, Spain; (R.P.-Q.); (R.R.-M.)
| | - Juan Gómez-Salgado
- Department of Sociology, Social Work and Public Health, Faculty of Labour Sciences, University of Huelva, 21007 Huelva, Spain;
- Safety and Health Postgraduate Programme, Universidad Espíritu Santo, Guayaquil 092301, Ecuador
- Correspondence: ; Tel.: +34-959219700
| | - Ricardo Rada-Morgades
- Department of General Surgery, Juan Ramón Jiménez University Clinical Hospital, 21005 Huelva, Spain; (R.P.-Q.); (R.R.-M.)
| | - Carlos Ruiz-Frutos
- Department of Sociology, Social Work and Public Health, Faculty of Labour Sciences, University of Huelva, 21007 Huelva, Spain;
- Safety and Health Postgraduate Programme, Universidad Espíritu Santo, Guayaquil 092301, Ecuador
| |
Collapse
|
44
|
Periplaneta americana Oligosaccharides Exert Anti-Inflammatory Activity through Immunoregulation and Modulation of Gut Microbiota in Acute Colitis Mice Model. Molecules 2021; 26:molecules26061718. [PMID: 33808686 PMCID: PMC8003390 DOI: 10.3390/molecules26061718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
The incidence and prevalence of inflammatory bowel disorders (IBD) are increasing around the world due to bacterial infection, abnormal immune response, etc. The conventional medicines for IBD treatment possess serious side effects. Periplaneta americana (P. americana), a traditional Chinese medicine, has been used to treat arthritis, fever, aches, inflammation, and other diseases. This study aimed to evaluate the anti-inflammatory effects of oligosaccharides from P. Americana (OPA) and its possible mechanisms in vivo. OPA were purified and biochemical characterization was analyzed by HPGPC, HPLC, FT-IR, and GC–MS. Acute colitis mice model was established, the acute toxicity and anti-inflammatory activity were tested in vivo. The results showed OPA with molecular mass of 1.0 kDa were composed of 83% glucose, 6% galactose, 11% xylose, and the backbone was (1→4)-Glcp. OPA had potent antioxidant activities in vitro and significantly alleviated the clinical symptoms of colitis, relieved colon damage without toxic side effects in vivo. OPA exhibited anti-inflammatory activity by regulating Th1/Th2, reducing oxidative stress, preserving intestinal barrier integrity, and inhibiting TLR4/MAPK/NF-κB pathway. Moreover, OPA protected gut by increasing microbial diversity and beneficial bacteria, and reducing pathogenic bacteria in feces. OPA might be the candidate of complementary and alternative medicines of IBD with low-cost and high safety.
Collapse
|
45
|
Goyal D, Ali SA, Singh RK. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110112. [PMID: 32949638 DOI: 10.1016/j.pnpbp.2020.110112] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a complex multifactorial disease involving chronic neuroinflammation and neurodegeneration. It has been recently recognized that gut microbiota interacts with the brain, and it is termed as microbiota-gut-brain axis. Modulation of this axis has been recently reported to affect the pathogenesis of neurodegenerative diseases, such as AD. Gut microbiota has a pivotal role in regulating multiple neuro-chemical pathways through the highly interconnected gut-brain axis. Recent emerging evidences have highlighted that the intestinal microflora takes part in bidirectional communication between the gut and the brain. Due to this, the researchers have suggested that human gut microflora may even act as the "second brain" and may be responsible for neurodegenerative disorders like Alzheimer's disease. Dysbiosis of gut microbiota can induce increased intestinal permeability and systemic inflammation. This may lead to the development of AD pathologies and cognitive impairment via the neural, immune, endocrine, and metabolic pathways. Thus, the modulation of gut microbiota through personalized diet, oral bacteriotherapy may lead to alteration of gut microbiota their products including amyloid protein. It has been demonstrated that modulation of the gut microbiota induces beneficial effects on neuronal pathways consequently leading to delay the progression of Alzheimer's disease. Thus, this approach may provide a novel therapeutic option for treatment of AD.
Collapse
Affiliation(s)
- Divya Goyal
- Department of Pharmacology and Toxicology, National institute of Pharmaceutical Education and Research, Raebareli, Transit campus, Bijnour-sisendi road, Sarojini nagar, Lucknow 226002, Uttar Pradesh, India
| | - Syed Afroz Ali
- Department of Pharmacology and Toxicology, National institute of Pharmaceutical Education and Research, Raebareli, Transit campus, Bijnour-sisendi road, Sarojini nagar, Lucknow 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National institute of Pharmaceutical Education and Research, Raebareli, Transit campus, Bijnour-sisendi road, Sarojini nagar, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
46
|
Xu M, Cen M, Shen Y, Zhu Y, Cheng F, Tang L, Hu W, Dai N. Deoxycholic Acid-Induced Gut Dysbiosis Disrupts Bile Acid Enterohepatic Circulation and Promotes Intestinal Inflammation. Dig Dis Sci 2021; 66:568-576. [PMID: 32198567 DOI: 10.1007/s10620-020-06208-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND A Western diet is a risk factor for the development of inflammatory bowel disease (IBD). High levels of fecal deoxycholic acid (DCA) in response to a Western diet contribute to bowel inflammatory injury. However, the mechanism of DCA in the natural course of IBD development remains unanswered. AIMS The aim of this study is to investigate the effect of DCA on the induction of gut dysbiosis and its roles in the development of intestinal inflammation. METHODS Wild-type C57BL/6J mice were fed an AIN-93G diet, either supplemented with or without 0.2% DCA, and killed at 24 weeks. Distal ileum and colon tissues were assessed by histopathological analysis. Hepatic and ileal gene expression was examined by qPCR, and the gut microbiota was analyzed by high-throughput 16S rRNA gene sequencing. HPLC-MS was used for fecal bile acid quantification. RESULTS Mice fed the DCA-supplemented diet developed focal areas of ileal and colonic inflammation, accompanied by alteration of the composition of the intestinal microbiota and accumulation of fecal bile acids. DCA-induced dysbiosis decreased the deconjugation of bile acids, and this regulation was associated with the repressed expression of target genes in the enterohepatic farnesoid X receptor-fibroblast growth factor (FXR-FGF15) axis, leading to upregulation of hepatic de novo bile acid synthesis. CONCLUSIONS These results suggest that DCA-induced gut dysbiosis may act as a key etiologic factor in intestinal inflammation, associated with bile acid metabolic disturbance and downregulation of the FXR-FGF15 axis.
Collapse
Affiliation(s)
- Mengque Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Mengsha Cen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yuqin Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yubin Zhu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Fangli Cheng
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Linlin Tang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Weiling Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Ning Dai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
47
|
Monteros MJM, Galdeano CM, Balcells MF, Weill R, De Paula JA, Perdigón G, Cazorla SI. Probiotic lactobacilli as a promising strategy to ameliorate disorders associated with intestinal inflammation induced by a non-steroidal anti-inflammatory drug. Sci Rep 2021; 11:571. [PMID: 33436961 PMCID: PMC7803994 DOI: 10.1038/s41598-020-80482-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Damage to the small intestine caused by non-steroidal anti-inflammatory drugs (NSAIDs) occurs more frequently than in the upper gastrointestinal tract, is more difficult to diagnose and no effective treatments exist. Hence, we investigated whether probiotics can control the onset of this severe condition in a murine model of intestinal inflammation induced by the NSAID, indomethacin. Probiotic supplementation to mice reduce the body weight loss, anemia, shortening of the small intestine, cell infiltration into the intestinal tissue and the loss of Paneth and Goblet cells associated with intestinal inflammation. Furthermore, a high antimicrobial activity in the intestinal fluids of mice fed with probiotics compared to animals on a conventional diet was elicited against several pathogens. Interestingly, probiotics dampened the oxidative stress and several local and systemic markers of an inflammatory process, as well as increased the secretion of IL-10 by regulatory T cells. Even more importantly, probiotics induced important changes in the large intestine microbiota characterized by an increase in anaerobes and lactobacilli, and a significant decrease in total enterobacteria. We conclude that oral probiotic supplementation in NSAID-induced inflammation increases intestinal antimicrobial activity and reinforces the intestinal epithelial barrier in order to avoid pathogens and commensal invasion and maintain intestinal homeostasis.
Collapse
Affiliation(s)
- María José Martínez Monteros
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
| | - Carolina Maldonado Galdeano
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - María Florencia Balcells
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
| | | | | | - Gabriela Perdigón
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
| | - Silvia Inés Cazorla
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina.
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina.
| |
Collapse
|
48
|
Venkatakrishnan A, Holzknecht ZE, Holzknecht R, Bowles DE, Kotzé SH, Modliszewski JL, Parker W. Evolution of bacteria in the human gut in response to changing environments: An invisible player in the game of health. Comput Struct Biotechnol J 2021; 19:752-758. [PMID: 33552447 PMCID: PMC7829112 DOI: 10.1016/j.csbj.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/23/2023] Open
Abstract
Several factors in Western society, including widespread use of antibiotics, chronic inflammation, and loss of complex eukaryotic symbionts such as helminths, have a dramatic impact on the ecosystem of the gut, affecting the microbiota hosted there. In addition, reductions in dietary fiber are profoundly impactful on the microbiota, causing extensive destruction of the niche space that supports the normally diverse microbial community in the gut. Abundant evidence now supports the view that, following dramatic alterations in the gut ecosystem, microorganisms undergo rapid change via Darwinian evolution. Such evolutionary change creates functionally distinct bacteria that may potentially have properties of pathogens but yet are difficult to distinguish from their benign predecessors.
Collapse
Affiliation(s)
| | - Zoie E Holzknecht
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Rob Holzknecht
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Dawn E Bowles
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Sanet H Kotzé
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 8000, South Africa
| | - Jennifer L Modliszewski
- Genomic Analysis and Bioinformatics Shared Resource, Duke Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
| | - William Parker
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
49
|
Kim S, Lee JY, Shin SG, Kim JK, Silwal P, Kim YJ, Shin NR, Kim PS, Won M, Lee SH, Kim SY, Sasai M, Yamamoto M, Kim JM, Bae JW, Jo EK. ESRRA (estrogen related receptor alpha) is a critical regulator of intestinal homeostasis through activation of autophagic flux via gut microbiota. Autophagy 2020; 17:2856-2875. [PMID: 33172329 DOI: 10.1080/15548627.2020.1847460] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The orphan nuclear receptor ESRRA (estrogen related receptor alpha) is critical in mitochondrial biogenesis and macroautophagy/autophagy function; however, the roles of ESRRA in intestinal function remain uncharacterized. Herein we identified that ESRRA acts as a key regulator of intestinal homeostasis by amelioration of colonic inflammation through activation of autophagic flux and control of host gut microbiota. Esrra-deficient mice presented with increased susceptibility to dextran sodium sulfate (DSS)-induced colitis with upregulation of intestinal inflammation. In addition, esrra-null mice had depressed AMP-activated protein kinase phosphorylation (AMPK), lower levels of TFEB (transcription factor EB), and accumulation of SQSTM1/p62 (sequestosome 1) with defective mitochondria in intestinal tissues. Esrra-deficient mice showed distinct gut microbiota composition and significantly higher microbial diversity than wild-type (WT) mice. Cohousing or fecal microbiota transplantation from WT mice to Esrra-deficient mice ameliorated DSS-induced colitis severity. Importantly, patients with ulcerative colitis (UC) had significantly decreased ESRRA expression in intestinal mucosal tissues that correlated with disease activity, suggesting clinical relevance of ESRRA in UC. Taken together, our results show that ESRRA contributes to intestinal homeostasis through autophagy activation and gut microbiota control to protect the host from detrimental inflammation and dysfunctional mitochondria.
Collapse
Affiliation(s)
- Sup Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, Korea
| | - June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Seul Gi Shin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine Daejeon, Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine Daejeon, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine Daejeon, Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine Daejeon, Korea
| | - Na-Ri Shin
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Korea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Chungcheongbuk-do Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Chungbuk, Korea
| | - Soo Yeon Kim
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon Korea
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka Japan
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine Daejeon, Korea.,Pathology and.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine Daejeon, Korea
| |
Collapse
|
50
|
Singh A, Mahajan R, Kao D, Midha V, Sood A. Long term management of ulcerative colitis with Faecal Microbiota Transplantation. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|