1
|
Li G, Zhang J, Zhao Z, Wang J, Li J, Xu W, Cui Z, Sun P, Yuan H, Wang T, Li K, Bai X, Ma X, Li P, Fu Y, Cao Y, Bao H, Li D, Liu Z, Zhu N, Tang L, Lu Z. RNF144B negatively regulates antiviral immunity by targeting MDA5 for autophagic degradation. EMBO Rep 2024; 25:4594-4624. [PMID: 39285245 PMCID: PMC11467429 DOI: 10.1038/s44319-024-00256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
As a RIG-I-like receptor, MDA5 plays a critical role in antiviral innate immunity by acting as a cytoplasmic double-stranded RNA sensor capable of initiating type I interferon pathways. Here, we show that RNF144B specifically interacts with MDA5 and promotes K27/K33-linked polyubiquitination of MDA5 at lysine 23 and lysine 43, which promotes autophagic degradation of MDA5 by p62. Rnf144b deficiency greatly promotes IFN production and inhibits EMCV replication in vivo. Importantly, Rnf144b-/- mice has a significantly higher overall survival rate than wild-type mice upon EMCV infection. Collectively, our results identify RNF144B as a negative regulator of innate antiviral response by targeting CARDs of MDA5 and mediating autophagic degradation of MDA5.
Collapse
Affiliation(s)
- Guoxiu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jiaoyang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Weihong Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Zhanding Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Ning Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| |
Collapse
|
2
|
Zhang H, Wang H, Hu Y, Gao Y, Chen J, Meng Y, Qiu Y, Hu R, Liao P, Li M, He Y, Liang Z, Xie X, Li Y. Targeting PARP14 with lomitapide suppresses drug resistance through the activation of DRP1-induced mitophagy in multiple myeloma. Cancer Lett 2024; 588:216802. [PMID: 38467180 DOI: 10.1016/j.canlet.2024.216802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Multiple myeloma (MM) is a hematological malignancy that remains incurable, primarily due to the high likelihood of relapse or development of resistance to current treatments. To explore and discover new medications capable of overcoming drug resistance in MM, we conducted cell viability inhibition screens of 1504 FDA-approved drugs. Lomitapide, a cholesterol-lowering agent, was found to exhibit effective inhibition on bortezomib-resistant MM cells in vitro and in vivo. Our data also indicated that lomitapide decreases the permeability of the mitochondrial outer membrane and induces mitochondrial dysfunction in MM cells. Next, lomitapide treatment upregulated DRP1 and PINK1 expression levels, coupled with the mitochondrial translocation of Parkin, leading to MM cell mitophagy. Excessive mitophagy caused mitochondrial damage and dysfunction induced by lomitapide. Meanwhile, PARP14 was identified as a direct target of lomitapide by SPR-HPLC-MS, and we showed that DRP1-induced mitophagy was crucial in the anti-MM activity mediated by PARP14. Furthermore, PARP14 is overexpressed in MM patients, implying that it is a novel therapeutic target in MM. Collectively, our results demonstrate that DRP1-mediated mitophagy induced by PARP14 may be the cause for mitochondrial dysfunction and damage in response to lomitapide treatment.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yang Gao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yabo Meng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhao Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Li C, Cai Q. Two ferroptosis-specific expressed genes NOX4 and PARP14 are considered as potential biomarkers for the diagnosis and treatment of diabetic retinopathy and atherosclerosis. Diabetol Metab Syndr 2024; 16:61. [PMID: 38443950 PMCID: PMC10913658 DOI: 10.1186/s13098-024-01301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVES Both Diabetic retinopathy (DR) and Atherosclerosis (AS) are common complications in patients with diabetes, and they share major pathophysiological similarities and have a common pathogenesis. Studies performed to date have demonstrated that ferroptosis plays a vital part in the occurrence and development of DR and AS, but its mechanism in the two diseases remains poorly understood. METHODS DR Chip data (GSE60436 and GSE102485) and AS chip data (GSE100927 and GSE57691) were obtained from the Gene Expression Omnibus (GEO) database. The screening of the differential expression genes (DEGs) was analyzed using the limma package, and the genes related to ferroptosis were obtained from the FerrDb V2 database. Two key genes (NOX4 and PARP14) were identified through external datasets validation and receiver operating characteristic (ROC) curve analysis. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) were used to conduct a functional enrichment analysis, and miRNA-mRNA networks were established. The CIBERSORT algorithm was applied to identify the immune cell infiltration between the disease group and control group. Next, the correlations between key genes and infiltrating immune cells were investigated by the Spearman method. Finally, the correlation between 2 key genes and ferroptosis markers was confirmed. RESULTS Nine ferroptosis differentially expressed genes (DE-FRGs) between DR and AS were identified in this study. NOX4 and PARP14 were selected as key genes for further analysis by external datasets and ROC curve analysis. The key genes NOX4, PARP14 and their correlated genes (such as CYBA, NOX1, NOX3, CYBB, PARP9, PARP10, and PARP15) are mainly enriched in oxidoreductase activity, protein ADP-ribosylation, superoxide metabolic process, reactive oxygen species metabolic process, PID pathway, and VEGFA-VEGFR2 pathway. A miRNA-mRNA network was constructed, and we got 12 miRNAs correlated with the target gene NOX4, 38 miRNAs correlated with the target gene PARP14. Three common miRNAs (hsa-miR-1-3p, hsa-miR-129-2-3p, and hsa-miR-155-5p) were observed in the network. Immune infiltration analysis displayed that activated B cell, MDSC, and Type 17 T helper cell are the common immune cells involved in the immune infiltration process of DR and AS. The results revealed that there are significant correlations between two key genes and most ferroptosis marker genes no matter in DR or AS. CONCLUSION Ferroptosis-related genes NOX4 and PARP14 may be common biomarkers of DR and AS. Both were associated with immune infiltration in patients with DR and AS. Our data provide a theoretical basis for the early diagnosis and immunotherapy of the two diseases.
Collapse
Affiliation(s)
- Chen Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 21006, Jiangsu, China
| | - QinHua Cai
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 21006, Jiangsu, China.
| |
Collapse
|
4
|
Lin J, Cai Y, Wang J, Liu R, Qiu C, Huang Y, Liu B, Yang X, Zhou S, Shen Y, Wang W, Zhu J. Transcriptome sequencing promotes insights on the molecular mechanism of SKP-SC-EVs mitigating denervation-induced muscle atrophy. Mol Biol Rep 2023; 51:9. [PMID: 38085347 DOI: 10.1007/s11033-023-08952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Complex pathophysiological changes accompany denervation-induced skeletal muscle atrophy, but no effective treatment strategies exist. Our previous study indicated that extracellular vesicles derived from skin-derived precursors-derived Schwann cells (SKP-SC-EVs) can effectively mitigate denervation-induced muscle atrophy. However, the specific molecular mechanism remains unclear. METHODS AND RESULTS In this study, we used bioinformatics methods to scrutinize the impact of SKP-SC-EVs on gene expression in denervation-induced skeletal muscle atrophy. We found that SKP-SC-EVs altered the expression of 358 genes in denervated skeletal muscles. The differentially expressed genes were predominantly participated in biological processes, including cell cycle, inflammation, immunity, and adhesion, and signaling pathways, such as FoxO and PI3K.Using the Molecular Complex Detection (MCODE) plugin, we identified the two clusters with the highest score: cluster 1 comprised 37 genes, and Cluster 2 consisted of 24 genes. Then, fifty hub genes were identified using CytoHubba. The intersection of Hub genes and genes obtained by MCODE showed that all 23 genes related to the cell cycle in Cluster 1 were hub genes, and 5 genes in Cluster 2 were hub genes and associated with inflammation. CONCLUSIONS Overall, the differentially expressed genes in denervated skeletal muscle following SKP-SC-EVs treatment are primarily linked to the cell cycle and inflammation. Consequently, promoting proliferation and inhibiting inflammation may be the critical process in which SKP-SC-EVs delay denervation-induced muscle atrophy. Our findings contribute to a better understanding of the molecular mechanism of SKP-SC-EVs delaying denervation-induced muscle atrophy, offering a promising new avenue for muscle atrophy treatment.
Collapse
Affiliation(s)
- Junfei Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yong Cai
- Department of Neurology, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China
| | - Jian Wang
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, P. R. China
| | - Chong Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, P. R. China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, P. R. China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| |
Collapse
|
5
|
Yazdani B, Sirous H, Brogi S, Calderone V. Structure-Based High-Throughput Virtual Screening and Molecular Dynamics Simulation for the Discovery of Novel SARS-CoV-2 NSP3 Mac1 Domain Inhibitors. Viruses 2023; 15:2291. [PMID: 38140532 PMCID: PMC10747130 DOI: 10.3390/v15122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Since the emergence of SARS-CoV-2, many genetic variations within its genome have been identified, but only a few mutations have been found in nonstructural proteins (NSPs). Among this class of viral proteins, NSP3 is a multidomain protein with 16 different domains, and its largest domain is known as the macrodomain or Mac1 domain. In this study, we present a virtual screening campaign in which we computationally evaluated the NCI anticancer library against the NSP3 Mac1 domain, using Molegro Virtual Docker. The top hits with the best MolDock and Re-Rank scores were selected. The physicochemical analysis and drug-like potential of the top hits were analyzed using the SwissADME data server. The binding stability and affinity of the top NSC compounds against the NSP3 Mac1 domain were analyzed using molecular dynamics (MD) simulation, using Desmond software, and their interaction energies were analyzed using the MM/GBSA method. In particular, by applying subsequent computational filters, we identified 10 compounds as possible NSP3 Mac1 domain inhibitors. Among them, after the assessment of binding energies (ΔGbind) on the whole MD trajectories, we identified the four most interesting compounds that acted as strong binders of the NSP3 Mac1 domain (NSC-358078, NSC-287067, NSC-123472, and NSC-142843), and, remarkably, it could be further characterized for developing innovative antivirals against SARS-CoV-2.
Collapse
Affiliation(s)
- Behnaz Yazdani
- Bioscience Department, Faculty of Science and Technology (FCT), Universitat de Vic—Universitat Central de Catalunya (Uvic-UCC), 08500 Vic, Spain;
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Simone Brogi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| |
Collapse
|
6
|
Nizi MG, Sarnari C, Tabarrini O. Privileged Scaffolds for Potent and Specific Inhibitors of Mono-ADP-Ribosylating PARPs. Molecules 2023; 28:5849. [PMID: 37570820 PMCID: PMC10420676 DOI: 10.3390/molecules28155849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The identification of new targets to address unmet medical needs, better in a personalized way, is an urgent necessity. The introduction of PARP1 inhibitors into therapy, almost ten years ago, has represented a step forward this need being an innovate cancer treatment through a precision medicine approach. The PARP family consists of 17 members of which PARP1 that works by poly-ADP ribosylating the substrate is the sole enzyme so far exploited as therapeutic target. Most of the other members are mono-ADP-ribosylating (mono-ARTs) enzymes, and recent studies have deciphered their pathophysiological roles which appear to be very extensive with various potential therapeutic applications. In parallel, a handful of mono-ARTs inhibitors emerged that have been collected in a perspective on 2022. After that, additional very interesting compounds were identified highlighting the hot-topic nature of this research field and prompting an update. From the present review, where we have reported only mono-ARTs inhibitors endowed with the appropriate profile of pharmacological tools or drug candidate, four privileged scaffolds clearly stood out that constitute the basis for further drug discovery campaigns.
Collapse
Affiliation(s)
- Maria Giulia Nizi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | | | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
7
|
Dhoonmoon A, Nicolae CM. Mono-ADP-ribosylation by PARP10 and PARP14 in genome stability. NAR Cancer 2023; 5:zcad009. [PMID: 36814782 PMCID: PMC9940457 DOI: 10.1093/narcan/zcad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/09/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
ADP-ribosylation is a post-translational modification involved in a variety of processes including DNA damage repair, transcriptional regulation, and cellular proliferation. Depending on the number of ADP moieties transferred to target proteins, ADP-ribosylation can be classified either as mono-ADP-ribosylation (MARylation) or poly-ADP-ribosylation (PARylation). This post-translational modification is catalyzed by enzymes known as ADP-ribosyltransferases (ARTs), which include the poly (ADP-ribose)-polymerase (PARP) superfamily of proteins. Certain members of the PARP family including PARP1 and PARP2 have been extensively studied and assessed as therapeutic targets. However, the other members of the PARP family of protein are not as well studied but have gained attention in recent years given findings suggesting their roles in an increasing number of cellular processes. Among these other members are PARP10 and PARP14, which have gradually emerged as key players in maintenance of genomic stability and carcinogenesis. PARP10 and PARP14 catalyze the transfer of a single ADP moiety to target proteins. Here, we summarize the current knowledge on MARylation in DNA repair and cancer, focusing on PARP10 and PARP14. We highlight the roles of PARP10 and PARP14 in cancer progression and response to chemotherapeutics and briefly discuss currently known PARP10 and PARP14 inhibitors.
Collapse
Affiliation(s)
- Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
8
|
Murthy S, Nizi MG, Maksimainen MM, Massari S, Alaviuhkola J, Lippok BE, Vagaggini C, Sowa ST, Galera-Prat A, Ashok Y, Venkannagari H, Prunskaite-Hyyryläinen R, Dreassi E, Lüscher B, Korn P, Tabarrini O, Lehtiö L. [1,2,4]Triazolo[3,4- b]benzothiazole Scaffold as Versatile Nicotinamide Mimic Allowing Nanomolar Inhibition of Different PARP Enzymes. J Med Chem 2023; 66:1301-1320. [PMID: 36598465 PMCID: PMC9884089 DOI: 10.1021/acs.jmedchem.2c01460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report [1,2,4]triazolo[3,4-b]benzothiazole (TBT) as a new inhibitor scaffold, which competes with nicotinamide in the binding pocket of human poly- and mono-ADP-ribosylating enzymes. The binding mode was studied through analogues and cocrystal structures with TNKS2, PARP2, PARP14, and PARP15. Based on the substitution pattern, we were able to identify 3-amino derivatives 21 (OUL243) and 27 (OUL232) as inhibitors of mono-ARTs PARP7, PARP10, PARP11, PARP12, PARP14, and PARP15 at nM potencies, with 27 being the most potent PARP10 inhibitor described to date (IC50 of 7.8 nM) and the first PARP12 inhibitor ever reported. On the contrary, hydroxy derivative 16 (OUL245) inhibits poly-ARTs with a selectivity toward PARP2. The scaffold does not possess inherent cell toxicity, and the inhibitors can enter cells and engage with the target protein. This, together with favorable ADME properties, demonstrates the potential of TBT scaffold for future drug development efforts toward selective inhibitors against specific enzymes.
Collapse
Affiliation(s)
- Sudarshan Murthy
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Maria Giulia Nizi
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia06123, Italy
| | - Mirko M. Maksimainen
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Serena Massari
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia06123, Italy
| | - Juho Alaviuhkola
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Barbara E. Lippok
- Institute
of Biochemistry and Molecular Biology, RWTH
Aachen University, Aachen52074, Germany
| | - Chiara Vagaggini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, SienaI-53100, Italy
| | - Sven T. Sowa
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Albert Galera-Prat
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Yashwanth Ashok
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Harikanth Venkannagari
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | | | - Elena Dreassi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, SienaI-53100, Italy
| | - Bernhard Lüscher
- Institute
of Biochemistry and Molecular Biology, RWTH
Aachen University, Aachen52074, Germany
| | - Patricia Korn
- Institute
of Biochemistry and Molecular Biology, RWTH
Aachen University, Aachen52074, Germany
| | - Oriana Tabarrini
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia06123, Italy,
| | - Lari Lehtiö
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland,
| |
Collapse
|
9
|
Systematic Analysis of Molecular Subtypes Based on the Expression Profile of Immune-Related Genes in Pancreatic Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3124122. [PMID: 36567857 PMCID: PMC9780013 DOI: 10.1155/2022/3124122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022]
Abstract
Immunotherapy has a good therapeutic effect and provides a new approach for cancer treatment. However, only limited studies have focused on the use of molecular typing to construct an immune characteristic index for gene expression in pancreatic adenocarcinoma (PAAD) and to assess the effectiveness of immunotherapy in patients with PAAD. Clinical follow-up data and gene expression profile of PAAD patients were retrieved from The Cancer Genome Atlas (TCGA) database. Based on 184 immune features, molecular subtypes of pancreatic cancer were found by the "ConsensusClusterPlus" package, and the association between clinical features and immune cell subtype distribution was analysed. In addition, the relationship between the proportion of immune subtypes and the expression of immune checkpoints was analysed. The CIBERSORT algorithm was introduced to evaluate the immune scores of different molecular subtypes. We used the tumor immune dysfunction and exclusion (TIDE) algorithm to assess the potential clinical effect of immunotherapy interventions on single-molecule subtypes. In addition, the oxidative stress index was constructed by linear discriminant analysis DNA (LDA), and weighted correlation network analysis was performed to identify the core module of the index and its characteristic genes. Expression of hub genes was verified by immunohistochemical analysis in an independent PAAD cohort. Pancreatic cancer is divided into three molecular subtypes (IS1, IS2, and IS3), with significant differences in prognosis between multiple cohorts. Expression of immune checkpoint-associated genes was significantly reduced in IS3 and higher in IS1 and IS2, suggesting that the three subgroups have different responsiveness to immunotherapy interventions. The results of the CIBERSORT analysis showed that IS1 exhibited the highest levels of immune infiltration, whereas the results of the TIDE analysis showed that the T-cell dysfunction score of IS1 was higher than that of IS2 and IS3. Furthermore, IS3 was found to be more sensitive to 5-FU and to have a higher immune signature index than IS1 and IS2. Based on WGCNA analysis, 10 potential gene markers were identified, and their expression at the protein level was verified by immunohistochemical analysis. Specific molecular expression patterns in pancreatic cancer can predict the efficacy of immunotherapy and influence the prognosis of patients.
Collapse
|
10
|
Mashimo M, Shimizu A, Mori A, Hamaguchi A, Fukushima K, Seira N, Fujii T, Fujino H. PARP14 regulates EP4 receptor expression in human colon cancer HCA-7 cells. Biochem Biophys Res Commun 2022; 623:133-139. [DOI: 10.1016/j.bbrc.2022.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
|
11
|
Li P, Lei Y, Qi J, Liu W, Yao K. Functional roles of ADP-ribosylation writers, readers and erasers. Front Cell Dev Biol 2022; 10:941356. [PMID: 36035988 PMCID: PMC9404506 DOI: 10.3389/fcell.2022.941356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
ADP-ribosylation is a reversible post-translational modification (PTM) tightly regulated by the dynamic interplay between its writers, readers and erasers. As an intricate and versatile PTM, ADP-ribosylation plays critical roles in various physiological and pathological processes. In this review, we discuss the major players involved in the ADP-ribosylation cycle, which may facilitate the investigation of the ADP-ribosylation function and contribute to the understanding and treatment of ADP-ribosylation associated disease.
Collapse
|
12
|
Zhu Y, Liu Z, Wan Y, Zou L, Liu L, Ding S, Lu C, Qiu F. PARP14 promotes the growth and glycolysis of acute myeloid leukemia cells by regulating HIF-1α expression. Clin Immunol 2022; 242:109094. [DOI: 10.1016/j.clim.2022.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
|
13
|
Nizi M, Maksimainen MM, Lehtiö L, Tabarrini O. Medicinal Chemistry Perspective on Targeting Mono-ADP-Ribosylating PARPs with Small Molecules. J Med Chem 2022; 65:7532-7560. [PMID: 35608571 PMCID: PMC9189837 DOI: 10.1021/acs.jmedchem.2c00281] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Major advances have recently defined functions for human mono-ADP-ribosylating PARP enzymes (mono-ARTs), also opening up potential applications for targeting them to treat diseases. Structural biology combined with medicinal chemistry has allowed the design of potent small molecule inhibitors which typically bind to the catalytic domain. Most of these inhibitors are at the early stages, but some have already a suitable profile to be used as chemical tools. One compound targeting PARP7 has even progressed to clinical trials. In this review, we collect inhibitors of mono-ARTs with a typical "H-Y-Φ" motif (Φ = hydrophobic residue) and focus on compounds that have been reported as active against one or a restricted number of enzymes. We discuss them from a medicinal chemistry point of view and include an analysis of the available crystal structures, allowing us to craft a pharmacophore model that lays the foundation for obtaining new potent and more specific inhibitors.
Collapse
Affiliation(s)
- Maria
Giulia Nizi
- Department
of Pharmaceutical Sciences, University of
Perugia, 06123 Perugia, Italy
| | - Mirko M. Maksimainen
- Faculty
of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 5400 Oulu, Finland
| | - Lari Lehtiö
- Faculty
of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 5400 Oulu, Finland
| | - Oriana Tabarrini
- Department
of Pharmaceutical Sciences, University of
Perugia, 06123 Perugia, Italy
| |
Collapse
|
14
|
Luo L, Keyomarsi K. PARP inhibitors as single agents and in combination therapy: the most promising treatment strategies in clinical trials for BRCA-mutant ovarian and triple-negative breast cancers. Expert Opin Investig Drugs 2022; 31:607-631. [PMID: 35435784 PMCID: PMC9296104 DOI: 10.1080/13543784.2022.2067527] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Poly (ADP-ribose) polymerase inhibitors (PARPis) are an exciting class of agents that have shown efficacy, particularly for BRCA-mutant triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSOC). However, most patients who receive PARPi as their standard of care therapy inevitably develop resistance and this underscores the need to identify additional targets that can circumvent such resistance. Combination treatment strategies have been developed in preclinical and clinical studies to address the challenges of efficacy and resistance. AREAS COVERED This review examines completed or ongoing clinical trials of PARPi mono- and combination therapies. PARPi monotherapy in HER2 negative breast (HR+ and TNBC subtypes) and ovarian cancer is a focal point. The authors propose potential strategies that might overcome resistance to PARPi and discuss key questions and future directions. EXPERT OPINION While the advent of PARPis has significantly improved the treatment of tumors with defects in DNA damage and repair pathways, careful patient selection will be essential to enhance these treatments. The identification of molecular biomarkers to predict disease response and progression is an endeavor.
Collapse
Affiliation(s)
- Linjie Luo
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Richard IA, Burgess JT, O'Byrne KJ, Bolderson E. Beyond PARP1: The Potential of Other Members of the Poly (ADP-Ribose) Polymerase Family in DNA Repair and Cancer Therapeutics. Front Cell Dev Biol 2022; 9:801200. [PMID: 35096828 PMCID: PMC8795897 DOI: 10.3389/fcell.2021.801200] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 01/22/2023] Open
Abstract
The proteins within the Poly-ADP Ribose Polymerase (PARP) family encompass a diverse and integral set of cellular functions. PARP1 and PARP2 have been extensively studied for their roles in DNA repair and as targets for cancer therapeutics. Several PARP inhibitors (PARPi) have been approved for clinical use, however, while their efficacy is promising, tumours readily develop PARPi resistance. Many other members of the PARP protein family share catalytic domain homology with PARP1/2, however, these proteins are comparatively understudied, particularly in the context of DNA damage repair and tumourigenesis. This review explores the functions of PARP4,6-16 and discusses the current knowledge of the potential roles these proteins may play in DNA damage repair and as targets for cancer therapeutics.
Collapse
Affiliation(s)
- Iain A Richard
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Joshua T Burgess
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
16
|
Sinotsko AE, Bespalov AV, Pashchevskaya NV, Dotsenko VV, Aksenov NA, Aksenova IV. N, N'-Diphenyldithiomalonodiamide: Structural Features, Acidic Properties, and In Silico Estimation of Biological Activity. RUSS J GEN CHEM+ 2021; 91:2136-2150. [PMID: 34934303 PMCID: PMC8680065 DOI: 10.1134/s1070363221110037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/14/2021] [Accepted: 09/18/2021] [Indexed: 11/25/2022]
Abstract
The spectral characteristics of dithiomalondianilide (N,N'-diphenyldithiomalonodiamide) were studied, and the dissociation constant was determined by potentiometric titration. Quantum-chemical methods at the B3LYP-D3BJ/6-311+G (2d,p) level were used to calculate the molecular geometry and vibrational spectra of the most stable tautomeric forms of dithiomalondianilide. The bioavailability parameters were calculated, and possible protein targets were predicted by the protein ligand docking method.
Collapse
Affiliation(s)
| | | | | | - V. V. Dotsenko
- Kuban State University, 350040 Krasnodar, Russia
- North Caucasus Federal University, 355009 Stavropol, Russia
| | - N. A. Aksenov
- North Caucasus Federal University, 355009 Stavropol, Russia
| | - I. V. Aksenova
- North Caucasus Federal University, 355009 Stavropol, Russia
| |
Collapse
|
17
|
Chen M, Hu G, Zhou X, Peng Z, Wen W. Hsa_circ_0016788 regulates hepatocellular carcinoma progression via miR-506-3p/poly-adenosine diphosphate-ribose polymerase. J Gastroenterol Hepatol 2021; 36:3457-3468. [PMID: 34340259 DOI: 10.1111/jgh.15635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide. Recent researches have shown that circular RNAs (circRNAs) could affect the progress of HCC, but the mechanism is still indistinct. In this work, we explored the roles of circRNA_0016788 in HCC. METHODS The levels of hsa_circ_0016788, microRNA-506-3p (miR-506-3p), and mRNA of poly-adenosine diphosphate-ribose polymerase, member 14 (PARP14) were detected by quantitative real-time reverse transcription-polymerase chain reaction in HCC tissues. Meanwhile, the level of PARP14 was quantified by Western blot analysis. Besides, the cell functions were examined by commercial kit, Cell Counting Kit-8 assay, EdU assay, colony formation assay, flow cytometry assay, Western blot, and transwell assay. Furthermore, the interplay between miR-506-3p and hsa_circ_0016788 or PARP14 was detected by dual-luciferase reporter assay. Eventually, the in vivo experiments were applied to measure the role of hsa_circ_0016788. RESULTS The levels of hsa_circ_0016788 and PARP14 were upregulated, and the miR-506-3p level was decreased in HCC tissues in contrast to that in normal tissues. For functional analysis, hsa_circ_0016788 deficiency inhibited cell glycolysis metabolism, cell vitality, cell proliferation, colony formation, and invasion in HCC cells whereas promoted cell apoptosis. Moreover, miR-506-3p was confirmed to repress the progression of HCC cells by suppressing PARP14. In mechanism, hsa_circ_0016788 acted as a miR-506-3p sponge to regulate the level of PARP14. In addition, hsa_circ_0016788 knockdown also inhibited tumor growth in vivo. CONCLUSION Hsa_circ_0016788 facilitates the development of HCC through increasing PARP14 expression by regulating miR-506-3p, which also offered an underlying targeted therapy for HCC treatment.
Collapse
Affiliation(s)
- Ming Chen
- The First Affiliated Hospital, Department of Gastroenterology and Hepatology, Hengyang Medical School, University of South China, Hengyang, China
| | - Guangsheng Hu
- The First Affiliated Hospital, Department of Gastroenterology and Hepatology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xin Zhou
- Department of Gastroenterology, Zibo Central Hospital of Shandong Province, Zibo, China
| | - Zhong Peng
- The First Affiliated Hospital, Department of Gastroenterology and Hepatology, Hengyang Medical School, University of South China, Hengyang, China
| | - Wu Wen
- The First Affiliated Hospital, Department of Hepato-Biliary-Pancreatic Surgery, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
18
|
Poltronieri P, Miwa M, Masutani M. ADP-Ribosylation as Post-Translational Modification of Proteins: Use of Inhibitors in Cancer Control. Int J Mol Sci 2021; 22:10829. [PMID: 34639169 PMCID: PMC8509805 DOI: 10.3390/ijms221910829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Among the post-translational modifications of proteins, ADP-ribosylation has been studied for over fifty years, and a large set of functions, including DNA repair, transcription, and cell signaling, have been assigned to this post-translational modification (PTM). This review presents an update on the function of a large set of enzyme writers, the readers that are recruited by the modified targets, and the erasers that reverse the modification to the original amino acid residue, removing the covalent bonds formed. In particular, the review provides details on the involvement of the enzymes performing monoADP-ribosylation/polyADP-ribosylation (MAR/PAR) cycling in cancers. Of note, there is potential for the application of the inhibitors developed for cancer also in the therapy of non-oncological diseases such as the protection against oxidative stress, the suppression of inflammatory responses, and the treatment of neurodegenerative diseases. This field of studies is not concluded, since novel enzymes are being discovered at a rapid pace.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, CNR-ISPA, Via Monteroni, 73100 Lecce, Italy
| | - Masanao Miwa
- Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan;
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, CBMM, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
19
|
Obando-Pereda G. Can molecular mimicry explain the cytokine storm of SARS-CoV-2?: An in silico approach. J Med Virol 2021; 93:5350-5357. [PMID: 33913542 PMCID: PMC8242519 DOI: 10.1002/jmv.27040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
PARP14 and PARP9 play a key role in macrophage immune regulation. SARS‐CoV‐2 is an emerging viral disease that triggers hyper‐inflammation known as a cytokine storm. In this study, using in silico tools, we hypothesize about the immunological phenomena of molecular mimicry between SARS‐CoV‐2 Nsp3 and the human PARP14 and PARP9. The results showed an epitope of SARS‐CoV‐2 Nsp3 protein that contains consensus sequences for both human PARP14 and PARP9 that are antigens for MHC Classes 1 and 2, which can potentially induce an immune response against human PARP14 and PARP9; while its depletion causes a hyper‐inflammatory state in SARS‐CoV‐2 patients. Molecular mimicry could produce an inflammatory state in SARS‐CoV‐2 patients. Human PARP14 and PARP9 are the proteins involves in this phenomena.
Collapse
Affiliation(s)
- Gustavo Obando-Pereda
- Proteomics, Inflammation and Pain Laboratory, Universidad Católica de Santa María, Arequipa, Peru
| |
Collapse
|
20
|
Ferreira BI, Santos B, Link W, De Sousa-Coelho AL. Tribbles Pseudokinases in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13112825. [PMID: 34198908 PMCID: PMC8201230 DOI: 10.3390/cancers13112825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
The Tribbles family of pseudokinases controls a wide number of processes during cancer on-set and progression. However, the exact contribution of each of the three family members is still to be defined. Their function appears to be context-dependent as they can act as oncogenes or tumor suppressor genes. They act as scaffolds modulating the activity of several signaling pathways involved in different cellular processes. In this review, we discuss the state-of-knowledge for TRIB1, TRIB2 and TRIB3 in the development and progression of colorectal cancer. We take a perspective look at the role of Tribbles proteins as potential biomarkers and therapeutic targets. Specifically, we chronologically systematized all available articles since 2003 until 2020, for which Tribbles were associated with colorectal cancer human samples or cell lines. Herein, we discuss: (1) Tribbles amplification and overexpression; (2) the clinical significance of Tribbles overexpression; (3) upstream Tribbles gene and protein expression regulation; (4) Tribbles pharmacological modulation; (5) genetic modulation of Tribbles; and (6) downstream mechanisms regulated by Tribbles; establishing a comprehensive timeline, essential to better consolidate the current knowledge of Tribbles' role in colorectal cancer.
Collapse
Affiliation(s)
- Bibiana I. Ferreira
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Bruno Santos
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Serviço de Anatomia Patológica, Centro Hospital Universitário do Algarve (CHUA), 8000-386 Faro, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Correspondence: (W.L.); (A.L.D.S.-C.)
| | - Ana Luísa De Sousa-Coelho
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: (W.L.); (A.L.D.S.-C.)
| |
Collapse
|
21
|
Buch-Larsen SC, Hendriks IA, Lodge JM, Rykær M, Furtwängler B, Shishkova E, Westphall MS, Coon JJ, Nielsen ML. Mapping Physiological ADP-Ribosylation Using Activated Ion Electron Transfer Dissociation. Cell Rep 2021; 32:108176. [PMID: 32966781 PMCID: PMC7508052 DOI: 10.1016/j.celrep.2020.108176] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/25/2020] [Accepted: 08/31/2020] [Indexed: 11/26/2022] Open
Abstract
ADP-ribosylation (ADPr) is a post-translational modification that plays pivotal roles in a wide range of cellular processes. Mass spectrometry (MS)-based analysis of ADPr under physiological conditions, without relying on genetic or chemical perturbation, has been hindered by technical limitations. Here, we describe the applicability of activated ion electron transfer dissociation (AI-ETD) for MS-based proteomics analysis of physiological ADPr using our unbiased Af1521 enrichment strategy. To benchmark AI-ETD, we profile 9,000 ADPr peptides mapping to >5,000 unique ADPr sites from a limited number of cells exposed to oxidative stress and identify 120% and 28% more ADPr peptides compared to contemporary strategies using ETD and electron-transfer higher-energy collisional dissociation (EThcD), respectively. Under physiological conditions, AI-ETD identifies 450 ADPr sites on low-abundant proteins, including in vivo cysteine modifications on poly(ADP-ribosyl)polymerase (PARP) 8 and tyrosine modifications on PARP14, hinting at specialist enzymatic functions for these enzymes. Collectively, our data provide insights into the physiological regulation of ADPr.
Collapse
Affiliation(s)
- Sara C Buch-Larsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jean M Lodge
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Martin Rykær
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Benjamin Furtwängler
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | | | - Joshua J Coon
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
22
|
Zhu J, Hao S, Zhang X, Qiu J, Xuan Q, Ye L. Integrated Bioinformatics Analysis Exhibits Pivotal Exercise-Induced Genes and Corresponding Pathways in Malignant Melanoma. Front Genet 2021; 11:637320. [PMID: 33679872 PMCID: PMC7930906 DOI: 10.3389/fgene.2020.637320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Malignant melanoma represents a sort of neoplasm deriving from melanocytes or cells developing from melanocytes. The balance of energy and energy-associated body composition and body mass index could be altered by exercise, thereby directly affecting the microenvironment of neoplasm. However, few studies have examined the mechanism of genes induced by exercise and the pathways involved in melanoma. This study used three separate datasets to perform comprehensive bioinformatics analysis and then screened the probable genes and pathways in the process of exercise-promoted melanoma. In total, 1,627 differentially expressed genes (DEGs) induced by exercise were recognized. All selected genes were largely enriched in NF-kappa B, Chemokine signaling pathways, and the immune response after gene set enrichment analysis. The protein-protein interaction network was applied to excavate DEGs and identified the most relevant and pivotal genes. The top 6 hub genes (Itgb2, Wdfy4, Itgam, Cybb, Mmp2, and Parp14) were identified, and importantly, 5 hub genes (Itgb2, Wdfy4, Itgam, Cybb, and Parp14) were related to weak disease-free survival and overall survival (OS). In conclusion, our findings demonstrate the prognostic value of exercise-induced genes and uncovered the pathways of these genes in melanoma, implying that these genes might act as prognostic biomarkers for melanoma.
Collapse
Affiliation(s)
- Jun Zhu
- Administrative Office, Shanghai Basilica Clinic, Shanghai, China
| | - Suyu Hao
- Shuangwu Information Technical Company Ltd., Shanghai, China
| | - Xinyue Zhang
- School of Education, Hangzhou Normal University, Hangzhou, China
| | - Jingyue Qiu
- School of Physical Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Qin Xuan
- School of Sports Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Liping Ye
- Department of Clinical Nursing, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Poltronieri P, Celetti A, Palazzo L. Mono(ADP-ribosyl)ation Enzymes and NAD + Metabolism: A Focus on Diseases and Therapeutic Perspectives. Cells 2021; 10:cells10010128. [PMID: 33440786 PMCID: PMC7827148 DOI: 10.3390/cells10010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Mono(ADP-ribose) transferases and mono(ADP-ribosyl)ating sirtuins use NAD+ to perform the mono(ADP-ribosyl)ation, a simple form of post-translational modification of proteins and, in some cases, of nucleic acids. The availability of NAD+ is a limiting step and an essential requisite for NAD+ consuming enzymes. The synthesis and degradation of NAD+, as well as the transport of its key intermediates among cell compartments, play a vital role in the maintenance of optimal NAD+ levels, which are essential for the regulation of NAD+-utilizing enzymes. In this review, we provide an overview of the current knowledge of NAD+ metabolism, highlighting the functional liaison with mono(ADP-ribosyl)ating enzymes, such as the well-known ARTD10 (also named PARP10), SIRT6, and SIRT7. To this aim, we discuss the link of these enzymes with NAD+ metabolism and chronic diseases, such as cancer, degenerative disorders and aging.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni 7, 73100 Lecce, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Tommaso de Amicis 95, 80145 Naples, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| |
Collapse
|
24
|
Tang Y, Liu J, Wang Y, Yang L, Han B, Zhang Y, Bai Y, Shen L, Li M, Jiang T, Ye Q, Yu X, Huang R, Zhang Z, Xu Y, Yao H. PARP14 inhibits microglial activation via LPAR5 to promote post-stroke functional recovery. Autophagy 2020; 17:2905-2922. [PMID: 33317392 DOI: 10.1080/15548627.2020.1847799] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stroke is a major public health problem leading to high rates of death and disability worldwide, but no effective pharmacological therapy is currently available except for the use of PLAT (plasminogen activator, tissue). Here we show that PARP14 (poly (ADP-ribose) polymerase family, member 14) level was significantly increased in the peri-infarct zone of photothrombotic stroke (PT) mice. Genetic knockdown and pharmacological inhibition of PARP14 aggravated functional impairment and increased infarct volume in PT mice, while overexpression of PARP14 displayed the opposite effects. Furthermore, PARP14 was abundant in microglia, and downregulation of PARP14 increased post-stroke microglial activation, whereas overexpression of PARP14 alleviated microglial activation, possibly through microglial macroautophagy/autophagy modulation. Mechanistically, overexpression of PARP14 suppressed Lpar5 (lysophosphatidic acid receptor 5) gene transcription to inhibit microglial activation post stroke. Taken together, PARP14 is a stroke-induced signal that restricts microglial activation and promotes functional recovery, and can serve as a novel target to develop new therapeutic agents for stroke. Moreover, these findings may be conducive to proper use of various PARP inhibitors.Abbreviations: 3-MA: 3-methyladenine; AIF1/Iba-1: allograft inflammatory factor 1; CNS: central nervous system; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; ELISA: enzyme-linked immunosorbent assay; FBS: fetal bovine serum; GFAP: glial fibrillary acidic protein; IL1B/IL-1β: interleukin 1 beta; IL6/IL-6: interleukin 6; LPAR5: lysophosphatidic acid receptor 5; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; NOS2/iNOS: nitric oxide synthase 2, inducible; OGD: oxygen glucose deprivation; PAR: polymer of poly (ADP ribose); PARP: poly (ADP-ribose) polymerase family; PBS: phosphate-buffered saline; PLAT/tPA: plasminogen activator, tissue; PT: photothrombotic stroke; qPCR: quantitative polymerase chain reaction; Rap: rapamycin; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; SQSTM1: sequestosome 1; TNF/TNF-α: tumor necrosis factor.
Collapse
Affiliation(s)
- Ying Tang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jinchang Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Yu Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Li Yang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ling Shen
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Mingyue Li
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Teng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Qingqing Ye
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiaoyu Yu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rongrong Huang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
25
|
Ostasov P, Robertson H, Piazza P, Datta A, Apperley J, Houdova L, Lysak D, Holubova M, Tesarova K, Caputo VS, Barozzi I. Evolution of Advanced Chronic Lymphoid Leukemia Unveiled by Single-Cell Transcriptomics: A Case Report. Front Oncol 2020; 10:584607. [PMID: 33194728 PMCID: PMC7664833 DOI: 10.3389/fonc.2020.584607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Genetic and transcriptional heterogeneity of Chronic lymphocytic leukaemia (CLL) limits prevention of disease progression. Longitudinal single-cell transcriptomics represents the state-of-the-art method to profile the disease heterogeneity at diagnosis and to inform about disease evolution. Here, we apply single-cell RNA-seq to a CLL case, sampled at diagnosis and relapse, that was treated with FCR (Fludarabine, Cyclophosphamide, Rituximab) and underwent a dramatic decrease in CD19 expression during disease progression. Computational analyses revealed a major switch in clones’ dominance during treatment. The clone that expanded at relapse showed 17p and 3p chromosomal deletions, and up-regulation of pathways related to motility, cytokine signaling and antigen presentation. Single-cell RNA-seq uniquely revealed that this clone was already present at low frequency at diagnosis, and it displays feature of plasma cell differentiation, consistent with a more aggressive phenotype. This study shows the benefit of single-cell profiling of CLL heterogeneity at diagnosis, to identify clones that might otherwise not be recognized and to determine the best treatment options.
Collapse
Affiliation(s)
- Pavel Ostasov
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Henry Robertson
- Imperial BRC Genomics Facility, Imperial College London, London, United Kingdom
| | - Paolo Piazza
- Imperial BRC Genomics Facility, Imperial College London, London, United Kingdom
| | - Avik Datta
- Imperial BRC Genomics Facility, Imperial College London, London, United Kingdom
| | - Jane Apperley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Lucie Houdova
- NTIS, Faculty of Applied Science, University of West Bohemia, Pilsen, Czechia
| | - Daniel Lysak
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Monika Holubova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Katerina Tesarova
- Faculty of Medicine in Pilsen, Institute of Medical Genetics, Charles University in Prague and Faculty Hospital, Pilsen, Czechia
| | - Valentina S Caputo
- Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Nastasi C, Mannarino L, D’Incalci M. DNA Damage Response and Immune Defense. Int J Mol Sci 2020; 21:E7504. [PMID: 33053746 PMCID: PMC7588887 DOI: 10.3390/ijms21207504] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
DNA damage is the cause of numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. The DNA damage response (DDR), in turn, coordinates DNA damage checkpoint activation and promotes the removal of DNA lesions. In recent years, several studies have shown how the DDR and the immune system are tightly connected, revealing an important crosstalk between the two of them. This interesting interplay has opened up new perspectives in clinical studies for immunological diseases as well as for cancer treatment. In this review, we provide an overview, from cellular to molecular pathways, on how DDR and the immune system communicate and share the crucial commitment of maintaining the genomic fitness.
Collapse
Affiliation(s)
- Claudia Nastasi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | | | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| |
Collapse
|
27
|
Feijs KL, Cooper CD, Žaja R. The Controversial Roles of ADP-Ribosyl Hydrolases MACROD1, MACROD2 and TARG1 in Carcinogenesis. Cancers (Basel) 2020; 12:E604. [PMID: 32151005 PMCID: PMC7139919 DOI: 10.3390/cancers12030604] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 01/12/2023] Open
Abstract
Post-translational modifications (PTM) of proteins are crucial for fine-tuning a cell's response to both intracellular and extracellular cues. ADP-ribosylation is a PTM, which occurs in two flavours: modification of a target with multiple ADP-ribose moieties (poly(ADP-ribosyl)ation or PARylation) or with only one unit (MARylation), which are added by the different enzymes of the PARP family (also known as the ARTD family). PARylation has been relatively well-studied, particularly in the DNA damage response. This has resulted in the development of PARP inhibitors such as olaparib, which are increasingly employed in cancer chemotherapeutic approaches. Despite the fact that the majority of PARP enzymes catalyse MARylation, MARylation is not as well understood as PARylation. MARylation is a dynamic process: the enzymes reversing intracellular MARylation of acidic amino acids (MACROD1, MACROD2, and TARG1) were discovered in 2013. Since then, however, little information has been published about their physiological function. MACROD1, MACROD2, and TARG1 have a 'macrodomain' harbouring the catalytic site, but no other domains have been identified. Despite the lack of information regarding their cellular roles, there are a number of studies linking them to cancer. However, some of these publications oppose each other, some rely on poorly-characterised antibodies, or on aberrant localisation of overexpressed rather than native protein. In this review, we critically assess the available literature on a role for the hydrolases in cancer and find that, currently, there is limited evidence for a role for MACROD1, MACROD2, or TARG1 in tumorigenesis.
Collapse
Affiliation(s)
- Karla L.H. Feijs
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany;
| | - Christopher D.O. Cooper
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield West Yorkshire HD3 4AP, UK;
| | - Roko Žaja
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany;
| |
Collapse
|
28
|
Tang L, Chen R, Xu X. Synthetic lethality: A promising therapeutic strategy for hepatocellular carcinoma. Cancer Lett 2020; 476:120-128. [PMID: 32070778 DOI: 10.1016/j.canlet.2020.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC), the main cause of liver cancer-related death, is one of the main cancers in terms of incidence and mortality. However, HCC is difficult to target and develops strong drug resistance. Therefore, a new treatment strategy is urgently needed. The clinical application of the concept of synthetic lethality in recent years provides a new therapeutic direction for the accurate treatment of HCC. Here, we introduce the concept of synthetic lethality, the screening used to study synthetic lethality, and the identified and potential genetic interactions that induce synthetic lethality in HCC. In addition, we propose opportunities and challenges for translating synthetic lethal interactions to the clinical treatment of HCC.
Collapse
Affiliation(s)
- Linsong Tang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| |
Collapse
|
29
|
Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M. The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev 2020; 34:341-359. [PMID: 32029454 PMCID: PMC7050484 DOI: 10.1101/gad.334425.119] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Poly-adenosine diphosphate-ribose polymerases (PARPs) promote ADP-ribosylation, a highly conserved, fundamental posttranslational modification (PTM). PARP catalytic domains transfer the ADP-ribose moiety from NAD+ to amino acid residues of target proteins, leading to mono- or poly-ADP-ribosylation (MARylation or PARylation). This PTM regulates various key biological and pathological processes. In this review, we focus on the roles of the PARP family members in inflammation and host-pathogen interactions. Here we give an overview the current understanding of the mechanisms by which PARPs promote or suppress proinflammatory activation of macrophages, and various roles PARPs play in virus infections. We also demonstrate how innovative technologies, such as proteomics and systems biology, help to advance this research field and describe unanswered questions.
Collapse
Affiliation(s)
- Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Catherine M Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Shin Mukai
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Human Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health, Moscow 119146, Russian Federation
| |
Collapse
|
30
|
Pojero F, Poma P, Spanò V, Montalbano A, Barraja P, Notarbartolo M. Targeting multiple myeloma with natural polyphenols. Eur J Med Chem 2019; 180:465-485. [DOI: 10.1016/j.ejmech.2019.07.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
|
31
|
Mei H, Han J, Fustero S, Medio-Simon M, Sedgwick DM, Santi C, Ruzziconi R, Soloshonok VA. Fluorine-Containing Drugs Approved by the FDA in 2018. Chemistry 2019; 25:11797-11819. [PMID: 31099931 DOI: 10.1002/chem.201901840] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Over the last two decades, fluorine substitution has become one of the essential structural traits in modern pharmaceuticals. Thus, about half of the most successful drugs (blockbuster drugs) contain fluorine atoms. In this review, we profile 17 fluorine-containing drugs approved by the food and drug administration (FDA) in 2018. The newly approved pharmaceuticals feature several types of aromatic F and CF3 , as well as aliphatic (CF2 ) substitution, offering advances in the treatment of various diseases, including cancer, HIV, malarial and smallpox infections.
Collapse
Affiliation(s)
- Haibo Mei
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.,Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Mercedes Medio-Simon
- Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.,Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Daniel M Sedgwick
- Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.,Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Claudio Santi
- Department of Phrmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Renzo Ruzziconi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|