1
|
Toni E, Ayatollahi H, Abbaszadeh R, Fotuhi Siahpirani A. Machine Learning Techniques for Predicting Drug-Related Side Effects: A Scoping Review. Pharmaceuticals (Basel) 2024; 17:795. [PMID: 38931462 PMCID: PMC11206653 DOI: 10.3390/ph17060795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Drug safety relies on advanced methods for timely and accurate prediction of side effects. To tackle this requirement, this scoping review examines machine-learning approaches for predicting drug-related side effects with a particular focus on chemical, biological, and phenotypical features. METHODS This was a scoping review in which a comprehensive search was conducted in various databases from 1 January 2013 to 31 December 2023. RESULTS The results showed the widespread use of Random Forest, k-nearest neighbor, and support vector machine algorithms. Ensemble methods, particularly random forest, emphasized the significance of integrating chemical and biological features in predicting drug-related side effects. CONCLUSIONS This review article emphasized the significance of considering a variety of features, datasets, and machine learning algorithms for predicting drug-related side effects. Ensemble methods and Random Forest showed the best performance and combining chemical and biological features improved prediction. The results suggested that machine learning techniques have some potential to improve drug development and trials. Future work should focus on specific feature types, selection techniques, and graph-based methods for even better prediction.
Collapse
Affiliation(s)
- Esmaeel Toni
- Medical Informatics, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran 14496-14535;
| | - Haleh Ayatollahi
- Medical Informatics, Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran 1996-713883
| | - Reza Abbaszadeh
- Pediatric Cardiology, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran 19956-14331;
| | - Alireza Fotuhi Siahpirani
- Systems Biology and Bioinformatics, Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran 14176-14411;
| |
Collapse
|
2
|
Choo SM, Sartori D, Lee SC, Yang HC, Syed-Abdul S. Data-Driven Identification of Factors That Influence the Quality of Adverse Event Reports: 15-Year Interpretable Machine Learning and Time-Series Analyses of VigiBase and QUEST. JMIR Med Inform 2024; 12:e49643. [PMID: 38568722 PMCID: PMC11024759 DOI: 10.2196/49643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/10/2023] [Accepted: 02/24/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The completeness of adverse event (AE) reports, crucial for assessing putative causal relationships, is measured using the vigiGrade completeness score in VigiBase, the World Health Organization global database of reported potential AEs. Malaysian reports have surpassed the global average score (approximately 0.44), achieving a 5-year average of 0.79 (SD 0.23) as of 2019 and approaching the benchmark for well-documented reports (0.80). However, the contributing factors to this relatively high report completeness score remain unexplored. OBJECTIVE This study aims to explore the main drivers influencing the completeness of Malaysian AE reports in VigiBase over a 15-year period using vigiGrade. A secondary objective was to understand the strategic measures taken by the Malaysian authorities leading to enhanced report completeness across different time frames. METHODS We analyzed 132,738 Malaysian reports (2005-2019) recorded in VigiBase up to February 2021 split into historical International Drug Information System (INTDIS; n=63,943, 48.17% in 2005-2016) and newer E2B (n=68,795, 51.83% in 2015-2019) format subsets. For machine learning analyses, we performed a 2-stage feature selection followed by a random forest classifier to identify the top features predicting well-documented reports. We subsequently applied tree Shapley additive explanations to examine the magnitude, prevalence, and direction of feature effects. In addition, we conducted time-series analyses to evaluate chronological trends and potential influences of key interventions on reporting quality. RESULTS Among the analyzed reports, 42.84% (56,877/132,738) were well documented, with an increase of 65.37% (53,929/82,497) since 2015. Over two-thirds (46,186/68,795, 67.14%) of the Malaysian E2B reports were well documented compared to INTDIS reports at 16.72% (10,691/63,943). For INTDIS reports, higher pharmacovigilance center staffing was the primary feature positively associated with being well documented. In recent E2B reports, the top positive features included reaction abated upon drug dechallenge, reaction onset or drug use duration of <1 week, dosing interval of <1 day, reports from public specialist hospitals, reports by pharmacists, and reaction duration between 1 and 6 days. In contrast, reports from product registration holders and other health care professionals and reactions involving product substitution issues negatively affected the quality of E2B reports. Multifaceted strategies and interventions comprising policy changes, continuity of education, and human resource development laid the groundwork for AE reporting in Malaysia, whereas advancements in technological infrastructure, pharmacovigilance databases, and reporting tools concurred with increases in both the quantity and quality of AE reports. CONCLUSIONS Through interpretable machine learning and time-series analyses, this study identified key features that positively or negatively influence the completeness of Malaysian AE reports and unveiled how Malaysia has developed its pharmacovigilance capacity via multifaceted strategies and interventions. These findings will guide future work in enhancing pharmacovigilance and public health.
Collapse
Affiliation(s)
- Sim Mei Choo
- Centre of Compliance & Quality Control, National Pharmaceutical Regulatory Agency, Petaling Jaya, Malaysia
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | | | - Sing Chet Lee
- Centre of Compliance & Quality Control, National Pharmaceutical Regulatory Agency, Petaling Jaya, Malaysia
| | - Hsuan-Chia Yang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shabbir Syed-Abdul
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
- School of Gerontology and Long-Term Care, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Gonzalez-Hernandez G, Krallinger M, Muñoz M, Rodriguez-Esteban R, Uzuner Ö, Hirschman L. Challenges and opportunities for mining adverse drug reactions: perspectives from pharma, regulatory agencies, healthcare providers and consumers. Database (Oxford) 2022; 2022:baac071. [PMID: 36050787 PMCID: PMC9436770 DOI: 10.1093/database/baac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Monitoring drug safety is a central concern throughout the drug life cycle. Information about toxicity and adverse events is generated at every stage of this life cycle, and stakeholders have a strong interest in applying text mining and artificial intelligence (AI) methods to manage the ever-increasing volume of this information. Recognizing the importance of these applications and the role of challenge evaluations to drive progress in text mining, the organizers of BioCreative VII (Critical Assessment of Information Extraction in Biology) convened a panel of experts to explore 'Challenges in Mining Drug Adverse Reactions'. This article is an outgrowth of the panel; each panelist has highlighted specific text mining application(s), based on their research and their experiences in organizing text mining challenge evaluations. While these highlighted applications only sample the complexity of this problem space, they reveal both opportunities and challenges for text mining to aid in the complex process of drug discovery, testing, marketing and post-market surveillance. Stakeholders are eager to embrace natural language processing and AI tools to help in this process, provided that these tools can be demonstrated to add value to stakeholder workflows. This creates an opportunity for the BioCreative community to work in partnership with regulatory agencies, pharma and the text mining community to identify next steps for future challenge evaluations.
Collapse
Affiliation(s)
- Graciela Gonzalez-Hernandez
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., West Hollywood, CA 90069, USA
| | - Martin Krallinger
- Life Sciences—Text Mining, Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - Monica Muñoz
- Division of Pharmacovigilance, Office of Surveillance and Epidemiology, Center of Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Raul Rodriguez-Esteban
- Roche Innovation Center Basel, Roche Pharmaceuticals, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Özlem Uzuner
- Information Sciences and Technology, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA
| | - Lynette Hirschman
- MITRE Labs, The MITRE Corporation, 202 Burlington Rd., Bedford, MA 01730, USA
| |
Collapse
|
4
|
Soldatos TG, Kim S, Schmidt S, Lesko LJ, Jackson DB. Advancing drug safety science by integrating molecular knowledge with post-marketing adverse event reports. CPT Pharmacometrics Syst Pharmacol 2022; 11:540-555. [PMID: 35143713 PMCID: PMC9124355 DOI: 10.1002/psp4.12765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Promising drug development efforts may frequently fail due to unintended adverse reactions. Several methods have been developed to analyze such data, aiming to improve pharmacovigilance and drug safety. In this work, we provide a brief review of key directions to quantitatively analyzing adverse events and explore the potential of augmenting these methods using additional molecular data descriptors. We argue that molecular expansion of adverse event data may provide a path to improving the insights gained through more traditional pharmacovigilance approaches. Examples include the ability to assess statistical relevance with respect to underlying biomolecular mechanisms, the ability to generate plausible causative hypotheses and/or confirmation where possible, the ability to computationally study potential clinical trial designs and/or results, as well as the further provision of advanced features incorporated in innovative methods, such as machine learning. In summary, molecular data expansion provides an elegant way to extend mechanistic modeling, systems pharmacology, and patient‐centered approaches for the assessment of drug safety. We anticipate that such advances in real‐world data informatics and outcome analytics will help to better inform public health, via the improved ability to prospectively understand and predict various types of drug‐induced molecular perturbations and adverse events.
Collapse
Affiliation(s)
| | - Sarah Kim
- Department of PharmaceuticsCenter for Pharmacometrics and Systems PharmacologyUniversity of FloridaOrlandoFloridaUSA
| | - Stephan Schmidt
- Department of PharmaceuticsCenter for Pharmacometrics and Systems PharmacologyUniversity of FloridaOrlandoFloridaUSA
| | - Lawrence J. Lesko
- Department of PharmaceuticsCenter for Pharmacometrics and Systems PharmacologyUniversity of FloridaOrlandoFloridaUSA
| | | |
Collapse
|
5
|
De Pretis F, van Gils M, Forsberg MM. A smart hospital-driven approach to precision pharmacovigilance. Trends Pharmacol Sci 2022; 43:473-481. [PMID: 35490032 DOI: 10.1016/j.tips.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 01/03/2023]
Abstract
Researchers, regulatory agencies, and the pharmaceutical industry are moving towards precision pharmacovigilance as a comprehensive framework for drug safety assessment, at the service of the individual patient, by clustering specific risk groups in different databases. This article explores its implementation by focusing on: (i) designing a new data collection infrastructure, (ii) exploring new computational methods suitable for drug safety data, and (iii) providing a computer-aided framework for distributed clinical decisions with the aim of compiling a personalized information leaflet with specific reference to a drug's risks and adverse drug reactions. These goals can be achieved by using 'smart hospitals' as the principal data sources and by employing methods of precision medicine and medical statistics to supplement current public health decisions.
Collapse
Affiliation(s)
- Francesco De Pretis
- VTT Technical Research Centre of Finland Ltd, 70210 Kuopio, Finland; Department of Communication and Economics, University of Modena and Reggio Emilia, 42121 Reggio Emilia, Italy.
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Markus M Forsberg
- VTT Technical Research Centre of Finland Ltd, 70210 Kuopio, Finland; School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
6
|
Gavriilidis GI, Dimitriadis VK, Jaulent MC, Natsiavas P. Identifying Actionability as a Key Factor for the Adoption of 'Intelligent' Systems for Drug Safety: Lessons Learned from a User-Centred Design Approach. Drug Saf 2021; 44:1165-1178. [PMID: 34674190 PMCID: PMC8553681 DOI: 10.1007/s40264-021-01103-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2021] [Indexed: 12/02/2022]
Abstract
Introduction Information technology (IT) plays an important role in the healthcare landscape via the increasing digitization of medical data and the use of modern computational paradigms such as machine learning (ML) and knowledge graphs (KGs). These ‘intelligent’ technical paradigms provide a new digital ‘toolkit’ supporting drug safety and healthcare processes, including ‘active pharmacovigilance’. While these technical paradigms are promising, intelligent systems (ISs) are not yet widely adopted by pharmacovigilance (PV) stakeholders, namely the pharma industry, academia/research community, drug safety monitoring organizations, regulatory authorities, and healthcare institutions. The limitations obscuring the integration of ISs into PV activities are multifaceted, involving technical, legal and medical hurdles, and thus require further elucidation. Objective We dissect the abovementioned limitations by describing the lessons learned during the design and implementation of the PVClinical platform, a web platform aiming to support the investigation of potential adverse drug reactions (ADRs), emphasizing the use of knowledge engineering (KE) as its main technical paradigm. Results To this end, we elaborate on the related ‘business processes’ (i.e. operational processes) and ‘user goals’ identified as part of the PVClinical platform design process based on Design Thinking principles. We also elaborate on key challenges restricting the adoption of such ISs and their integration in the clinical setting and beyond. Conclusions We highlight the fact that beyond providing analytics and useful statistics to the end user, ‘actionability’ has emerged as the operational priority identified through the whole process. Furthermore, we focus on the needs for valid, reproducible, explainable and human-interpretable results, stressing the need to emphasize on usability.
Collapse
Affiliation(s)
- George I. Gavriilidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 6th Km. Charilaou, Thermi Road, PO Box 60361, 57001 Thermi, Thessaloniki Greece
| | - Vlasios K. Dimitriadis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 6th Km. Charilaou, Thermi Road, PO Box 60361, 57001 Thermi, Thessaloniki Greece
| | - Marie-Christine Jaulent
- Sorbonne Université, INSERM, Univ Paris 13, Laboratoire d’Informatique Médicale et d’Ingénierie des Connaissances pour la e-Santé, LIMICS, 75006 Paris, France
| | - Pantelis Natsiavas
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 6th Km. Charilaou, Thermi Road, PO Box 60361, 57001 Thermi, Thessaloniki Greece
- Sorbonne Université, INSERM, Univ Paris 13, Laboratoire d’Informatique Médicale et d’Ingénierie des Connaissances pour la e-Santé, LIMICS, 75006 Paris, France
| |
Collapse
|
7
|
Bate A, Stegmann JU. Safety of medicines and vaccines - building next generation capability. Trends Pharmacol Sci 2021; 42:1051-1063. [PMID: 34635346 DOI: 10.1016/j.tips.2021.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
The systematic safety surveillance of real-world use of medicinal products and related activities (pharmacovigilance) started in earnest as a scientific field only in the 1960s. While developments have occurred over the past 50 years, adding to its complexity and sophistication, the extent to which some of these advances have positively impacted the capability for ensuring patient safety is questionable. We review how the conduct of safety surveillance has changed, highlight recent scientific advances, and argue how they need to be harnessed to enhance pharmacovigilance in the future. Specifically, we describe five changes that we believe should and will need to happen globally in the coming years: (i) better, more diverse data used for safety; (ii) the switch from manual activities to automation; (iii) removal of limited value, extraneous transactional activities and replacement with sharpened focus on scientific efforts to improve patient safety; (iv) patient-involved and focussed safety; and (v) personalised safety.
Collapse
Affiliation(s)
- Andrew Bate
- GSK, London, UK; London School of Hygiene and Tropical Medicine, University of London, London, UK; New York University, New York, NY, USA.
| | | |
Collapse
|
8
|
Lamy JB. A data science approach to drug safety: Semantic and visual mining of adverse drug events from clinical trials of pain treatments. Artif Intell Med 2021; 115:102074. [PMID: 34001324 DOI: 10.1016/j.artmed.2021.102074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Clinical trials are the basis of Evidence-Based Medicine. Trial results are reviewed by experts and consensus panels for producing meta-analyses and clinical practice guidelines. However, reviewing these results is a long and tedious task, hence the meta-analyses and guidelines are not updated each time a new trial is published. Moreover, the independence of experts may be difficult to appraise. On the contrary, in many other domains, including medical risk analysis, the advent of data science, big data and visual analytics allowed moving from expert-based to fact-based knowledge. Since 12 years, many trial results are publicly available online in trial registries. Nevertheless, data science methods have not yet been applied widely to trial data. In this paper, we present a platform for analyzing the safety events reported during clinical trials and published in trial registries. This platform is based on an ontological model including 582 trials on pain treatments, and uses semantic web technologies for querying this dataset at various levels of granularity. It also relies on a 26-dimensional flower glyph for the visualization of the Adverse Drug Events (ADE) rates in 13 categories and 2 levels of seriousness. We illustrate the interest of this platform through several use cases and we were able to find back conclusions that were initially found during meta-analyses. The platform was presented to four experts in drug safety, and is publicly available online, with the ontology of pain treatment ADE.
Collapse
Affiliation(s)
- Jean-Baptiste Lamy
- Université Sorbonne Paris Nord, LIMICS, Sorbonne Université, INSERM, UMR 1142, F-93000 Bobigny, France; Laboratoire de Recherche en Informatique, CNRS/Université Paris-Sud/Université Paris-Saclay, Orsay, France.
| |
Collapse
|
9
|
Malec SA, Boyce RD. Exploring Novel Computable Knowledge in Structured Drug Product Labels. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2020; 2020:403-412. [PMID: 32477661 PMCID: PMC7233092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper introduces a database derived from Structured Product Labels (SPLs). SPLs are legally mandated snapshots containing information on all drugs released to market in the United States. Since publication is not required for pre-trial findings, we hypothesize that SPLs may contain knowledge absent in the literature, and hence "novel." SemMedDB is an existing database of computable knowledge derived from the literature. If SPL content could be similarly transformed, novel clinically relevant assertions in the SPLs could be identified through comparison with SemMedDB. After we derive a database (containing 4,297,481 assertions), we compare the extracted content with SemMedDB for recent FDA drug approvals. We find that novelty between the SPLs and the literature is nuanced, due to the redundancy of SPLs. Highlighting areas for improvement and future work, we conclude that SPLs contain a wealth of novel knowledge relevant to research and complementary to the literature.
Collapse
Affiliation(s)
- Scott A Malec
- University of Pittsburgh Department of Biomedical Informatics, Pittsburgh, PA
| | - Richard D Boyce
- University of Pittsburgh Department of Biomedical Informatics, Pittsburgh, PA
| |
Collapse
|