1
|
Solomatina ES, Nishkomaeva EN, Kovaleva AV, Tvorogova AV, Potashnikova DM, Saidova AA. Parameters of Cell Death and Proliferation of Prostate Cancer Cells with Altered Expression of Myosin 1C Isoforms. DOKL BIOCHEM BIOPHYS 2024; 514:16-22. [PMID: 38189886 PMCID: PMC11021239 DOI: 10.1134/s1607672923700588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 01/09/2024]
Abstract
Myosin 1C is a monomeric myosin motor with a truncated tail domain. Such motors are referred as slow "tension sensors." Three isoforms of myosin 1C differ in short N-termed amino acid sequences, the functional differences between isoforms have not been elucidated. Myosin 1C isoform A was described as a diagnostic marker for prostate cancer, but its role in tumor transformation remains unknown. Based on data on the functions of myosin 1C, we hypothesized the potential role of myosin 1C isoforms in maintaining the tumor phenotype of prostate cancer cells. In our work, we showed that a decrease in the expression level of myosin 1C isoform C leads to an increase in the proliferative activity of prostate tumor cells.
Collapse
Affiliation(s)
- E S Solomatina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E N Nishkomaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A V Kovaleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - A V Tvorogova
- Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - D M Potashnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A A Saidova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Faculty of Biology, Moscow State University, Moscow, Russia.
| |
Collapse
|
2
|
Singh B, Patnaik C, Bahadur R, Gandhi M, De A, Srivastava R. Synthesis and degradation mechanism of renally excretable gold core-shell nanoparticles for combined photothermal and photodynamic therapy. NANOSCALE 2023; 15:1273-1288. [PMID: 36541678 DOI: 10.1039/d2nr05283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photothermal therapy (PTT) has emerged as a very potent therapeutic approach in the treatment of tumors. Gold nanoparticles have gained considerable scientific interest as a photosensitizer due to their absorbance in the near-infrared regions. However, their biodegradation and excretion from the body is a challenge. Various biodegradable systems consisting of liposomes and polymers have been synthesized, but their precise manufacturing and decomposition mechanisms have not yet been explored. Using zein nanoparticles as a template, we have fabricated a glutathione-functionalized gold core shell type of formulation. The scalability of the one-step seedless gold coating process is also reported. The synthesis procedure of these tunable nanoparticles is understood with TEM. The thermal degradation of the material under the physiological conditions is thoroughly examined using UV and TEM. In vitro PTT effectiveness on breast cancer cells is assessed after an extensive in vitro toxicity research. The mechanism of cell death is studied using ROS and cell cycle analysis. The material exhibited good efficacy as a PTT agent in mice and showed non-toxicity up to 14 days. The renal clearance study of the material in mice shows its disintegration into renal clearable minute gold seeds. All the findings suggest biodegradable glutathione-functionalized gold core-shell nanoparticles as potential photothermal cancer treatment agents.
Collapse
Affiliation(s)
- Barkha Singh
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
| | - Chetna Patnaik
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
| | - Rohan Bahadur
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
| | - Mayuri Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India.
| |
Collapse
|
3
|
Suleimenov M, Bekbayev S, Ten M, Suleimenova N, Tlegenova M, Nurmagambetova A, Kauanova S, Vorobjev I. Bcl-xL activity influences outcome of the mitotic arrest. Front Pharmacol 2022; 13:933112. [PMID: 36188556 PMCID: PMC9520339 DOI: 10.3389/fphar.2022.933112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubule-targeting (MT) drugs taxanes and vinca alkaloids are widely used as chemotherapeutic agents against different tumors for more than 30 years because of their ability to block mitotic progression by disrupting the mitotic spindle and activating the spindle assembly checkpoint (SAC) for a prolonged period of time. However, responses to mitotic arrest are different—some cells die during mitotic arrest, whereas others undergo mitotic slippage and survive becoming able for proliferation. Using normal fibroblasts and several cancer cell types we determined two critical doses, T1 and T2, of mitotic inhibitors (nocodazole, Taxol, and vinorelbine). T1 is the maximal dose cells can tolerate undergoing normal division, and T2 is the minimal mitostatic dose, wherein > 90% of mitotic cells are arrested in mitosis. In all studied cell lines after treatment with mitotic inhibitors in a dose above T2 cells had entered mitosis either die or undergo mitotic slippage. We show that for all three drugs used cell death during mitotic arrest and after slippage proceeded via mitochondria-dependent apoptosis. We determined two types of cancer cells: sensitive to mitotic arrest, that is, undergoing death in mitosis (DiM) frequently, and resistant to mitotic arrest, that is, undergoing mitotic slippage followed by prolonged survival. We then determined that inhibition of Bcl-xL, but not other anti-apoptotic proteins of the Bcl-2 group that regulate MOMP, make resistant cells susceptible to DiM induced by mitotic inhibitors. Combined treatment with MT drugs and highly specific Bcl-xL inhibitors A-1155643 or A-1331852 allows achieving 100% DiM in a time significantly shorter than maximal duration of mitotic arrest in all types of cultured cells tested. We further examined efficacy of sequential treatment of cultured cells using mitotic inhibitors followed by inhibitors of Bcl-xL anti-apoptotic protein and for the first time show that sensitivity to Bcl-xL inhibitors rapidly declines after mitotic slippage. Thus sequential use of mitotic inhibitors and inhibitors of Bcl-xL anti-apoptotic protein will be efficient only if the Bcl-xL inhibitor will be added before mitotic slippage occurs or soon afterward. The combined treatment proposed might be an efficient approach to anti-cancer therapy.
Collapse
Affiliation(s)
- M. Suleimenov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - S. Bekbayev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - M. Ten
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - N. Suleimenova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - M. Tlegenova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - A. Nurmagambetova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- School of Engineering and Digital Science, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - S. Kauanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - I. Vorobjev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: I. Vorobjev,
| |
Collapse
|
4
|
Taguchi Y, Turki T. Novel method for the prediction of drug-drug Interaction based on gene expression profiles. Eur J Pharm Sci 2021; 160:105742. [PMID: 33548411 DOI: 10.1016/j.ejps.2021.105742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Yh Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan.
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
5
|
Kauanova S, Urazbayev A, Vorobjev I. The Frequent Sampling of Wound Scratch Assay Reveals the "Opportunity" Window for Quantitative Evaluation of Cell Motility-Impeding Drugs. Front Cell Dev Biol 2021; 9:640972. [PMID: 33777948 PMCID: PMC7991799 DOI: 10.3389/fcell.2021.640972] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Wound healing assay performed with automated microscopy is widely used in drug testing, cancer cell analysis, and similar approaches. It is easy to perform, and the results are reproducible. However, it is usually used as a semi-quantitative approach because of inefficient image segmentation in transmitted light microscopy. Recently, several algorithms for wound healing quantification were suggested, but none of them was tested on a large dataset. In the current study, we develop a pipeline allowing to achieve correct segmentation of the wound edges in >95% of pictures and extended statistical data processing to eliminate errors of cell culture artifacts. Using this tool, we collected data on wound healing dynamics of 10 cell lines with 10 min time resolution. We determine that the overall kinetics of wound healing is non-linear; however, all cell lines demonstrate linear wound closure dynamics in a 6-h window between the fifth and 12th hours after scratching. We next analyzed microtubule-inhibiting drugs’, nocodazole, vinorelbine, and Taxol, action on the kinetics of wound healing in the drug concentration-dependent way. Within this time window, the measurements of velocity of the cell edge allow the detection of statistically significant data when changes did not exceed 10–15%. All cell lines show decrease in the wound healing velocity at millimolar concentrations of microtubule inhibitors. However, dose-dependent response was cell line specific and drug specific. Cell motility was completely inhibited (edge velocity decreased 100%), while in others, it decreased only slightly (not more than 50%). Nanomolar doses (10–100 nM) of microtubule inhibitors in some cases even elevated cell motility. We speculate that anti-microtubule drugs might have specific effects on cell motility not related to the inhibition of the dynamic instability of microtubules.
Collapse
Affiliation(s)
- Sholpan Kauanova
- School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Arshat Urazbayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Ivan Vorobjev
- School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan.,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
6
|
Di Desidero T, Orlandi P, Gentile D, Banchi M, Alì G, Kusmic C, Armanetti P, Cayme GJ, Menichetti L, Fontanini G, Francia G, Bocci G. Pharmacological effects of vinorelbine in combination with lenvatinib in anaplastic thyroid cancer. Pharmacol Res 2020; 158:104920. [PMID: 32461187 PMCID: PMC8011355 DOI: 10.1016/j.phrs.2020.104920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 12/27/2022]
Abstract
Anaplastic thyroid cancer (ATC) is a rare neoplasia with a poor prognosis. Proliferation and apoptosis assays were performed on ATC cell lines (8305C, 8505C) exposed to vinorelbine, lenvatinib, as well as to concomitant combinations. ABCB1, ABCG2 and CSF-1 mRNA expression was evaluated by real time PCR. The relative levels of pospho Akt were investigated as part of a human phospho-kinase array analysis, and CSF-1 and VEGFR-2 protein levels were measured by ELISA. The intracellular concentration of lenvatinib in ATC cells was measured by combined reversed-phase liquid chromatography-tandem mass spectrometry. An ATC subcutaneous xenograft tumor model in nude mice was treated with vinorelbine, lenvatinib, or vinorelbine plus lenvatinib. After treatment with vinorelbine, lenvatinib, a significant antiproliferative effect in ATC cell lines was observed. The concomitant treatment of vinorelbine and lenvatinib revealed synergism for all the fractions of affected cells. A decrease in ABCB1 expression was reported in both ATC cell lines treated with the lenvatinib plus vinorelbine combination, as was an increase in the intracellular concentration of lenvatinib. The combination caused a decrease in Akt, GSK3α/β, PRAS40 and Src phosphorylation, and in both CSF-1 mRNA and protein levels. In the subcutaneous tumor model, the combination reduced the tumor volume during the treatment period. Our results establish the synergistic ATC antitumor activity of a vinorelbine and lenvatinib combination.
Collapse
Key Words
- Anaplastic thyroid cancer
- Lenvatinib
- Lenvatinib - IUPAC name: 4-[3-chloro-4-(cyclopropylcarbamoylamino)phenoxy]-7-methoxyquinoline-6-carboxamide - PubChem CID: 9823820
- Sorafenib
- Synergism
- Vinorelbine
- Vinorelbine - IUPAC namemethyl (1R, 9R, 10S, 11R, 12R, 19R)-11-acetyloxy-12-ethyl-4-[(12S, 14R,)-16-ethyl-12-methoxycarbonyl-1, 10-diazatetracyclo[12.3.1.0, (3), (11).0, (4), (9),]octadeca-3(11), 4, 6, 8, 15-pentaen-12-yl]-10-hydroxy-5-methoxy-8-methyl-8, 16-diazapentacyclo[10.6.1.0, (1), (9).0, (2), (7).0, (16), (19),]nonadeca-2, 4, 6, 13-tetraene-10-carboxylate- PubChem CID 5311497
Collapse
Affiliation(s)
- Teresa Di Desidero
- Dipartimento Di Medicina Clinica e Sperimentale, Università Di Pisa, Pisa, Italy
| | - Paola Orlandi
- Dipartimento Di Medicina Clinica e Sperimentale, Università Di Pisa, Pisa, Italy
| | - Daniela Gentile
- Dipartimento Di Medicina Clinica e Sperimentale, Università Di Pisa, Pisa, Italy
| | - Marta Banchi
- Dipartimento Di Medicina Clinica e Sperimentale, Università Di Pisa, Pisa, Italy
| | - Greta Alì
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e Dell'Area Critica, Università di Pisa, Pisa, Italy
| | - Claudia Kusmic
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Paolo Armanetti
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Ginelle J Cayme
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Luca Menichetti
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Gabriella Fontanini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e Dell'Area Critica, Università di Pisa, Pisa, Italy
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Guido Bocci
- Dipartimento Di Medicina Clinica e Sperimentale, Università Di Pisa, Pisa, Italy
| |
Collapse
|
7
|
The (+)-Brevipolide H Displays Anticancer Activity against Human Castration-Resistant Prostate Cancer: The Role of Oxidative Stress and Akt/mTOR/p70S6K-Dependent Pathways in G1 Checkpoint Arrest and Apoptosis. Molecules 2020; 25:molecules25122929. [PMID: 32630532 PMCID: PMC7355498 DOI: 10.3390/molecules25122929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Because conventional chemotherapy is not sufficiently effective against prostate cancer, various examinations have been performed to identify anticancer activity of naturally occurring components and their mechanisms of action. The (+)-brevipolide H, an α-pyrone-based natural compound, induced potent and long-term anticancer effects in human castration-resistant prostate cancer (CRPC) PC-3 cells. Flow cytofluorometric analysis with propidium iodide staining showed (+)-brevipolide H-induced G1 arrest of cell cycle and subsequent apoptosis through induction of caspase cascades. Since Akt/mTOR pathway has been well substantiated in participating in cell cycle progression in G1 phase, its signaling and downstream regulators were examined. Consequently, (+)-brevipolide H inhibited the signaling pathway of Akt/mTOR/p70S6K. The c-Myc inhibition and downregulation of G1 phase cyclins were also attributed to (+)-brevipolide H action. Overexpression of myristoylated Akt significantly rescued mTOR/p70S6K and downstream signaling under (+)-brevipolide H treatment. ROS and Ca2+, two key mediators in regulating intracellular signaling, were determined, showing that (+)-brevipolide H interactively induced ROS production and an increase of intracellular Ca2+ levels. The (+)-Brevipolide H also induced the downregulation of anti-apoptotic Bcl-2 family proteins (Bcl-2 and Bcl-xL) and loss of mitochondrial membrane potential, indicating the contribution of mitochondrial dysfunction to apoptosis. In conclusion, the data suggest that (+)-brevipolide H displays anticancer activity through crosstalk between ROS production and intracellular Ca2+ mobilization. In addition, suppression of Akt/mTOR/p70S6K pathway associated with downregulation of G1 phase cyclins contributes to (+)-brevipolide H-mediated anticancer activity, which ultimately causes mitochondrial dysfunction and cell apoptosis. The data also support the biological significance and, possibly, clinically important development of natural product-based anticancer approaches.
Collapse
|