1
|
Mohagheghi M, Abisoye-Ogunniyan A, Evans AC, Peterson AE, Bude GA, Hoang-Phou S, Vannest BD, Hall D, Rasley A, Weilhammer DR, Fischer NO, He W, Robinson BV, Pal S, Slepenkin A, de la Maza L, Coleman MA. Cell-Free Screening, Production and Animal Testing of a STI-Related Chlamydial Major Outer Membrane Protein Supported in Nanolipoproteins. Vaccines (Basel) 2024; 12:1246. [PMID: 39591149 PMCID: PMC11598365 DOI: 10.3390/vaccines12111246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Vaccine development against Chlamydia, a prevalent sexually transmitted infection (STI), is imperative due to its global public health impact. However, significant challenges arise in the production of effective subunit vaccines based on recombinant protein antigens, particularly with membrane proteins like the Major Outer Membrane Protein (MOMP). METHODS Cell-free protein synthesis (CFPS) technology is an attractive approach to address these challenges as a method of high-throughput membrane protein and protein complex production coupled with nanolipoprotein particles (NLPs). NLPs provide a supporting scaffold while allowing easy adjuvant addition during formulation. Over the last decade, we have been working toward the production and characterization of MOMP-NLP complexes for vaccine testing. RESULTS The work presented here highlights the expression and biophysical analyses, including transmission electron microscopy (TEM) and dynamic light scattering (DLS), which confirm the formation and functionality of MOMP-NLP complexes for use in animal studies. Moreover, immunization studies in preclinical models compare the past and present protective efficacy of MOMP-NLP formulations, particularly when co-adjuvanted with CpG and FSL1. CONCLUSION Ex vivo assessments further highlight the immunomodulatory effects of MOMP-NLP vaccinations, emphasizing their potential to elicit robust immune responses. However, further research is warranted to optimize vaccine formulations further, validate efficacy against Chlamydia trachomatis, and better understand the underlying mechanisms of immune response.
Collapse
Affiliation(s)
- Mariam Mohagheghi
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Abisola Abisoye-Ogunniyan
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Angela C. Evans
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Alexander E. Peterson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Gregory A. Bude
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Steven Hoang-Phou
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Byron Dillon Vannest
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Dominique Hall
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Amy Rasley
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Dina R. Weilhammer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Nicholas O. Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Wei He
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Beverly V. Robinson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Anatoli Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Luis de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA (A.A.-O.); (S.H.-P.); (B.D.V.); (A.R.); (B.V.R.)
| |
Collapse
|
2
|
Baskakova KO, Kuzmichev PK, Karbyshev MS. Advanced applications of Nanodiscs-based platforms for antibodies discovery. Biophys Chem 2024; 313:107290. [PMID: 39002246 DOI: 10.1016/j.bpc.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Due to their fundamental biological importance, membrane proteins (MPs) are attractive targets for drug discovery, with cell surface receptors, transporters, ion channels, and membrane-bound enzymes being of particular interest. However, due to numerous challenges, these proteins present underutilized opportunities for discovering biotherapeutics. Antibodies hold the promise of exquisite specificity and adaptability, making them the ideal candidates for targeting complex membrane proteins. They can target specific conformations of a particular membrane protein and can be engineered into various formats. Generating specific and effective antibodies targeting these proteins is no easy task due to several factors. The antigen's design, antibody-generation strategies, lead optimization technologies, and antibody modalities can be modified to tackle these challenges. The rational employment of cutting-edge lipid nanoparticle systems for retrieving the membrane antigen has been successfully implemented to simplify the mechanism-based therapeutic antibody discovery approach. Despite the highlighted MP production challenges, this review unequivocally underscores the advantages of targeting complex membrane proteins with antibodies and designing membrane protein antigens. Selected examples of lipid nanoparticle success have been illustrated, emphasizing the potential of therapeutic antibody discovery in this regard. With further research and development, we can overcome these challenges and unlock the full potential of therapeutic antibodies directed to target complex MPs.
Collapse
Affiliation(s)
- Kristina O Baskakova
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Pavel K Kuzmichev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudniy, Russian Federation
| | - Mikhail S Karbyshev
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation; Department of Biochemistry and Molecular Biology, Pirogov Russian National Research Medical University, Moscow, Russian Federation.
| |
Collapse
|
3
|
Stępień P, Świątek S, Robles MYY, Markiewicz-Mizera J, Balakrishnan D, Inaba-Inoue S, De Vries AH, Beis K, Marrink SJ, Heddle JG. CRAFTing Delivery of Membrane Proteins into Protocells using Nanodiscs. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 38015973 PMCID: PMC10726305 DOI: 10.1021/acsami.3c11894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
For the successful generative engineering of functional artificial cells, a convenient and controllable means of delivering membrane proteins into membrane lipid bilayers is necessary. Here we report a delivery system that achieves this by employing membrane protein-carrying nanodiscs and the calcium-dependent fusion of phosphatidylserine lipid membranes. We show that lipid nanodiscs can fuse a transported lipid bilayer with the lipid bilayers of small unilamellar vesicles (SUVs) or giant unilamellar vesicles (GUVs) while avoiding recipient vesicles aggregation. This is triggered by a simple, transient increase in calcium concentration, which results in efficient and rapid fusion in a one-pot reaction. Furthermore, nanodiscs can be loaded with membrane proteins that can be delivered into target SUV or GUV membranes in a detergent-independent fashion while retaining their functionality. Nanodiscs have a proven ability to carry a wide range of membrane proteins, control their oligomeric state, and are highly adaptable. Given this, our approach may be the basis for the development of useful tools that will allow bespoke delivery of membrane proteins to protocells, equipping them with the cell-like ability to exchange material across outer/subcellular membranes.
Collapse
Affiliation(s)
- Piotr Stępień
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Sylwia Świątek
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | | | | | - Dhanasekaran Balakrishnan
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
- Postgraduate
School of Molecular Medicine, Żwirki i Wigury 61, Warsaw 02-091, Poland
| | - Satomi Inaba-Inoue
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
- Rutherford
Appleton Laboratory, Research Complex at
Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Alex H. De Vries
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Konstantinos Beis
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
- Rutherford
Appleton Laboratory, Research Complex at
Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jonathan G. Heddle
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
4
|
Manzer ZA, Selivanovitch E, Ostwalt AR, Daniel S. Membrane protein synthesis: no cells required. Trends Biochem Sci 2023; 48:642-654. [PMID: 37087310 DOI: 10.1016/j.tibs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Despite advances in membrane protein (MP) structural biology and a growing interest in their applications, these proteins remain challenging to study. Progress has been hindered by the complex nature of MPs and innovative methods will be required to circumvent technical hurdles. Cell-free protein synthesis (CFPS) is a burgeoning technique for synthesizing MPs directly into a membrane environment using reconstituted components of the cellular transcription and translation machinery in vitro. We provide an overview of CFPS and how this technique can be applied to the synthesis and study of MPs. We highlight numerous strategies including synthesis methods and folding environments, each with advantages and limitations, to provide a survey of how CFPS techniques can advance the study of MPs.
Collapse
Affiliation(s)
- Zachary A Manzer
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ekaterina Selivanovitch
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alexis R Ostwalt
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Susan Daniel
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Kelwick RJR, Webb AJ, Heliot A, Segura CT, Freemont PS. Opportunities to accelerate extracellular vesicle research with cell-free synthetic biology. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e90. [PMID: 38938277 PMCID: PMC11080881 DOI: 10.1002/jex2.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are lipid-membrane nanoparticles that are shed or secreted by many different cell types. The EV research community has rapidly expanded in recent years and is leading efforts to deepen our understanding of EV biological functions in human physiology and pathology. These insights are also providing a foundation on which future EV-based diagnostics and therapeutics are poised to positively impact human health. However, current limitations in our understanding of EV heterogeneity, cargo loading mechanisms and the nascent development of EV metrology are all areas that have been identified as important scientific challenges. The field of synthetic biology is also contending with the challenge of understanding biological complexity as it seeks to combine multidisciplinary scientific knowledge with engineering principles, to build useful and robust biotechnologies in a responsible manner. Within this context, cell-free systems have emerged as a powerful suite of in vitro biotechnologies that can be employed to interrogate fundamental biological mechanisms, including the study of aspects of EV biogenesis, or to act as a platform technology for medical biosensors and therapeutic biomanufacturing. Cell-free gene expression (CFE) systems also enable in vitro protein production, including membrane proteins, and could conceivably be exploited to rationally engineer, or manufacture, EVs loaded with bespoke molecular cargoes for use in foundational or translational EV research. Our pilot data herein, also demonstrates the feasibility of cell-free EV engineering. In this perspective, we discuss the opportunities and challenges for accelerating EV research and healthcare applications with cell-free synthetic biology.
Collapse
Affiliation(s)
- Richard J. R. Kelwick
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
| | - Alexander J. Webb
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
| | - Amelie Heliot
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
| | | | - Paul S. Freemont
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
- The London BiofoundryImperial College Translation & Innovation HubLondonUK
- UK Dementia Research Institute Care Research and Technology CentreImperial College London, Hammersmith CampusLondonUK
| |
Collapse
|
6
|
Glueck D, Grethen A, Das M, Mmeka OP, Patallo EP, Meister A, Rajender R, Kins S, Räschle M, Victor J, Chu C, Etzkorn M, Köck Z, Bernhard F, Babalola JO, Vargas C, Keller S. Electroneutral Polymer Nanodiscs Enable Interference-Free Probing of Membrane Proteins in a Lipid-Bilayer Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202492. [PMID: 36228092 DOI: 10.1002/smll.202202492] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Membrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques. Thus, the authors aim to fabricate electroneutral-yet water-soluble-polymer nanodiscs. By attaching a sulfobetaine group to the commercial polymers DIBMA and SMA(2:1), these polyanionic polymers are converted to the electroneutral maleimide derivatives, Sulfo-DIBMA and Sulfo-SMA(2:1). Sulfo-DIBMA and Sulfo-SMA(2:1) readily extract proteins and phospholipids from artificial and cellular membranes to form nanodiscs. Crucially, the electroneutral nanodiscs avert unspecific interactions, thereby enabling new insights into protein-lipid interactions through lab-on-a-chip detection and in vitro translation of membrane proteins. Finally, the authors create a library comprising thousands of human membrane proteins and use proteome profiling by mass spectrometry to show that protein complexes are preserved in electroneutral nanodiscs.
Collapse
Affiliation(s)
- David Glueck
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Anne Grethen
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Ogochukwu Patricia Mmeka
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Department of Chemistry, University of Ibadan, Ibadan, 200284, Nigeria
| | - Eugenio Pérez Patallo
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Annette Meister
- HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Ritu Rajender
- Human Biology, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Stefan Kins
- Human Biology, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, Technische Universität Kaiserslautern (TUK), Paul-Ehrlich-Str. 24, 67663, Kaiserslautern, Germany
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Ci Chu
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Zoe Köck
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | | | - Carolyn Vargas
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
7
|
Levin R, Köck Z, Martin J, Zangl R, Gewering T, Schüler L, Moeller A, Dötsch V, Morgner N, Bernhard F. Cotranslational assembly of membrane protein/nanoparticles in cell-free systems. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184017. [PMID: 35921875 DOI: 10.1016/j.bbamem.2022.184017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles composed of amphiphilic scaffold proteins and small lipid bilayers are valuable tools for reconstitution and subsequent functional and structural characterization of membrane proteins. In combination with cell-free protein production systems, nanoparticles can be used to cotranslationally and translocon independently insert membrane proteins into tailored lipid environments. This strategy enables rapid generation of protein/nanoparticle complexes by avoiding detergent contact of nascent membrane proteins. Frequently in use are nanoparticles assembled with engineered derivatives of either the membrane scaffold protein (MSP) or the Saposin A (SapA) scaffold. Furthermore, several strategies for the formation of membrane protein/nanoparticle complexes in cell-free reactions exist. However, it is unknown how these strategies affect functional folding, oligomeric assembly and membrane insertion efficiency of cell-free synthesized membrane proteins. We systematically studied membrane protein insertion efficiency and sample quality of cell-free synthesized proteorhodopsin (PR) which was cotranslationally inserted in MSP and SapA based nanoparticles. Three possible PR/nanoparticle formation strategies were analyzed: (i) PR integration into supplied preassembled nanoparticles, (ii) coassembly of nanoparticles from supplied scaffold proteins and lipids upon PR expression, and (iii) coexpression of scaffold proteins together with PR in presence of supplied lipids. Yield, homogeneity as well as the formation of higher PR oligomeric complexes from samples generated by the three strategies were analyzed. Conditions found optimal for PR were applied for the synthesis of a G-protein coupled receptor. The study gives a comprehensive guideline for the rapid synthesis of membrane protein/nanoparticle samples by different processes and identifies key parameters to modulate sample yield and quality.
Collapse
Affiliation(s)
- Roman Levin
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Zoe Köck
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Janosch Martin
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - René Zangl
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | | | - Leah Schüler
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Arne Moeller
- University of Osnabrück, 49076 Osnabrück, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany.
| |
Collapse
|
8
|
Cui Y, Chen X, Wang Z, Lu Y. Cell-Free PURE System: Evolution and Achievements. BIODESIGN RESEARCH 2022; 2022:9847014. [PMID: 37850137 PMCID: PMC10521753 DOI: 10.34133/2022/9847014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/16/2022] [Indexed: 10/19/2023] Open
Abstract
The cell-free protein synthesis (CFPS) system, as a technical core of synthetic biology, can simulate the transcription and translation process in an in vitro open environment without a complete living cell. It has been widely used in basic and applied research fields because of its advanced engineering features in flexibility and controllability. Compared to a typical crude extract-based CFPS system, due to defined and customizable components and lacking protein-degrading enzymes, the protein synthesis using recombinant elements (PURE) system draws great attention. This review first discusses the elemental composition of the PURE system. Then, the design and preparation of functional proteins for the PURE system, especially the critical ribosome, were examined. Furthermore, we trace the evolving development of the PURE system in versatile areas, including prototyping, synthesis of unnatural proteins, peptides and complex proteins, and biosensors. Finally, as a state-of-the-art engineering strategy, this review analyzes the opportunities and challenges faced by the PURE system in future scientific research and diverse applications.
Collapse
Affiliation(s)
- Yi Cui
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- College of Life Sciences, Shenyang Normal University, Shenyang 110034, Liaoning, China
| | - Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ze Wang
- College of Life Sciences, Shenyang Normal University, Shenyang 110034, Liaoning, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Bruni R. High-Throughput Cell-Free Screening of Eukaryotic Membrane Proteins in Lipidic Mimetics. Curr Protoc 2022; 2:e510. [PMID: 35926131 DOI: 10.1002/cpz1.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane proteins (MPs) carry out important functions in the metabolism of cells, such as the detection of extracellular activities and the transport of small molecules across the plasma and organelle membranes. Expression of MPs for biochemical, biophysical, and structural analysis is in most cases achieved by overexpression of the desired target in an appropriate host, such as a bacterium. However, overexpression of MPs is usually toxic to the host cells and can lead to aggregation of target protein and to resistance to detergent extraction. An alternative to cell-based MP expression is cell-free (CF), or in vitro, expression. CF expression of MPs has several advantages over cell-based methods, including lack of toxicity issues, no requirement for detergent extraction, and direct incorporation of target proteins in various lipidic mimetics. This article describes a high-throughput method for the expression and purification of eukaryotic membrane proteins used in the author's lab. Basic Protocol 1 describes the selection and cloning of target genes into appropriate vectors for CF expression. Basic Protocol 2 describes the assembly of CF reactions for high-throughput screening. Basic Protocol 3 outlines methods for purification and detection of target proteins. Support Protocols 1-6 describe various accessory procedures: amplification of target, treatment of vectors to prepare them for ligation-independent cloning, and the preparation of S30 extract, T7 RNA polymerase, liposomes, and nanodiscs. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Target selection, construct design, and cloning into pET-based expression vectors Support Protocol 1: Amplification of target DNA Support Protocol 2: Preparation of ligation-independent cloning (LIC)-compatible vectors Basic Protocol 2: Assembly of small-scale cell-free reactions for high-throughput screening Support Protocol 3: Preparation of Escherichia coli S30 extract Support Protocol 4: Preparation of T7 RNA polymerase Support Protocol 5: Preparation of liposomes Support Protocol 6: Preparation of nanodiscs Basic Protocol 3: Purification and detection of cell-free reaction products.
Collapse
Affiliation(s)
- Renato Bruni
- Center on Membrane Protein Production and Analysis (COMPPÅ), New York Structural Biology Center, New York, New York
| |
Collapse
|
10
|
Ye Q, Lin X, Wang T, Cui Y, Jiang H, Lu Y. Programmable protein topology via
SpyCatcher‐SpyTag
chemistry in one‐pot cell‐free expression system. Protein Sci 2022; 31:e4335. [DOI: 10.1002/pro.4335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Qingning Ye
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
- College of New Energy and Materials China University of Petroleum Beijing China
| | - Xiaomei Lin
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| | - Yuntao Cui
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| | - Hao Jiang
- School of Materials Science and Engineering Beijing Institute of Technology Beijing China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| |
Collapse
|
11
|
Nakai H, Isshiki K, Hattori M, Maehira H, Yamaguchi T, Masuda K, Shimizu Y, Watanabe T, Hohsaka T, Shihoya W, Nureki O, Kato Y, Watanabe H, Matsuura T. Cell-Free Synthesis of Human Endothelin Receptors and Its Application to Ribosome Display. Anal Chem 2022; 94:3831-3839. [PMID: 35188389 DOI: 10.1021/acs.analchem.1c04714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Engineering G-protein-coupled receptors (GPCRs) for improved stability or altered function is of great interest, as GPCRs consist of the largest protein family, are involved in many important signaling pathways, and thus, are one of the major drug targets. Here, we report the development of a high-throughput screening method for GPCRs using a reconstituted in vitro transcription-translation (IVTT) system. Human endothelin receptor type-B (ETBR), a class A GPCR that binds endothelin-1 (ET-1), a 21-residue peptide hormone, was synthesized in the presence of nanodisc (ND) composed of a phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG). The ET-1 binding of ETBR was significantly reduced or was undetectable when other phospholipids were used for ND preparation. However, when functional ETBR purified from Sf9 cells was reconstituted into NDs, ET-1 binding was observed with two different phospholipids tested, including POPG. These results suggest that POPG likely supports the folding of ETBR into its functional form in the IVTT system. Using the same conditions as ETBR, whose three-dimensional structure has been solved, human endothelin receptor type-A (ETAR), whose three-dimensional structure remains unsolved, was also synthesized in its functional form. By adding POPG-ND to the IVTT system, both ETAR and ETBR were successfully subjected to ribosome display, a method of in vitro directed evolution that facilitates the screening of up to 1012 mutants. Finally, using a mock library, we showed that ribosome display can be applied for gene screening of ETBR, suggesting that high-throughput screening and directed evolution of GPCRs is possible in vitro.
Collapse
Affiliation(s)
- Hiroki Nakai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kinuka Isshiki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masato Hattori
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiromasa Maehira
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsumi Yamaguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1-i7E-307, Meguro-Ku, Tokyo 152-8550, Japan
| | - Keiko Masuda
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystem Dynamics Research (BDR), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystem Dynamics Research (BDR), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | - Takayoshi Watanabe
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Takahiro Hohsaka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1-i7E-307, Meguro-Ku, Tokyo 152-8550, Japan
| |
Collapse
|
12
|
Umbach S, Dötsch V, Bernhard F. Cell-Free Expression of GPCRs into Nanomembranes for Functional and Structural Studies. Methods Mol Biol 2022; 2507:405-424. [PMID: 35773595 DOI: 10.1007/978-1-0716-2368-8_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite their importance in many essential physiological processes of living cells, G protein-coupled receptors (GPCRs) are often difficult to express and purify in sufficient quality and quantity. We demonstrate cell-free protein synthesis as an interesting alternative to classical cell-based expression systems. We focus on a recently developed detergent-free expression mode by co-translational integration of nascent GPCRs into provided nanodisc membranes of defined composition. The protocol is in particular suitable for detergent sensitive targets and allows the synthesis of full-length as well as modified GPCRs. As a basic blueprint for the cell-free synthesis of GPCRs and potentially other membrane proteins as well, we describe the production of the human endothelin-B receptor. Subsequent purification strategies are streamlined by implementing complementary affinity chromatography steps. We further show the evaluation and optimization of the final GPCR samples for homogeneity and activity through a radioligand binding assay.
Collapse
Affiliation(s)
- Simon Umbach
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt/Main, Germany
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt/Main, Germany
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt/Main, Germany.
| |
Collapse
|
13
|
Birch J, Quigley A. The high-throughput production of membrane proteins. Emerg Top Life Sci 2021; 5:655-663. [PMID: 34623416 PMCID: PMC8726054 DOI: 10.1042/etls20210196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Membrane proteins, found at the junctions between the outside world and the inner workings of the cell, play important roles in human disease and are used as biosensors. More than half of all therapeutics directly affect membrane protein function while nanopores enable DNA sequencing. The structural and functional characterisation of membrane proteins is therefore crucial. However, low levels of naturally abundant protein and the hydrophobic nature of membrane proteins makes production difficult. To maximise success, high-throughput strategies were developed that rely upon simple screens to identify successful constructs and rapidly exclude those unlikely to work. Parameters that affect production such as expression host, membrane protein origin, expression vector, fusion-tags, encapsulation reagent and solvent composition are screened in parallel. In this way, constructs with divergent requirements can be produced for a variety of structural applications. As structural techniques advance, sample requirements will change. Single-particle cryo-electron microscopy requires less protein than crystallography and as cryo-electron tomography and time-resolved serial crystallography are developed new sample production requirements will evolve. Here we discuss different methods used for the high-throughput production of membrane proteins for structural biology.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, U.K
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, U.K
| |
Collapse
|
14
|
He W, Evans AC, Hynes WF, Coleman MA, Robertson C. Nanolipoprotein-Mediated Her2 Protein Transfection Induces Malignant Transformation in Human Breast Acinar Cultures. ACS OMEGA 2021; 6:29416-29423. [PMID: 34778614 PMCID: PMC8581977 DOI: 10.1021/acsomega.1c03086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Her2 overexpression is associated with an aggressive form of breast cancer and malignant transformation. We demonstrate in this work that nanolipoprotein particles (NLPs) synthesized in a cell-free manner can be used to transfer Her2 protein into the membrane of nonmalignant cells in 3D culture in a nontoxic and facile manner. With NLP-mediated Her2 protein delivery, we observed an increased probability of nonmalignant cells forming apolar nongrowth-arrested tumor-like structures. The NLP delivery system alone or Her2-NLPs plus the Her2 inhibitor trastuzumab showed no effect on the acinar organization rate, indicating that Her2 signaling is key to this process. Transcriptomics revealed essentially no effect of empty NLPs compared to untreated cells, whereas Her2-NLPs versus either untreated or empty-NLP-treated cells revealed upregulation of several factors associated with breast cancer. Pathway analysis also suggested that known nodes downstream of Her2 were activated in response to Her2-NLP treatment. This demonstrates that Her2 protein delivery with NLPs is sufficient for the malignant transformation of nonmalignant cells. Thus, this system offers a new model for studying cell surface receptor signaling without genomic modification or transformation techniques.
Collapse
Affiliation(s)
- Wei He
- Physical
and Life Sciences Division, Lawrence Livermore
National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Angela C. Evans
- Radiation
Oncology, University of California Davis
School of Medicine, 4501
X Street, Sacramento, California 95817, United States
| | - William F. Hynes
- Materials
Engineering Division, Lawrence Livermore
National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Matthew A. Coleman
- Physical
and Life Sciences Division, Lawrence Livermore
National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
- Radiation
Oncology, University of California Davis
School of Medicine, 4501
X Street, Sacramento, California 95817, United States
| | - Claire Robertson
- Materials
Engineering Division, Lawrence Livermore
National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
15
|
Abstract
A novel cell free protein synthesis (CFPS) system utilizing layer-by-layer (LbL) polymer assembly was developed to reduce the operational cost of conventional CFPS. This yielded an encapsulated cell system, dubbed "eCells", that successfully performs in vitro CFPS and allows cost-effective incorporation of noncanonical amino acids into proteins. The use of eCells in CFPS circumvents the need for traditional cell lysate preparation and purification of amino acyl-tRNA synthetases (aaRS) while still retaining the small scale of an in vitro reaction. eCells were found to be 55% as productive as standard dialysis CFPS at 13% of the cost. The reaction was shown to be scalable over a large range of reaction volumes, and the crowding environment in eCells confers a stabilizing effect on marginally stable proteins, such as the pyrrolysl tRNA synthetase (PylRS), providing a means for their application in in vitro protein expression. Photocaged-cysteine (PCC) and Nε-(tert-butoxycarbonyl)-l-lysine (Boc-lysine) were incorporated into Peptidyl-prolyl cis-trans isomerase B (PpiB) using small amounts of ncAA with an adequate yield of protein. Fluorescent activated cell sorting (FACS) was used to demonstrate the partition of the lysate within the eCells in contrast to standard one pot cell lysate-based methods.
Collapse
Affiliation(s)
- Damian Van Raad
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Abstract
Cell-free protein expression systems and lipid nanoparticle technologies are core platforms for membrane protein synthesis. The implementation of preassembled nanodiscs allows the co-translational insertion of membrane proteins into tailored lipid bilayers in the absence of any artificial hydrophobic compounds. This strategy is particularly interesting for detergent sensitive or otherwise critical membrane proteins such as G-protein-coupled receptors (GPCRs). Cell-free expression reactions are completed within a day and the formed GPCR/nanodisc particles can be purified directly out of the reaction mixture by affinity tags and without any further manipulation. The streamlined procedure reduces risk of GPCR denaturation and the sample quality can further be supported by supplying chaperones or other beneficial compounds directly into the expression reactions.GPCRs inserted into nanoparticle membranes are excellent tools for a variety of applications such as ligand screening, engineering or even structural characterization. In this chapter, we provide protocols for the reaction set-up and efficient cell-free production of functionally folded GPCRs reaching μM concentrations in the final expression reactions. We further exemplify the tuning of GPCR sample quality and discuss their application for throughput ligand screening and for the analysis of ligand-binding characteristics.
Collapse
|
17
|
Kelwick RJR, Webb AJ, Freemont PS. Biological Materials: The Next Frontier for Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:399. [PMID: 32478045 PMCID: PMC7235315 DOI: 10.3389/fbioe.2020.00399] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Advancements in cell-free synthetic biology are enabling innovations in sustainable biomanufacturing, that may ultimately shift the global manufacturing paradigm toward localized and ecologically harmonized production processes. Cell-free synthetic biology strategies have been developed for the bioproduction of fine chemicals, biofuels and biological materials. Cell-free workflows typically utilize combinations of purified enzymes, cell extracts for biotransformation or cell-free protein synthesis reactions, to assemble and characterize biosynthetic pathways. Importantly, cell-free reactions can combine the advantages of chemical engineering with metabolic engineering, through the direct addition of co-factors, substrates and chemicals -including those that are cytotoxic. Cell-free synthetic biology is also amenable to automatable design cycles through which an array of biological materials and their underpinning biosynthetic pathways can be tested and optimized in parallel. Whilst challenges still remain, recent convergences between the materials sciences and these advancements in cell-free synthetic biology enable new frontiers for materials research.
Collapse
Affiliation(s)
- Richard J. R. Kelwick
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Alexander J. Webb
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul S. Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- The London Biofoundry, Imperial College Translation & Innovation Hub, London, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London, United Kingdom
| |
Collapse
|