1
|
Hu J, Li Y, Xie X, Song Y, Yan W, Luo Y, Jiang Y. The therapeutic potential of andrographolide in cancer treatment. Biomed Pharmacother 2024; 180:117438. [PMID: 39298908 DOI: 10.1016/j.biopha.2024.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer poses a substantial global health challenge, necessitating the widespread use of chemotherapy and radiotherapy. Despite these efforts, issues like resistance development and severe side effects remain. As such, the search for more effective alternatives is critical. Andrographolide, a naturally occurring compound, has recently gained attention for its extensive biological activities. This review explores the role of andrographolide in cancer therapy, especially focusing on the molecular mechanisms that drive its anti-tumor properties. It also examines innovative methods to enhance andrographolide's bioavailability, thus boosting its effectiveness against cancer. Notably, andrographolide has potential for use in combination with various clinical drugs, and both preclinical and clinical studies provide strong evidence supporting its broader anticancer applications. Additionally, this paper proposes future research directions for andrographolide's anti-cancer effects and discusses the challenges in its clinical usage along with current research efforts to address these issues. In summary, this review underscores andrographolide's potential roles and contributes to the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Jiaxuan Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yi Li
- Department of Anesthesiology, Ganzhou Key Laboratory of Anesthesiology, Ganzhou Key Laboratory of Osteoporosis Research, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Wenjing Yan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yumao Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
2
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Johari NA, Sapi’i NA, Jiunn Hieng AL, Ab Latif N, Amran SI, Hasham R, Jemon K. In vitro and in silico evaluation of Andrographis paniculata ethanolic crude extracts on fatty acid synthase expression on breast cancer cells. Biomedicine (Taipei) 2024; 14:60-73. [PMID: 38939097 PMCID: PMC11204123 DOI: 10.37796/2211-8039.1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 06/29/2024] Open
Abstract
Background Fatty acid synthase (FASN), a key rate-limiting enzyme in the fatty acid biosynthesis pathway has been identified to be overexpressed in breast cancer. This overexpression has been affiliated with poor prognosis and resistance to chemotherapeutics. Consequently, FASN has come into focus as an appealing potential target for breast cancer treatment. Available FASN inhibitors, however, are unstable and have been correlated with adverse side effects. Objective This present study aims to investigate the potential of Andrographis paniculata ethanolic crude extract (AP) as a potent FASN inhibitor in breast cancer cells. Materials & methods This study used MTT assay and flow cytometry analysis to measure cell viability and apoptosis following AP treatment (0-500 μg/mL). Furthermore, FASN protein expression was evaluated using immunocytochemistry whereas lipid droplet formation was quantified using Oil Red O staining. Literature-based identified AP phytochemicals were subjected to the prediction of molecular docking and ADMET properties. Results This study demonstrated that AP significantly reduced cell viability while inducing apoptosis in breast cancer cells. In addition, for the first time, exposure to AP was demonstrated to drastically reduce intracellular FASN protein expression and lipid droplet accumulation in EMT6 and MCF-7 breast cancer cells. Docking simulation analysis demonstrated AP phytochemicals may have exerted an inhibitory effect by targeting the FASN Thioesterase (TE) domain similarly to the known FASN inhibitor, Orlistat. Moreover, all AP phytochemicals also possessed drug-likeness properties which are in accordance with Lipinski's rule of five. Conclusions These results highlight the potential of A. paniculata ethanolic crude extract as a FASN inhibitor and hence might have the potential to be further developed as a potent chemotherapeutic drug for breast cancer treatment.
Collapse
Affiliation(s)
- Nur Amanina Johari
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor,
Malaysia
| | - Nur Anisa Sapi’i
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor,
Malaysia
| | - Alvin Lu Jiunn Hieng
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor,
Malaysia
| | - Nurriza Ab Latif
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor,
Malaysia
| | - Syazwani Itri Amran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor,
Malaysia
| | - Rosnani Hasham
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor,
Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor,
Malaysia
| | - Khairunadwa Jemon
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor,
Malaysia
| |
Collapse
|
4
|
Luo Y, Hu J, Jiao Y, Liu L, Miao D, Song Y, Yan W, Li Y, Jiang Y. Andrographolide anti-proliferation and metastasis of hepatocellular carcinoma through LncRNA MIR22HG regulation. J Nat Med 2024; 78:123-145. [PMID: 37821666 DOI: 10.1007/s11418-023-01752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
Hepatocellular carcinoma (HCC) treatment is a major challenge. Although andrographolide (Andro) has an anti-proliferation effect on HCC, its underlying mechanism is not yet elucidated, and whether Andro can inhibit HCC metastasis has not been reported. The present study aimed to clarify whether Andro inhibits SK-Hep-1 cell proliferation and HCC metastasis, and the mechanisms. The results showed that Andro significantly reduced the survival of HCC cells and tumor weight and volume in tumor-bearing nude mice. Andro also triggered apoptosis of HCC cells and upregulated MIR22HG, Cleaved Caspase 9/7/3 expression levels, and downregulated BCL-2 mRNA, BCL-2 expression levels. Knockdown of MIR22HG or overexpression of HuR attenuated the effects of Andro on the signal transduction of mitochondrial apoptotic pathway and proliferation ability in HCC cells. Moreover, Andro significantly reduced the invasive ability of the cells and the level of HCC cell lung metastasis, upregulated miR-22-3p expression level and downregulated HMGB1 and MMP-9 expression levels. MIR22HG or miR-22-3p knockdown attenuated the effects of Andro on the signaling of HMGB1/MMP-9 pathway and invasive ability in HCC cells, while the overexpression of HMGB1 attenuated the inhibitory effects of Andro on the MMP-9 expression level and invasive ability in HCC cells. Thus, the regulation of MIR22HG-HuR/BCL-2 and MIR22HG/HMGB1 signaling pathways is involved in the anti-HCC proliferation and metastasis effects of Andro. This study provided a new pharmacological basis for Andro in HCC treatment and, for the first time, identified a natural product molecule capable of positively regulating MIR22HG, which has a robust biological function.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Jiaxuan Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Yue Jiao
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liwei Liu
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dan Miao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Wenjing Yan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Yi Li
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Yumao Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China.
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Li W, Fu H, Fang L, Chai H, Ding B, Qian S. Andrographolide induced ferroptosis in multiple myeloma cells by regulating the P38/Nrf2/HO-1 pathway. Arch Biochem Biophys 2023; 742:109622. [PMID: 37172672 DOI: 10.1016/j.abb.2023.109622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Andrographis paniculata is used as a functional food in Asia. Andrographolide (Andro), a diterpene lactone isolated from Andrographis paniculata, has been reported to have potent anticancer activity. Multiple myeloma (MM), the second most common malignant tumor in hematology, is incurable. Ferroptosis, a type of cell death driven by iron-dependent lipid peroxidation, has shown potential in the treatment of various cancers. However, previous studies have not demonstrated whether Andro inhibits the development of MM via ferroptosis or any other mechanism. In the present study, we observed that Andro induced cell death, G0/G1 cell cycle arrest and evoked oxidative stress in MM cells. Interestingly, these phenomena were accompanied by increases in intracellular and mitochondrial Fe2+ and lipid peroxidation levels. Furthermore, treatment with ferroptosis inhibitors rescued Andro-induced cell death, which indicated that ferroptosis contributed to this phenomenon. Mechanistic examination showed that Andro may block the Nrf2/HO-1 signaling pathway by activating P38, thereby inducing ferroptosis. Moreover, inhibition of P38 expression rescued Andro-induced cell death, changes in the level of Nrf2 and HO-1 expression, Fe2+ and lipid peroxidation. Taken together, our findings suggest that Andro induces ferroptosis in MM cells via the P38/Nrf2/HO-1 pathway, providing a potential preventative and therapeutic approach for MM.
Collapse
Affiliation(s)
- Wenxia Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangjie Fu
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuyuan Fang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China; Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Chai
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Ding
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shenxian Qian
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China; Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Na-Bangchang K, Plengsuriyakarn T, Karbwang J. The Role of Herbal Medicine in Cholangiocarcinoma Control: A Systematic Review. PLANTA MEDICA 2023; 89:3-18. [PMID: 35468650 DOI: 10.1055/a-1676-9678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The growing incidence of cholangiocarcinoma (bile duct cancer) and limited treatment options stimulate a pressing demand for research and the development of new chemotherapeutics against cholangiocarcinoma. This study aimed to systematically review herbs and herb-derived compounds or herbal formulations that have been investigated for their anti-cholangiocarcinoma potential. Systematic literature searches were conducted in three electronic databases: PubMed, ScienceDirect, and Scopus. One hundred and twenty-three research articles fulfilled the eligibility critera and were included in the analysis (68 herbs, isolated compounds and/or synthetic analogs, 9 herbal formulations, and 119 compounds that are commonly found in several plant species). The most investigated herbs were Atractylodes lancea (Thunb.) DC. (Compositae) and Curcuma longa L. (Zingiberaceae). Only A. lancea (Thunb.) DC. (Compositae) has undergone the full process of nonclinical and clinical development to deliver the final product for clinical use. The extracts of A. lancea (Thunb.) DC. (Compositae), Garcinia hanburyi Hook.f. (Clusiaceae), and Piper nigrum L. (Piperaceae) exhibit antiproliferative activities against human cholangiocarcinoma cells (IC50 < 15 µg/mL). Cucurbitacin B and triptolide are herbal isolated compounds that exhibit the most promising activities (IC50 < 1 µM). A series of experimental studies (in vitro, in vivo, and humans) confirmed the anti-cholangiocarcinoma potential and safety profile of A. lancea (Thunb.) DC. (Compositae) and its active compounds atractylodin and β-eudesmol, including the capsule pharmaceutical of the standardized A. lancea (Thunb.) DC. (Compositae) extract. Future research should be focused on the full development of the candidate herbs to deliver products that are safe and effective for cholangiocarcinoma control.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| | - Juntra Karbwang
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| |
Collapse
|
7
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
8
|
Zhang J, Li C, Zhang L, Heng Y, Wang S, Pan Y, Cai L, Zhang Y, Xu T, Chen X, Hoffman RM, Jia L. Andrographolide, a diterpene lactone from the Traditional Chinese Medicine Andrographis paniculate, induces senescence in human lung adenocarcinoma via p53/p21 and Skp2/p27. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153933. [PMID: 35121394 DOI: 10.1016/j.phymed.2022.153933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Senescence leads to permanent cell-cycle arrest and is a potential target for cancer therapy. Andrographolide (AD) is a diterpene lactone isolated from Traditional Chinese Medicine (TCM) Andrographis paniculate, which has been used as an anti-inflammatory drug in clinical practice with the potential to target senescence in recalcitrant lung cancer. PURPOSE To determine whether AD can induce senescence in human lung adenocarcinoma in vitro and in vivo and to elucidate the underlying mechanisms. METHODS SA-β-Gal staining was used to detect the expression of senescence-associated β-galactosidase (SA-β-Gal) in human lung adenocarcinoma cells A549 and NCI-H1795. DNA damage was examined by the detection of γH2AX foci. Cell cycle was analyzed by flow cytometry. Cancer cell proliferation was determined by ATPlite assay and clonogenic survival assay in vitro. Tumor growth was determined in a mouse model of A549. The expression level of proteins and mRNA was estimated by Western blotting and Quantitative RT-PCR, respectively. Small interfering RNA (siRNA) was used to knock down p21, p27 and p53 to explore the potential mechanism of AD-induced senescence in human lung adenocarcinoma cells. RESULTS AD-induced A549 and NCI-H1795 cell senescence determined by increased cell size, flattened morphology, DNA damage, cell cycle arrest as well as the increased expression of β-galactosidase. AD inhibited cell proliferation in lung cells in vitro and lung cells xenograft growth in nude mice. p21 and p27, the major cell cycle regulators and mediators of senescence, were upregulated at the protein level in AD-treated A549 lung adenocarcinoma in vitro and in vivo. Further studies demonstrated that AD induced cell senescence via p53/p21 and Skp2/p27. CONCLUSION In the present study, we found that the primary anti-inflammatory drug AD could have a potential antitumor effect in lung cancer. We demonstrated that AD induced lung adenocarcinoma senescence in vitro and in vivo via p53/p21 and Skp2/p27 for the first time. AD is therefore a promising senescence-inducing therapeutic for recalcitrant human lung adenocarcinoma.
Collapse
Affiliation(s)
- Junqian Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chunjie Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Li Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongqing Heng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital, Affiliated to Fudan University, Shanghai, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yunjing Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Tong Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xihui Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, CA, USA; Anticancer, Inc., San Diego, CA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
9
|
Zeng B, Wei A, Zhou Q, Yuan M, Lei K, Liu Y, Song J, Guo L, Ye Q. Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches. Phytother Res 2021; 36:336-364. [PMID: 34818697 DOI: 10.1002/ptr.7324] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Andrographis paniculata (Burm. f.) Wall. ex Nees, a renowned herb medicine in China, is broadly utilized in traditional Chinese medicine (TCM) for the treatment of cold and fever, sore throat, sore tongue, snake bite with its excellent functions of clearing heat and toxin, cooling blood and detumescence from times immemorial. Modern pharmacological research corroborates that andrographolide, the major ingredient in this traditional herb, is the fundamental material basis for its efficacy. As the main component of Andrographis paniculata (Burm. f.) Wall. ex Nees, andrographolide reveals numerous therapeutic actions, such as antiinflammatory, antioxidant, anticancer, antimicrobial, antihyperglycemic and so on. However, there are scarcely systematic summaries on the specific mechanism of disease treatment and pharmacokinetics. Moreover, it is also found that it possesses easily ignored security issues in clinical application, such as nephrotoxicity and reproductive toxicity. Thereby it should be kept a lookout over in clinical. Besides, the relationship between the efficacy and security issues of andrographolide should be investigated and evaluated scientifically. In this review, special emphasis is given to andrographolide, a multifunctional natural terpenoids, including its pharmacology, pharmacokinetics, toxicity and pharmaceutical researches. A brief overview of its clinical trials is also presented. This review intends to systematically and comprehensively summarize the current researches of andrographolide, which is of great significance for the development of andrographolide clinical products. Noteworthy, those un-cracked issues such as specific pharmacological mechanisms, security issues, as well as the bottleneck in clinical transformation, which detailed exploration and excavation are still not to be ignored before achieving integration into clinical practice. In addition, given that current extensive clinical data do not have sufficient rigor and documented details, more high-quality investigations in this field are needed to validate the efficacy and/or safety of many herbal products.
Collapse
Affiliation(s)
- Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Ailing Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kelu Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yushi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Wong SK, Chin KY, Ima-Nirwana S. A review on the molecular basis underlying the protective effects of Andrographis paniculata and andrographolide against myocardial injury. Drug Des Devel Ther 2021; 15:4615-4632. [PMID: 34785890 PMCID: PMC8591231 DOI: 10.2147/dddt.s331027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Andrographolide is the major compound found in the medicinal plant, Andrographis paniculata (Burm.f.) Nees, which accounts for its medicinal properties. Both the plant extract and compound have been reported to exhibit potential cardiovascular activities. This review summarises related studies describing the biological activities and target mechanisms of A. paniculata and andrographolide in vivo and in vitro. The current evidence unambiguously indicated the protective effects provided by A. paniculata and andrographolide administration against myocardial injury. The intervention ameliorates the symptoms of myocardial injury by interfering with the inductive phase of a) inflammatory response mediated by nuclear factor-kappa B (NF-κB), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signalling molecules; b) oxidative stress via activation of nuclear factor erythroid 2-related factor (Nrf-2) and reduction of enzymes responsible for generating reactive oxygen and nitrogen species; c) intrinsic and extrinsic mechanisms in apoptosis regulated by upstream insulin-like growth factor-1 receptor (IGF-1R) and peroxisome proliferator-activated receptor-alpha (PPAR-α); d) profibrotic growth factors thus reducing cardiac fibrosis, improving endothelial function and fibrinolytic function. In conclusion, A. paniculata and andrographolide possess therapeutic potential in the management of myocardial injury, which requires further validation in human clinical trials.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia
| |
Collapse
|
11
|
Lorthongpanich C, Charoenwongpaiboon T, Supakun P, Klaewkla M, Kheolamai P, Issaragrisil S. Fisetin Inhibits Osteogenic Differentiation of Mesenchymal Stem Cells via the Inhibition of YAP. Antioxidants (Basel) 2021; 10:antiox10060879. [PMID: 34070903 PMCID: PMC8226865 DOI: 10.3390/antiox10060879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewal and capable of differentiating to various functional cell types, including osteocytes, adipocytes, myoblasts, and chondrocytes. They are, therefore, regarded as a potential source for stem cell therapy. Fisetin is a bioactive flavonoid known as an active antioxidant molecule that has been reported to inhibit cell growth in various cell types. Fisetin was shown to play a role in regulating osteogenic differentiation in animal-derived MSCs; however, its molecular mechanism is not well understood. We, therefore, studied the effect of fisetin on the biological properties of human MSCs derived from chorion tissue and its role in human osteogenesis using MSCs and osteoblast-like cells (SaOs-2) as a model. We found that fisetin inhibited proliferation, migration, and osteogenic differentiation of MSCs as well as human SaOs-2 cells. Fisetin could reduce Yes-associated protein (YAP) activity, which results in downregulation of osteogenic genes and upregulation of fibroblast genes. Further analysis using molecular docking and molecular dynamics simulations suggests that fisetin occupied the hydrophobic TEAD pocket preventing YAP from associating with TEA domain (TEAD). This finding supports the potential application of flavonoids like fisetin as a protein–protein interaction disruptor and also suggesting an implication of fisetin in regulating human osteogenesis.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.S.); (S.I.)
- Correspondence:
| | | | - Prapasri Supakun
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.S.); (S.I.)
| | - Methus Klaewkla
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pakpoom Kheolamai
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathum Thani 10120, Thailand;
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.S.); (S.I.)
| |
Collapse
|
12
|
Ren X, Xu W, Sun J, Dong B, Awala H, Wang L. Current Trends on Repurposing and Pharmacological Enhancement of Andrographolide. Curr Med Chem 2021; 28:2346-2368. [PMID: 32778020 DOI: 10.2174/0929867327666200810135604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
Andrographolide, the main bioactive component separated from Andrographis paniculata in 1951, has been scrutinized with a modern drug discovery approach for anti-inflammatory properties since 1984. Identification of new uses of existing drugs can be facilitated by searching for evidence linking them to known or yet undiscovered drug targets and human disease states to develop new therapeutic indications.Furthermore, a wide spectrum of biological properties of andrographolide such as anticancer, antibacterial, antiviral, hepatoprotective, antioxidant, anti-malarial, anti-atherosclerosis are also reported. However, poor water solubility and instability limit its clinical application. It becomes crucial to enhance its pharmacological function and find a new treatment option for more diseases. Therefore, this article reviews the major recent developments in andrographolide, including repurposing applications in different diseases and underlying mechanisms, particularly focusing on pharmacological enhancement of andrographolide such as derivatives, chemical modifications with potent biological activity and drug delivery. The repurposing and pharmacological enhancement of andrographolide would not only have exciting therapeutic potential to different diseases to facilitate drug marketing, but also decrease the economic burden on healthcare worldwide.
Collapse
Affiliation(s)
- Xuan Ren
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Wenzhou Xu
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hussein Awala
- Faculty of Science, Lebanese University, Nabatieh, Lebanon
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
13
|
Malik Z, Parveen R, Parveen B, Zahiruddin S, Aasif Khan M, Khan A, Massey S, Ahmad S, Husain SA. Anticancer potential of andrographolide from Andrographis paniculata (Burm.f.) Nees and its mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113936. [PMID: 33610710 DOI: 10.1016/j.jep.2021.113936] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Synthetic drugs used for cancer treatment have side effects that may be immunosupressive, can cause liver, kidney and cardiac toxicity, and infertility and ovarian failure, among others. Thus, herbal drugs could be used in the cancer treatment as an adjuvant therapy. Andrographis paniculata (Burm.f.) Nees (AP) is one of the traditional herbs used in different alternative medicinal systems such as Ayurveda, Unani, Chinese, Malayi, Siddha, etc. for the treatment of various disorders and diseases including cancer. AIM OF THE STUDY The aim of writing this review is to highlight the medicinal importance of AP and its main phytoconstituent andrographolide (AG). The main emphasis was given on the anticancer activity of AG, its proposed mechanisms of action, novel approaches used to improve its biopharmaceutical properties with the perspective of evidence-based research, and its development as an adjuvant therapy for cancer treatment in future. MATERIALS AND METHODS Literature survey was conducted and research papers were retrieved from different databases such as Pubmed, Google Scholar, ACS, Wiley online library, ScienceDirect, Springer, and Scopus during 1970-2020. Research articles, review articles, and short communications, etc. were used for this purpose. The papers were selected on the basis of exclusion and inclusion criteria. RESULTS Different anticancer mechanisms of AG have been reportedly proven such as cell cycle arrest, apoptosis, NF-κβ inhibition, antiangiogenesis, cytokine inhibition, etc. whereas its pharmacokinetic properties showed its highly protein bound nature, Cyt P400 (CYP) inhibition, low aqueous solubility, poor oral bioavailability, etc. Different novel formulations of AG have been investigated to increase its bioavailability for better efficacy. CONCLUSION This review can provide knowledge about the potential applicability of AP or AG as an adjuvant therapy in cancer treatment. Further research is needed before making any conclusion about the efficacy in humans as an adjuvant therapy in cancer.
Collapse
Affiliation(s)
- Zoya Malik
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India; Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Rabea Parveen
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India; Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Bushra Parveen
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Aasif Khan
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Asifa Khan
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheersh Massey
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Syed Akhtar Husain
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
14
|
Pasha A, Kumbhakar DV, Doneti R, Kumar K, Dharmapuri G, Poleboyina PK, S. K. H, Basavaraju P, Pasumarthi D, S. D. A, Soujanya P, Arnold Emeson I, Bodiga V, Pawar SC. Inhibition of Inducible Nitric Oxide Synthase (iNOS) by Andrographolide and In Vitro Evaluation of Its Antiproliferative and Proapoptotic Effects on Cervical Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6692628. [PMID: 33815659 PMCID: PMC8010528 DOI: 10.1155/2021/6692628] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 11/18/2022]
Abstract
This work is aimed at investigating the expression levels of inducible nitric oxide synthase (iNOS) in cervical cancer and identifying a potential iNOS inhibitor. The data mining studies performed advocated iNOS to be a promising biomarker for cancer prognosis, as it is highly overexpressed in several malignant cancers. The elevated iNOS was found to be associated with poor survival and increased tumor aggressiveness in cervical cancer. Immunohistochemical and RT-PCR investigations of iNOS showed significant upregulation of endogenous iNOS expression in the cervical tumor samples, thus making iNOS a potent target for decreasing tumor inflammation and aggressiveness. Andrographolide, a plant-derived diterpenoid lactone, is widely reported to be effective against infections and inflammation, causing no adverse side effects on humans. In the current study, we investigated the effect of andrographolide on the prognostic value of iNOS expression in cervical cancer, which has not been reported previously. The binding efficacy of andrographolide was analyzed by performing molecular docking and molecular dynamic simulations. Multiple parameters were used to analyze the simulation trajectory, like root mean square deviation (RMSD), torsional degree of freedom, protein-root mean square fluctuations (P-RMSF), ligand RMSF, total number of intramolecular hydrogen bonds, secondary structure elements (SSE) of the protein, and protein complex with the time-dependent functions of MDS. Ligand-protein interactions revealed binding efficacy of andrographolide with tryptophan amino acid of iNOS protein. Cancer cell proliferation, cell migration, cell cycle analysis, and apoptosis-mediated cell death were assessed in vitro, post iNOS inhibition induced by andrographolide treatment (demonstrated by Western blot). Results. Andrographolide exhibited cytotoxicity by inhibiting the in vitro proliferation of cervical cancer cells and also abrogated the cancer cell migration. A significant increase in apoptosis was observed with increasing andrographolide concentration, and it also induced cell cycle arrest at G1-S phase transition. Our results substantiate that andrographolide significantly inhibits iNOS expression and exhibits antiproliferative and proapoptotic effects on cervical cancer cells.
Collapse
Affiliation(s)
- Akbar Pasha
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, 500 007 Telangana, India
| | - Divya Vishambhar Kumbhakar
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, 500 007 Telangana, India
| | - Ravinder Doneti
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, 500 007 Telangana, India
| | - Kiran Kumar
- Department of Bioinformatics, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Gangappa Dharmapuri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046 Telangana, India
| | - Pavan Kumar Poleboyina
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, 500 007 Telangana, India
| | - Heena S. K.
- Department of Pathology, Osmania Medical College, Hyderabad, 500095 Telangana, India
| | - Preethi Basavaraju
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641046 Tamil Nadu, India
| | - Deepthi Pasumarthi
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, 500 007 Telangana, India
| | - Annapurna S. D.
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, 500 007 Telangana, India
| | - Pavani Soujanya
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, 500007 Telangana, India
| | - I. Arnold Emeson
- Department of Bioinformatics, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Vijayalaxmi Bodiga
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, 500007 Telangana, India
| | - Smita C. Pawar
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, 500 007 Telangana, India
| |
Collapse
|
15
|
Withaferin A mitigates metastatic traits in human oral squamous cell carcinoma caused by aberrant claudin-1 expression. Cell Biol Toxicol 2021; 38:147-165. [PMID: 33665778 DOI: 10.1007/s10565-021-09584-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/24/2021] [Indexed: 12/27/2022]
Abstract
Abnormal expression of claudin-1 (CLDN1) has important roles in carcinogenesis and metastasis in various cancers. The role of CLDN1 in human oral squamous cell carcinoma (OSCC) remains unknown. Here, we report the functional role of CLDN1 in metastasis of human OSCC, as a potential target regulated by withaferin A. From gene expression profiling with microarray technology, we found that the majority of notable differentially expressed genes were classified into migration/invasion category. Withaferin A impaired the motility of human OSCC cells in vitro and suppressed metastatic nodule formation in an in vivo metastasis model, both associated with reduced CLDN1. CLDN1 overexpression enhanced metastatic nodule formation in vivo, resulting in severe metastatic lesions in lung tissue. Moreover, CLDN1 expression was positively correlated to lymphatic metastasis in OSCC patients. The impaired motility of human OSCC cells upon withaferin A treatment was restored by CLDN1 overexpression. Furthermore, upregulation of let-7a induced by withaferin A was inversely correlated to CLDN1 expression. Overall, these give us an insight into the function of CLDN1 for prognosis and treatment of human OSCC, substantiating further investigation into the use of withaferin A as good anti-metastatic drug candidate.
Collapse
|
16
|
Molecular Cloning and Differential Gene Expression Analysis of 1-Deoxy-D-xylulose 5-Phosphate Synthase (DXS) in Andrographis paniculata (Burm. f) Nees. Mol Biotechnol 2020; 63:109-124. [PMID: 33222042 PMCID: PMC7680635 DOI: 10.1007/s12033-020-00287-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
Andrographis paniculata 1-deoxy-D-xylulose-5-phosphate synthase (ApDXS) gene (GenBank Accession No MG271749.1) was isolated and cloned from leaves for the first time. Expression of ApDXS gene was carried out in Escherichia coli Rosetta cells. Tissue-specific ApDXS gene expression by quantitative RT-PCR (qRT-PCR) revealed maximum fold expression in the leaves followed by stem and roots. Further, the differential gene expression profile of Jasmonic acid (JA)-elicited in vitro adventitious root cultures showed enhanced ApDXS expression compared to untreated control cultures. A. paniculata 3-hydroxy-3-methylglutaryl-coenzyme A reductase (ApHMGR) gene expression was also studied where it was up-regulated by JA elicitation but showed lower expression compared to ApDXS. The highest expression of both genes was found at 25 µm JA elicitation followed by 50 µm. HPLC data indicated that the transcription levels were correlated with increased andrographolide accumulation. The peak level of andrographolide accumulation was recorded at 25 μM JA (9.38-fold) followed by 50 µM JA (7.58-fold) in elicitation treatments. The in silico generated ApDXS 3D model revealed 98% expected amino acid residues in the favored and 2% in the allowed regions of the Ramachandran plot with 92% structural reliability. Further, prediction of conserved domains and essential amino acids [Arg (249, 252, 255), Asn (307) and Ser (247)] involved in ligand/inhibitor binding was carried out by in silico docking studies. Our present findings will generate genomic information and provide a blueprint for future studies of ApDXS and its role in diterpenoid biosynthesis in A. paniculata.
Collapse
|
17
|
Lectin affinity chromatography and quantitative proteomic analysis reveal that galectin-3 is associated with metastasis in nasopharyngeal carcinoma. Sci Rep 2020; 10:16462. [PMID: 33020562 PMCID: PMC7536187 DOI: 10.1038/s41598-020-73498-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a serious cancer in East and Southeast Asia. Patients are often diagnosed at advanced stages, rendering treatment failure due to high potential of metastasis. This study identified lectin-binding glycoproteins with a potential role in NPC metastasis. Cell lysate and culture medium in highly metastatic 5-8F, and lowly-metastatic 6-10B NPC cell lines were fractionated by ConA- and WGA-affinity chromatography, and subjected to GeLC-MS/MS. A total of 232 and 197 proteins were identified in ConA-enriched fraction of 5-8F and 6-10B cell lysates respectively. In WGA-enriched fraction, 65 and 164 proteins were found in 5-8F and 6-10B cell lysates respectively. Proteins identified in culture medium for both cell lines were 223 and 85 for ConA-enriched fraction, and 94 and 124 for WGA-enriched fraction from 5-8F and 6-10B respectively. Differentially expressed proteins were functionally categorized into cell–cell adhesion, extracellular matrix, glycolysis, protein homeostasis and/or glycosylation enzymes, and lipid metabolism. Interestingly, Galectin-3 (Gal-3) was highly expressed in 5-8F cells but was lowly expressed in 6-10B cells. The Gal-3 knockdown in 5-8F cells, Gal-3 overexpression in 6-10B cells and treatment with Gal-3 inhibitor revealed that Gal-3 was responsible for metastatic phenotypes including adhesion, migration and invasion. So Galectin-3 may serve as a potential target for NPC therapeutic interventions.
Collapse
|
18
|
Izzo P, Izzo S, DI Cello P, D'Amata G, Cardi M, Polistena A, Messineo D, Izzo L. Role of Leptin in Neoplastic and Biliary Tree Disease. In Vivo 2020; 34:2485-2490. [PMID: 32871776 DOI: 10.21873/invivo.12064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIM Leptin is a small hormone of protein nature, it is strongly involved in the regulation of lipid metabolism and its functioning mechanism is not yet well known or whether or not it is actually secreted by cholangiocytes, nor if the biliary tree expresses its receptors. In the past, various studies have tried to correlate leptin levels with certain neoplasms. The aim of this study was to demonstrate that serum leptin values can become a new sensitive and specific serum marker for cholangiocarcinoma. MATERIALS AND METHODS Seventy-two patients with gallbladder stones, hepatolithiasis with benign biliary stenosis, cholangiocarcinoma, and a group of patients without hepato-biliary diseases were enrolled in the study. In all cases blood and bile samples were collected for evaluation of leptin levels and liver biopsies were performed to confirm diagnosis. In all patients, both ultrasound and cholangio-magnetic resonance imaging (MRI) were performed to complete the diagnostic procedure. RESULTS Twenty-two patients were affected by cholangiocarcinoma, 50 by benign biliary disease (35 cholelithiasis and 6 hepatolithiasis and 9 by inflammatory biliary stenosis). The mean values of serum leptin in patients with cholangiocarcinoma were 19.28±8.76 ng/ml, significantly higher than those observed in non-neoplastic biliary diseases. CONCLUSION Serum leptin levels might be a useful marker to differentiate patients with cholangiocarcinoma from those with biliary lithiasis and inflammatory stenosis.
Collapse
Affiliation(s)
- Paolo Izzo
- Department of Surgery "Pietro Valdoni", Policlinico Umberto I, Università degli studi "La Sapienza", Rome, Italy
| | - Sara Izzo
- Unit of Colorectal Surgery, Department of Medical, Surgical, Neurologic, Metabolic and Ageing Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Gabriele D'Amata
- ASL Roma 5 UOC Chirurgia Generale Ospedale di Colleferro, Rome, Italy
| | - Maurizio Cardi
- Department of Surgery "Pietro Valdoni", Policlinico Umberto I, Università degli studi "La Sapienza", Rome, Italy
| | - Andrea Polistena
- Department of Surgery "Pietro Valdoni", Policlinico Umberto I, Università degli studi "La Sapienza", Rome, Italy
| | - Daniela Messineo
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Università degli Studi "La Sapienza", Rome, Italy
| | - Luciano Izzo
- Department of Surgery "Pietro Valdoni", Policlinico Umberto I, Università degli studi "La Sapienza", Rome, Italy
| |
Collapse
|
19
|
Wang DP, Chen SH, Wang D, Kang K, Wu YF, Su SH, Zhang YY, Hai J. Neuroprotective effects of andrographolide on chronic cerebral hypoperfusion-induced hippocampal neuronal damage in rats possibly via PTEN/AKT signaling pathway. Acta Histochem 2020; 122:151514. [PMID: 32019701 DOI: 10.1016/j.acthis.2020.151514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/02/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
To explore the potential effects of andrographolide on chronic cerebral hypoperfusion (CCH)-induced neuronal damage as well as the underlying mechanisms. Rat CCH model was established by 2-vessel occlusion (2VO). The CCH rats received andrographolide treatment for 4 weeks. The neuron loss was detected by using neuronal nuclei (NeuN) immunofluorescent staining. The expression levels of phospho-phosphatase and tensin homolog deleted on chromosome ten (p-PTEN), protein kinase B (AKT), p-AKT, and cysteinyl aspartate specific proteinase-3 (Caspase-3) proteins were accessed by Western blotting. Moreover, the neuronal apoptosis of hippocampus tissues was detected via terminal deoxynucleotidyl transferase- mediated dUTP nick end labeling (TUNEL) staining. CCH reduced the number of NeuN-positive cells, while the number was significant increased after andrographolide treatment. CCH increased the proteins expression level of p-PTEN, Caspase-3, and decreased the p-AKT, which were reversed by andrographolide treatment. Furthermore, andrographolide treatment also down-regulated CCH-induced TUNEL-apoptosis rate. Our results suggest that the PTEN/AKT pathway may be modulated by andrographolide and the damaging effects of CCH on hippocampus may be ameliorated by andrographolide treatment. Andrographolide may act as a potential therapeutic approach for chronic ischemic insults.
Collapse
|