1
|
Mo Y, Liu W, Liu P, Liu Q, Yuan Z, Wang Q, Yuan D, Chen XJ, Chen T. Multifunctional Graphene Oxide Nanodelivery Platform for Breast Cancer Treatment. Int J Nanomedicine 2022; 17:6413-6425. [PMID: 36545221 PMCID: PMC9762269 DOI: 10.2147/ijn.s380447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
Background Breast cancer (BC) has the highest global prevalence among all malignancies in women and the second highest prevalence in the overall population. Paclitaxel (PTX), a tricyclic diterpenoid, is effective against BC. However, its poor solubility in water and the allergenicity of its dissolution medium limited its clinical application. Methods In this work, we established a multifunctional graphene oxide (GO) tumor-targeting drug delivery system using nanosized graphene oxide (nGO) modified with D-tocopherol polyethylene glycol succinate (TPGS) and arginine-glycine-aspartic acid (RGD) for PTX loading. Results The obtained RGD-TPGS-nGO-PTX was 310.20±19.86 nm in size; the polydispersity index (PDI) and zeta potential were 0.21±0.020 and -23.42 mV, respectively. The mean drug loading capacity of RGD-TPGS-nGO-PTX was 48.78%. RGD-TPGS-nGO-PTX showed satisfactory biocompatibility and biosafety and had no significant toxic effects on zebrafish embryos. Importantly, it exerted excellent cytotoxicity against MDA-MB-231 cells, reversed multi-drug resistance (MDR) in MCF-7/ADR cells, and showed significant anti-tumor efficacy in tumor-bearing nude mice. Conclusion These findings strongly suggested that the multifunctional GO tumor-targeting drug delivery system RGD-TPGS-nGO-PTX could be used in clinical settings to improve PTX delivery, reverse MDR and increase the therapeutic efficacy of BC treatment.
Collapse
Affiliation(s)
- Yousheng Mo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People’s Republic of China
| | - Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Piaoxue Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Qiao Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, People’s Republic of China
| | - Zhongyu Yuan
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People’s Republic of China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Dongsheng Yuan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, People’s Republic of China,Correspondence: Xiao-Jia Chen; Tongkai Chen, Email ;
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| |
Collapse
|
2
|
Jia W, Wu X, Shi L. Hydrocortisone-Containing Animal-Derived Food Intake Affects Lipid Nutrients Utilization. Mol Nutr Food Res 2022; 66:e2200487. [PMID: 36261391 DOI: 10.1002/mnfr.202200487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Indexed: 01/18/2023]
Abstract
SCOPE As the tremendous increases in consumption of animal-derived food, endogenous hydrocortisone migrating along the food chain to organism arouses extensive attention. This study aims to investigate the cumulative impacts of dietary hydrocortisone intake and mechanistic understanding on metabolism of lipid nutrients. METHODS AND RESULTS A total of 120 porcine muscles samples with different concentrations of hydrocortisone are collected at three time points. An operational food chain simulation framework is constructed and 175 lipid molecules are identified by UHPLC-Q-Orbitrap HRMS. Compared to the control group, 66 lipid molecules are significantly different, including 17 triglycerides and 31 glycerophospholipids. Integrated analyses of lipidomics and proteomics indicate that hydrocortisone promotes adipose triglyceride lipase and hormone sensitive lipase activity to precondition for triglycerides hydrolysis. Quantitative lipidomics analysis shows the presence of hydrocortisone decreases the concentration of docosahexaenoic acid (3.66 ± 0.15-3.09 ± 0.12 mg kg-1 ) and eicosapentanoic acid (0.54 ± 0.09-0.48 ± 0.06 mg kg-1 ). A noteworthy increase of most saturated triglycerides concentration with the prolonging of time is observed. CONCLUSIONS Hydrocortisone originating from animal-derived food induces glycerophospholipids degradation and triglycerides hydrolysis through promoting adipose triglyceride lipase, hormone sensitive lipase, and phosphoglycerate kinase activity and further intervenes lipid nutrients utilization.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.,Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, 710021, China
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
3
|
Oda S, Ashida K, Uchiyama M, Sakamoto S, Hasuzawa N, Nagayama A, Wang L, Nagata H, Sakamoto R, Kishimoto J, Todaka K, Ogawa Y, Nakanishi Y, Nomura M. An Open-label Phase I/IIa Clinical Trial of 11β-HSD1 Inhibitor for Cushing's Syndrome and Autonomous Cortisol Secretion. J Clin Endocrinol Metab 2021; 106:e3865-e3880. [PMID: 34143883 DOI: 10.1210/clinem/dgab450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors demonstrate antimetabolic and antisarcopenic effects in Cushing's syndrome (CS) and autonomous cortisol secretion (ACS) patients. OBJECTIVE To confirm the efficacy and safety of S-707106 (11β-HSD1 inhibitor) administered to CS and ACS patients. DESIGN A 24-week single-center, open-label, single-arm, dose-escalation, investigator-initiated clinical trial on a database. SETTING Kyushu University Hospital, Kurume University Hospital, and related facilities. PATIENTS Sixteen patients with inoperable or recurrent CS and ACS, with mildly impaired glucose tolerance. INTERVENTION Oral administration of 200 mg S-707106 after dinner, daily, for 24 weeks. In patients with insufficient improvement in oral glucose tolerance test results at 12 weeks, an escalated dose of S-707106 (200 mg twice daily) was administered for the residual 12 weeks. MAIN OUTCOME MEASURES The rate of participants responding to glucose tolerance impairment, defined as those showing a 25% reduction in the area under the curve (AUC) of plasma glucose during the 75-g oral glucose tolerance test at 24 weeks. RESULTS S-707106 administration could not achieve the primary endpoint of this clinical trial (>20% of responsive participants). AUC glucose decreased by -7.1% [SD, 14.8 (90% CI -14.8 to -1.0), P = 0.033] and -2.7% [14.5 (-10.2 to 3.4), P = 0.18] at 12 and 24 weeks, respectively. S-707106 administration decreased AUC glucose significantly in participants with a high body mass index. Body fat percentage decreased by -2.5% [1.7 (-3.3 to -1.8), P < 0.001] and body muscle percentage increased by 2.4% [1.6 (1.7 to 3.1), P < 0.001]. CONCLUSIONS S-707106 is an effective insulin sensitizer and antisarcopenic and antiobesity medication for these patients.
Collapse
Affiliation(s)
- Satoko Oda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Kenji Ashida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume-city, Japan
| | - Makiko Uchiyama
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka-city, Japan
| | - Shohei Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Nao Hasuzawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume-city, Japan
| | - Ayako Nagayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume-city, Japan
| | - Lixiang Wang
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume-city, Japan
| | - Hiromi Nagata
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Junji Kishimoto
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka-city, Japan
| | - Koji Todaka
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka-city, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Yoichi Nakanishi
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka-city, Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume-city, Japan
| |
Collapse
|
4
|
Gorczyca D, Szponar B, Paściak M, Czajkowska A, Szmyrka M. Serum levels of n-3 and n-6 polyunsaturated fatty acids in patients with systemic lupus erythematosus and their association with disease activity: a pilot study. Scand J Rheumatol 2021; 51:230-236. [PMID: 34169789 DOI: 10.1080/03009742.2021.1923183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: Polyunsaturated fatty acids (PUFAs) may modulate the inflammatory process in systemic autoimmune diseases, including systemic lupus erythematosus (SLE). The aim of this study was to assess the serum concentrations of essential 18-carbon PUFAs and their long-chain derivatives in patients with SLE and healthy controls, and to analyse their associations with laboratory and clinical features of the disease.Method: n-6 and n-3 PUFA composition was assessed in the sera of 30 SLE patients and 20 healthy controls using gas chromatography-mass spectrometry. We investigated the associations between PUFAs and disease activity measured with Systemic Lupus Erythematosus Activity Index (SLEDAI) scores, erythrocyte sedimentation rate, C-reactive protein, complement C3 and C4 concentrations, anti-nuclear antibody (ANA) titre, anti-double-stranded DNA (anti-dsDNA) antibody concentration, and medications.Results: Serum linoleic acid (LA) and α-linolenic acid concentrations were significantly higher in SLE patients compared with healthy controls. LA concentration correlated positively with the ANA titre and corticosteroid doses; eicosapentaenoic acid (EPA) and docosahexaenoic acid correlated inversely with anti-dsDNA antibody concentration. Patients treated with immunosuppressants had significantly lower concentrations of LA, arachidonic acid, and EPA.Conclusion: Both n-6 and n-3 PUFA precursors can participate in the inflammatory process in SLE patients. The mechanism of the PUFA metabolism disturbance needs further exploration.
Collapse
Affiliation(s)
- D Gorczyca
- Third Department and Clinic of Pediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, Wroclaw, Poland
| | - B Szponar
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M Paściak
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - A Czajkowska
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M Szmyrka
- Department of Rheumatology and Internal Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
5
|
Liu J, Zhang D, Wang K, Li Z, He Z, Wu D, Xu Z, Zhou J. Time Course of Metabolic Alterations Associated with the Progression of Systemic Lupus Erythematosus in MRL/lpr Mice Based on GC/MS. J Proteome Res 2020; 20:1243-1251. [PMID: 33356297 DOI: 10.1021/acs.jproteome.0c00619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exploring the dynamic changes of metabolites and metabolic pathways during the development of the disease can help to further understand the etiology and pathogenesis of systemic lupus erythematosus (SLE). In this study, serum metabolomics based on gas chromatography/mass spectrometry (GC/MS) was employed to investigate the metabolic alterations at different stages of SLE using lupus-prone mice (MRL/lpr) of 9, 11, and 13 weeks of age. Multivariate statistical analysis was performed to view the alterations of metabolic profiles between MRL/lpr mice and age-matched C57BL/6 mice, and t-test and fold change criteria were used to identify differential metabolites at each stage. 11 changed metabolites were found in MRL/lpr mice at 9 weeks of age, which were mainly involved in the tricarboxylic acid (TCA) cycle, glycolysis, and butanoate metabolism; with the increase of week age, the TCA cycle was still disturbed, and the biosynthesis of fatty acids was significantly upregulated since 11 weeks of age; in addition, urea, urate, and indole-3-lactate were increased at 13 weeks of age. We found a time course of metabolic alterations in MRL/lpr mice, which may be related to the progression of SLE. These findings could provide a reference for studying the mechanism of SLE and judging the pathological stage and severity of the disease. The MS data have been deposited in Mendeley (https://www.mendeley.com/).
Collapse
Affiliation(s)
- Jiajia Liu
- TCM Clinical Basis Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310000, China
| | - Dingyi Zhang
- TCM Clinical Basis Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310000, China
| | - Keer Wang
- TCM Clinical Basis Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310000, China
| | - Zhengfu Li
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310000, China
| | - Zhaochun He
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310000, China
| | - Dehong Wu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310000, China
| | - Zhenghao Xu
- TCM Clinical Basis Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310000, China
| | - Jia Zhou
- TCM Clinical Basis Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310000, China
| |
Collapse
|