1
|
't Hart LM, de Klerk JA, Bouland GA, Peerlings JHD, Blom MT, Cramer SJ, Bijkerk R, Beulens JWJ, Slieker RC. Small RNA sequencing reveals snoRNAs and piRNA-019825 as novel players in diabetic kidney disease. Endocrine 2024; 86:194-203. [PMID: 38801599 PMCID: PMC11445283 DOI: 10.1007/s12020-024-03884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Micro- and macrovascular complications are common among persons with type 2 diabetes. Recently there has been growing interest to investigate the potential of circulating small non-coding RNAs (sncRNAs) as contributors to the development of diabetic complications. In this study we investigate to what extent circulating sncRNAs levels associate with prevalent diabetic kidney disease (DKD) in persons with type 2 diabetes. METHODS Plasma sncRNAs levels were determined using small RNA-seq, allowing detection of miRNAs, snoRNAs, piRNAs, tRNA fragments, and various other sncRNA classes. We tested for differentially expressed sncRNAs in persons with type 2 diabetes, with DKD (n = 69) or without DKD (n = 405). In secondary analyses, we also tested the association with eGFR, albuminuria (UACR), and the plasma proteome. RESULTS In total seven sncRNAs were negatively associated with prevalent DKD (all PFDR ≤ 0.05). Including one microRNA (miR-143-5p), five snoRNAs (U8, SNORD118, SNORD24, SNORD107, SNORD87) and a piRNA (piR-019825 | DQ597218). Proteomic analyses showed that the seven sncRNAs, and especially the piRNA piR-019825, were associated with plasma levels of 24 proteins of which several have known associations with kidney function including TNF sR-I (TNFRFS1A), DAN (NBL1) and cystatin C (CST3). CONCLUSION We have identified novel small non-coding RNAs, primarily from classes other than microRNAs, that are associated with diabetic kidney disease. Our results show that the involvement of small non-coding RNAs in DKD goes beyond the already known microRNAs and also involves other classes of sncRNA, in particular snoRNAs and the piRNA piR-019825, that have never been studied before in relation to kidney function.
Collapse
Affiliation(s)
- L M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Epidemiology and Data Sciences, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Health Behaviors & Chronic Diseases Research Program & Personalised Medicine Research Program, Amsterdam Public Health, Amsterdam, The Netherlands.
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - J A de Klerk
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - G A Bouland
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - J H D Peerlings
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - M T Blom
- Health Behaviors & Chronic Diseases Research Program & Personalised Medicine Research Program, Amsterdam Public Health, Amsterdam, The Netherlands
- Department of General Practice, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S J Cramer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - R Bijkerk
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - J W J Beulens
- Department of Epidemiology and Data Sciences, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Health Behaviors & Chronic Diseases Research Program & Personalised Medicine Research Program, Amsterdam Public Health, Amsterdam, The Netherlands
| | - R C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Rong L, Xue H, Hao J, Liu J, Xu H. Long non-coding RNA MEG3 silencing weakens high glucose-induced mesangial cell injury by decreasing LIN28B expression by sponging and sequestering miR-23c. Kidney Res Clin Pract 2024; 43:600-613. [PMID: 38148128 PMCID: PMC11467368 DOI: 10.23876/j.krcp.23.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common kidney disease in diabetic patients. Long non-coding RNA maternally expressed gene 3 (MEG3) and microRNA (miR)-23c are reported to be implicated in DN development. Nevertheless, it is unclear that the molecular mechanism between MEG3 and miR-23c in DN remains unclear. METHODS Human mesangial cells (HMCs) were treated with high glucose (HG) to simulate the DN status in vitro. Expression of MEG3 and miR-23c was measured. Effects of MEG3 silencing on HG-stimulated HMC injury were determined. The relationship between MEG3 and miR-23c was verified by the dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS MEG3 was overexpressed in serums from DN patients and HG-stimulated HMCs. MEG3 knockdown weakened HG-stimulated HMC proliferation, extracellular matrix (ECM) accumulation, and inflammation. MEG3 regulated lin-28 homolog B (LIN28B) expression through adsorbing miR-23c. MiR-23c inhibitor reversed MEG3 knockdown-mediated effects on HG-stimulated HMC proliferation, ECM accumulation, and inflammation. LIN28B overexpression overturned miR-23c mimic-mediated effects on HG-stimulated HMC proliferation, ECM accumulation, and inflammation. CONCLUSION MEG3 regulated HMC injury via regulation of the miR-23c/LIN28B axis in DN, which can help us better understand the mechanism of DN mediated by MEG3.
Collapse
Affiliation(s)
- Lu Rong
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huanzhou Xue
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jianwei Hao
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jianjun Liu
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hao Xu
- Department of Urology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Soltani-Fard E, Taghvimi S, Karimi F, Vahedi F, Khatami SH, Behrooj H, Deylami Hayati M, Movahedpour A, Ghasemi H. Urinary biomarkers in diabetic nephropathy. Clin Chim Acta 2024; 561:119762. [PMID: 38844018 DOI: 10.1016/j.cca.2024.119762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Diabetic nephropathy (DN), a significant consequence of diabetes, is associated with adverse cardiovascular and renal disease as well as mortality. Although microalbuminuria is considered the best non-invasive marker for DN, better predictive markers are needed of sufficient sensitivity and specificity to detect disease in general and in early disease specifically. Even prior to appearance of microalbuminuria, urinary biomarkers increase in diabetics and can serve as accurate nephropathy biomarkers even in normoalbuminuria. In this review, a number of novel urine biomarkers including those reflecting kidney damage caused by glomerular/podocyte damage, tubular damage, oxidative stress, inflammation, and intrarenal renin-angiotensin system activation are discussed. Our review also includes emerging biomarkers such as urinary microRNAs. These short noncoding miRNAs regulate gene expression and could be utilized to identify potential novel biomarkers in DN development and progression. .
Collapse
Affiliation(s)
- Elahe Soltani-Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Farzaneh Vahedi
- Biomedical and Microbial Advanced Technologies Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
4
|
Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol 2024; 224:116218. [PMID: 38643906 DOI: 10.1016/j.bcp.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Benitez MBM, Navarro YP, Azuara-Liceaga E, Cruz AT, Flores JV, Lopez-Canovas L. Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review). Int J Mol Med 2024; 53:44. [PMID: 38516776 PMCID: PMC10998718 DOI: 10.3892/ijmm.2024.5368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Circular RNAs (circRNAs) are non‑coding single‑stranded covalently closed RNA molecules that are considered important as regulators of gene expression at the transcriptional and post‑transcriptional levels. These molecules have been implicated in the initiation and progression of multiple human diseases, ranging from cancer to inflammatory and metabolic diseases, including diabetes mellitus and its vascular complications. The present article aimed to review the current knowledge on the biogenesis and functions of circRNAs, as well as their role in cell processes associated with diabetic nephropathy. In addition, novel potential interactions between circRNAs expressed in renal cells exposed to high‑glucose concentrations and the transcription factors c‑Jun and c‑Fos are reported.
Collapse
Affiliation(s)
- Maximo Berto Martinez Benitez
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Yussel Pérez Navarro
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Elisa Azuara-Liceaga
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Angeles Tecalco Cruz
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Jesús Valdés Flores
- Biochemistry Department, Center for Research and Advanced Studies, National Polytechnic Institute of Mexico, Mexico City, CP 07360, Mexico
| | - Lilia Lopez-Canovas
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| |
Collapse
|
6
|
Shelke V, Kale A, Sankrityayan H, Anders HJ, Gaikwad AB. Long non-coding RNAs as emerging regulators of miRNAs and epigenetics in diabetes-related chronic kidney disease. Arch Physiol Biochem 2024; 130:230-241. [PMID: 34986074 DOI: 10.1080/13813455.2021.2023580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/22/2021] [Indexed: 01/19/2023]
Abstract
Diabetes is one of the major cause of chronic kidney disease (CKD), including "diabetic nephropathy," and is an increasingly prevalent accelerator of the progression of non-diabetic forms of CKD. The long non-coding RNAs (lncRNAs) have come into the limelight in the past few years as one of the emerging weapons against CKD in diabetes. Available data over the past few years demonstrate the interaction of lncRNAs with miRNAs and epigenetic machinery. Interestingly, the evolving data suggest that lncRNAs play a vital role in diabetes-associated CKD by regulation of epigenetic enzymes such as DNA methyltransferase, histone deacetylases, and histone methyltransferases. LncRNAs are also engaged in the regulation of several miRNAs in diabetic nephropathy. Hence this review will elaborate on the association between lncRNAs and their interaction with epigenetic regulators involved in different aspects and thus the progression of CKD in diabetes.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | - Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| |
Collapse
|
7
|
Chen H, Liu Y, Zhang T, Huang T, Lang Y, Sheng Q, Liu Y, Kong Z, Gao Y, Lu S, Yang M, Li X, Wang R, Lv Z. Inhibition of the lncRNA 585189 prevents podocyte injury and mitochondria dysfunction by promoting hnRNP A1 and SIRT1 in diabetic nephropathy. Mol Cell Endocrinol 2023; 578:112065. [PMID: 37690472 DOI: 10.1016/j.mce.2023.112065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Podocyte dysfunction has been identified as a crucial pathological characteristic of diabetic nephropathy (DN). However, the regulatory effects of long non-coding RNAs (lncRNAs) in this process have not been fully elucidated. Here, we performed an unbiased RNA-sequencing (RNA-seq) analysis of renal tissues and identified a significantly upregulated long non-coding RNA, ENST00000585189.1 (lncRNA 585189), in patients with DN. Furthermore, lncRNA 585189 was positively correlated with renal insufficiency and was upregulated in both DN patients and high-glucose-induced human podocytes. Gain- and loss-of-function experiments revealed that silencing lncRNA 585189 decreased the production of ROS, rescued aberrant mitochondrial morphology and membrane potential, and alleviated podocyte damage caused by high glucose. Mechanistically, bioinformatics analysis predicted an interaction between lncRNA 585189 and hnRNP A1, which was subsequently confirmed by RIP, pull-down, and EMSA assays. Further investigation revealed that lncRNA 585189 destabilizes the hnRNP A1 protein, leading to the downregulation of its expression. Conversely, hnRNP A1 promoted the expression of lncRNA 585189. Moreover, both RIP and pull-down assays demonstrated a direct interaction between hnRNP A1 and SIRT1, which enhanced SIRT1 mRNA stability. Our findings suggest that lncRNA 585189 suppresses SIRT1 through hnRNP A1, thereby hindering the recovery from mitochondrial abnormalities and podocyte damage. In summary, targeting lncRNA 585189 is a promising strategy for reversing mitochondrial dysfunction and treating DN.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China
| | - Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China
| | - Yingxiao Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China
| | - Xia Li
- Department of Nephrology, Shandong Provincial Hospital, Shandong University. No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China.
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, China.
| |
Collapse
|
8
|
Shu H, Zhang Z, Liu J, Chen P, Yang C, Wu Y, Wu D, Cao Y, Chu Y, Li L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed Pharmacother 2023; 168:115818. [PMID: 37939612 DOI: 10.1016/j.biopha.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent chronic microvascular complication associated with diabetes mellitus and represents a major cause of chronic kidney disease and renal failure. Current treatment strategies for DN primarily focus on symptom alleviation, lacking effective approaches to halt or reverse DN progression. Circular RNA (circRNA), characterized by a closed-loop structure, has emerged as a novel non-coding RNA regulator of gene expression, attributed to its conservation, stability, specificity, and multifunctionality. Dysregulation of circRNA expression is closely associated with DN progression, whereby circRNA impacts kidney cell injury by modulating cell cycle, differentiation, cell death, as well as influencing the release of inflammatory factors and stromal fibronectin expression. Consequently, circRNA is considered a predictive biomarker and a potential therapeutic target for DN. This review provides an overview of the latest research progress in the classification, functions, monitoring methods, and databases related to circRNA. The paper focuses on elucidating the impact and underlying mechanisms of circRNA on kidney cells under diabetic conditions, aiming to offer novel insights into the prevention, diagnosis, and treatment of DN.
Collapse
Affiliation(s)
- Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
9
|
Kandeil M, Shaarawy MA, Mourad HA, Mahmoud MO. Renoprotective Potency of Sitagliptin versus Pioglitazone in Type 2 Diabetic Patients: Impact on LncMIAT. ACS OMEGA 2023; 8:43218-43226. [PMID: 38024775 PMCID: PMC10652733 DOI: 10.1021/acsomega.3c07008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Background: Diabetes mellitus (DM) represents one of the most important reasons for chronic kidney diseases due to the high level of blood glucose that destructs blood vessels. Objective: The present study focused on investigating the protective impact of sitagliptin on kidney complication in type 2 diabetes mellitus (T2DM) patients in comparison to pioglitazone to examine which has the superior effect against the nephritic complication of DM. Methods: Eighty adult subjects were classified into four groups: control group, pioglitazone-treated T2DM patients (P group), sitagliptin-treated T2DM patients for less than one year (SL group), and sitagliptin-treated T2DM patients for more than one year (SM group). Blood samples were withdrawn from all subjects for analysis of neutrophil gelatinase-associated lipocalin (NGAL), vanin-1, kidney injury molecule-1 (KIM-1), glyoxalase-1 (Glo-1), methylglyoxal (MG), cystatin-C, and interleukin-18 (IL-18) using competitive ELISA kits. Also, long noncoding myocardial infarction associated transcript (lncMIAT) was measured in whole blood using qRT-PCR. Results: The present study revealed that the lncMIAT expression level was significantly higher in the P group as compared to the SL group, SM group, or healthy control group. Additionally, serum NGAL, vanin-1, KIM-1, Glo-1, MG, and cystatin-C were significantly higher in the P group and SL group as compared to the SM group and healthy control group. Conclusion: Sitagliptin protected the kidney through downregulation of lncMIAT besides amelioration of kidney injury marker levels, which was more preferable than in pioglitazone therapy.
Collapse
Affiliation(s)
- Mohamed
A. Kandeil
- Biochemistry
Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed A. Shaarawy
- Internal
Medicine and Nephrology Department, Faculty
of Medicine, El-Minia University, El-Minia 61519, Egypt
| | - Hamdy A. Mourad
- Biochemistry
Department, Faculty of Pharmacy, Beni-Suef
University, Beni-Suef 62514, Egypt
| | - Mohamed O. Mahmoud
- Biochemistry
Department, Faculty of Pharmacy, Beni-Suef
University, Beni-Suef 62514, Egypt
| |
Collapse
|
10
|
Xia J, Sun W, Dun J. LncRNA 1500026H17Rik knockdown ameliorates high glucose-induced mouse podocyte injuries through the miR-205-5p/EGR1 pathway. Int Urol Nephrol 2023; 55:1045-1057. [PMID: 36306049 DOI: 10.1007/s11255-022-03396-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Podocyte injuries and dysfunctions contribute to the development of diabetic nephropathy (DN). This study aimed to investigate the role and novel mechanism of lncRNA 1500026H17Rik in high glucose (HG)-treated podocytes. METHODS DN mice were induced by streptozotocin, and DN in vitro models were constructed in mouse podocytes treated with HG. The expression of fibrosis-related proteins and early growth response protein 1 (EGR1) was detected by western blot. The expression of 1500026H17Rik, miR-205-5p and EGR1 mRNA was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell apoptosis was monitored by flow cytometry assay. Oxidative stress was assessed according to the levels of superoxide dismutase (SOD), malondialdehyde (MDA) and reactive oxygen species (ROS). Inflammatory response was assessed according to the releases of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). The target relationship between miR-205-5p and 1500026H17Rik or EGR1 was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. RESULTS 1500026H17Rik was upregulated in DN mice and HG-induced podocytes. 1500026H17Rik knockdown alleviated podocyte apoptosis, fibrosis, oxidative stress and inflammation induced by HG. MiR-205-5p was a target of 1500026H17Rik, and EGR1 was a downstream target of miR-205-5p. Rescue experiments presented that miR-205-5p inhibition reversed the effects of 1500026H17Rik knockdown. Moreover, miR-205-5p restoration also ameliorated HG-induced cell injuries, which were overturned by EGR1 overexpression. In addition, EGR1 overexpression recovered podocyte apoptosis, fibrosis, oxidative stress and inflammation weakened by 1500026H17Rik knockdown. CONCLUSION 1500026H17Rik knockdown alleviated HG-induced podocyte injuries, including apoptosis, fibrosis, oxidative stress and inflammation, by governing the miR-205-5p/EGR1 pathway, thus involving in DN development.
Collapse
Affiliation(s)
- Jinjin Xia
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, No. 253 Industrial Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Weigang Sun
- Department of Nephrology, Tianshui First People's Hospital, Tianshui, Gansu, China
| | - Jingjing Dun
- Medical School of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
11
|
Gui H, Chen X, Ye L, Ma H. Seven basement membrane-specific expressed genes are considered potential biomarkers for the diagnosis and treatment of diabetic nephropathy. Acta Diabetol 2023; 60:493-505. [PMID: 36627452 DOI: 10.1007/s00592-022-02027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023]
Abstract
AIMS Diabetic nephropathy (DN) is a diabetes-related chronic vasculitis. DN diminishes kidney function over time and, of course, leads to end stage renal disease in people (ESRD). In spite of the advances in diagnostic and treatment methods for DN, DN continues to impose a significant physical and psychological burden on patients, severely impacting their quality of life, making the hunt for novel therapeutic targets necessary. METHODS The Gene Expression Omnibus (GEO) microarray datasets GSE1009, GSE30122, GSE142153, and GSE96804 were downloaded to identify differentially expressed genes (DEGs) in kidney tissues from patients in the DN group and normal controls. These three datasets were examined for genes associated with basement membranes (BMs) with differential gene expression. The target genes were then subjected to gene ontology (GO) annotation and Kyoto Gene and Genome Encyclopedia (KEGG) pathway enrichment analysis. BM-related genes underwent PPI network analysis and screening of the top 10 hub genes, along with immune infiltration analysis and column line graph model development. Finally, we conducted DN therapeutic medication prediction and the creation of something like a miRNA network for genetic markers with BMs. RESULTS Seven candidate BM-related genes (COL4A1, COL4A2, COL6A2, COL6A3, FN1, ITGQ4, and LAMB1) with acceptable helps the healthcare were discovered. Enrichment analysis of diabetes-related genes event occurred the role of biological processes including extracellular matrix organization, extracellular structural organization, and collagen-containing extracellular matrix, as well as the PI3K-Akt signaling pathway and the AGE-RAGE signaling pathway, in diabetic complications. These genes may also be associated in immune cells and autoimmune activities, such as Macrophages and MHC class I, in order to impact the immune process in DN. In the meanwhile, based on these seven BM-related genes, we discovered that Ginsenoside Rh1 was very significant for drug targeting. CONCLUSIONS This research identified seven BM-related genes as possible diagnostic and therapeutic biomarkers for DN. Analysis of inflammatory infiltration indicated that these genes may be important in inflammatory processes through Macrophages and MHC class I, hence impacting the course and development of DN illness. The development of a correlated column line graph model for it also shown excellent predictive capabilities. In addition, we have found pharmaceuticals, such as Ginsenoside Rh1, that may provide fresh insights into the personalized management of patients with DN.
Collapse
Affiliation(s)
- HouShan Gui
- School of Chemistry and Biological Engineering, Yichun University, Yichun, 336000, China
| | - Xin Chen
- School of Chemistry and Biological Engineering, Yichun University, Yichun, 336000, China
| | - LuFen Ye
- School of Chemistry and Biological Engineering, Yichun University, Yichun, 336000, China
| | - Hao Ma
- Yichun University School of Aesthetic Medicine, No. 576 Yuanzhou District, Yichun, 336000, Jiangxi Province, China.
| |
Collapse
|
12
|
Guo J, Zheng W, Liu Y, Zhou M, Shi Y, Lei M, Zhang C, Liu Z. Long non-coding RNA DLX6-AS1 is the key mediator of glomerular podocyte injury and albuminuria in diabetic nephropathy by targeting the miR-346/GSK-3β signaling pathway. Cell Death Dis 2023; 14:172. [PMID: 36854759 PMCID: PMC9975222 DOI: 10.1038/s41419-023-05695-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
Progressive albuminuria is the primary clinical symptom of diabetic nephropathy (DN), leading to a gradual decline in kidney function. DLX6-AS1 was the first reported long non-coding RNA (lncRNA) to participate in organogenesis and play crucial roles in the brain or neural cell development. Herein, we investigated the DLX6-AS1 (Dlx6-os1 in mice) role in DN pathogenesis. We found that DLX6-AS1 expression in DN patients correlated with the extent of albuminuria. Dlx6-os1 overexpression induced cellular damage and inflammatory responses in cultured podocytes through miR-346-mediated regulation of the GSK-3β pathway. In various established diabetic and newly developed knockout mouse models, Dlx6-os1 knockdown/knockout significantly reduced podocyte injury and albuminuria. The Dlx6-os1 effects were remarkably modulated by miR-346 mimics or mutants and significantly diminished in podocyte-specific GSK-3β-knockout mice. Thus, DLX6-AS1 (Dlx6-os1) promotes DN development by accelerating podocyte injury and inflammation through the upregulation of the GSK-3β pathway, providing a novel molecular target for DN therapy.
Collapse
Affiliation(s)
- Jia Guo
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Wen Zheng
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yong Liu
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Mengwen Zhou
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yan Shi
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Min Lei
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Chaojie Zhang
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Zhangsuo Liu
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
13
|
Zhang L, Jin G, Zhang W, Wang X, Li Z, Dong Q. Silencing circ_0080425 alleviates high-glucose-induced endothelial cell dysfunction in diabetic nephropathy by targeting miR-140-3p/FN1 axis. Clin Exp Nephrol 2023; 27:12-23. [PMID: 36083527 DOI: 10.1007/s10157-022-02273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hsa_circ_0080425 (circ_0080425) is newly identified to correlate with the progression of diabetic nephropathy (DN). However, its role and mechanism in DN process is not very clear. METHODS Cell counting kit-8 assay, flow cytometry, scratch wound assay, and western blotting were performed to measure endothelial cell dysfunction. Expression of circ_0080425, microRNA (miR)-140-3p and fibronectin 1 (FN1) were determined by quantitative real-time PCR and western blotting. The direct interaction was confirmed by dual-luciferase reporter assay. RESULTS High-glucose (HG) treatment could induce inhibition of cell proliferation, cell cycle entrance and wound healing rate in human umbilical vein endothelial cells (HRGEC), and enhancement of apoptosis rate. Circ_0080425 expression was upregulated by HG, and exhausting circ_0080425 could attenuate HG-induced above effects in HRGEC. MiR-140-3p was sponged by circ_0080425, and its inhibitor reversed the regulation of circ_0080425 knockdown on HG-induced HRGEC injury. FN1 was targeted by miR-140-3p, and its overexpression also restored the inhibitory effect of miR-140-3p on HC-induced HRGEC injury. CONCLUSION Circ_0080425 expression might contribute to HG-induced endothelial cell injury, and circ_0080425/miR-140-3p/FN1 axis was a potential therapeutic approach to interfere DN process.
Collapse
Affiliation(s)
- Linping Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Gang Jin
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Wei Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Xiaoming Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Zhenjiang Li
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Qianlan Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
14
|
Sakshi, Ragini, Saini A, Verma C, Mani I. Epigenetics in renal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:61-71. [DOI: 10.1016/bs.pmbts.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
LncRNA TTN-AS1 exacerbates extracellular matrix accumulation via miR-493-3p/FOXP2 axis in diabetic nephropathy. J Genet 2022. [DOI: 10.1007/s12041-022-01397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Singh D, Rai V, Agrawal DK. Non-Coding RNAs in Regulating Plaque Progression and Remodeling of Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2022; 23:13731. [PMID: 36430208 PMCID: PMC9692922 DOI: 10.3390/ijms232213731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) regulate cell proliferation, migration, differentiation, inflammation, metabolism of clinically important biomolecules, and other cellular processes. They do not encode proteins but are involved in the regulatory network of various proteins that are directly related to the pathogenesis of diseases. Little is known about the ncRNA-associated mechanisms of atherosclerosis and related cardiovascular disorders. Remodeling of the extracellular matrix (ECM) is critical in the pathogenesis of atherosclerosis and related disorders; however, its regulatory proteins are the potential subjects to explore with special emphasis on epigenetic regulatory components. The activity of regulatory proteins involved in ECM remodeling is regulated by various ncRNA molecules, as evident from recent research. Thus, it is important to critically evaluate the existing literature to enhance the understanding of nc-RNAs-regulated molecular mechanisms regulating ECM components, remodeling, and progression of atherosclerosis. This is crucial since deregulated ECM remodeling contributes to atherosclerosis. Thus, an in-depth understanding of ncRNA-associated ECM remodeling may identify novel targets for the treatment of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
17
|
Niu Z, Ren G, Huang L, Mu L. Circ_0008529 Contributes to Renal Tubular Cell Dysfunction in High Glucose Stress via miR-185-5p/SMAD2 Pathway in Diabetic Nephropathy. Biochem Genet 2022; 61:963-978. [DOI: 10.1007/s10528-022-10296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
18
|
Li J, Min Y, Zhao Q. Circ_0000064 knockdown attenuates high glucose-induced proliferation, inflammation and extracellular matrix deposition of mesangial cells through miR-424-5p-mediated WNT2B inhibition in cell models of diabetic nephropathy. Clin Exp Nephrol 2022; 26:943-954. [PMID: 35678923 DOI: 10.1007/s10157-022-02241-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Circular RNA (circRNA) is widely shown to be associated with the development of diabetic nephropathy (DN). Our study aimed to further explore the role of circ_0000064 and provide a new mechanism for its action in DN. METHODS Cell models of DN in vitro were constructed by treating human renal mesangial cells (HRMCs) with high glucose (HG). The expression of circ_0000064, microRNA-424-5p (miR-424-5p) and Wnt family member 2B (WNT2B) mRNA was detected by quantitative real-time PCR (qPCR). Cell proliferation was assessed by CCK-8 assay and EdU assay. Cell cycle was characterized by DNA content using flow cytometry. The releases of pro-inflammatory factors were checked using commercial ELISA kits. The expression of cell cycle- and fibrosis-associated proteins was detected by western blot. The interplays between miR-424-5p and circ_0000064 or WNT2B were verified by dual-luciferase reporter assay and RIP assay. RESULTS Circ_0000064 and WNT2B were upregulated, while miR-424-5p was downregulated in HG-treated HRMCs. Circ_0000064 knockdown largely attenuated HG-induced proliferation, inflammatory responses and extracellular matrix (ECM) accumulation in HRMCs, and miR-424-5p deficiency reversed the role of circ_0000064 knockdown. MiR-424-5p was a target of circ_0000064, and miR-424-5p directly bound to WNT2B. MiR-424-5p restoration alleviated HG-induced proliferation, inflammatory responses and ECM accumulation in HRMCs, and WNT2B overexpression partially abolished the effects of miR-424-5p. CONCLUSION Circ_0000064 knockdown ameliorated HG-induced HRMC dysfunctions through miR-424-5p enrichment-mediated WNT2B inhibition, hinting that circ_0000064 contributed to DN development.
Collapse
Affiliation(s)
- Jianfei Li
- Department of Nephrology, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Yan Min
- Department of Nephrology, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Qin Zhao
- Department of Geriatrics, Liuzhou People's Hospital, Wenchang No. 8 Road, Liuzhou, 545006, Guangxi, China.
| |
Collapse
|
19
|
circ_000166/miR-296 Aggravates the Process of Diabetic Renal Fibrosis by Regulating the SGLT2 Signaling Pathway in Renal Tubular Epithelial Cells. DISEASE MARKERS 2022; 2022:6103086. [PMID: 35615399 PMCID: PMC9126678 DOI: 10.1155/2022/6103086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 01/09/2023]
Abstract
Diabetic renal fibrosis is a common cause of end-stage renal disease, and the circRNA-miRNA-mRNA network may play an important role in the progression of diabetic nephropathy- (DN-) induced renal fibrosis. In this study, the role of circ_000166/miR-296/SGLT2 in the process of DN-related renal fibrosis was studied by constructing an animal model of DN renal fibrosis via lentiviral transfection, plasmid transfection, and dual-luciferase reporting techniques. Compared with that of normal controls, the expression of circ_000166 in the kidney tissues of DN renal fibrosis mice substantially increased. Silencing circ_000166 could minimize kidney damage and decrease urine protein levels, thereby inhibiting the progression of renal fibrosis. Moreover, circ_000166 could act as the ceRNA of miR-296 and competitively bind to miR-296, leading to an increase in the expression of the SGLT2 gene regulated by miR-296. Through mutual verification via in vivo and in vitro experiments, miR-296 was overexpressed and SGLT2 was silenced. Results showed that DN renal fibrosis and cell apoptosis were considerably reduced. We postulate that circ_000166/miR-296/SGLT2 may become a new target in the progression of DN renal fibrosis, and the regulation of this pathway may be a promising strategy for clinical treatment of DN renal fibrosis.
Collapse
|
20
|
Identification of circRNA/miRNA/mRNA regulatory network involving (+)-catechin ameliorates diabetic nephropathy mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Li B, Sun G, Yu H, Meng J, Wei F. Exosomal circTAOK1 contributes to diabetic kidney disease progression through regulating SMAD3 expression by sponging miR-520h. Int Urol Nephrol 2022; 54:2343-2354. [PMID: 35142978 DOI: 10.1007/s11255-022-03139-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/30/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a frequent diabetes complication with complex pathogenesis. Circular RNA (circRNA) circTAOK1 (also named circ_0003928) has been reported to be upregulated in high glucose (HG)-treated human umbilical vein endothelial cells. Also, exosomal circRNAs can exert significant roles in the pathology of various diseases. This study is designed to explore the role and mechanism of exosomal circTAOK1 on the glomerular mesangial cell (GMC) injury in DN. METHODS Exosomes were detected by a transmission electron microscope. The protein levels of CD9, CD63, proliferating cell nuclear antigen (PCNA), cyclinD1, α-SMA, fibronectin, E-cadherin, N-cadherin, and SMAD family member 3 (SMAD3) were examined by western blot assay. circTAOK1, microRNA-520h (miR-520h), and SMAD3 levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation and cell cycle progression were detected by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. The binding relationship between miR-520h and circTAOK1 or SMAD3 was predicted by Starbase and then verified by a dual-luciferase reporter and RNA immunoprecipitation (RIP), RNA pull-down assays. RESULTS CircTAOK1 expression was upregulated in the exosomes isolated from HG-treated glomerular epithelial cells (GEC). Moreover, GEC-circTAOK1-Exo could promote proliferation, fibrosis, and epithelial-mesenchymal transition (EMT) of glomerular mesangial cells (GMCs). Mechanically, circTAOK1 could regulate SMAD3 expression by sponging miR-520h, GEO-si-circTAOK1 Exo-induced miR-520h and repressed SMAD3 expression in GMC. CONCLUSION GEC-circTAOK1-Exo could boost proliferation, fibrosis, and EMT of GMC through targeting the miR-520h/SMAD3 axis, providing new insights into the pathogenesis of DN.
Collapse
Affiliation(s)
- Bo Li
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, China
| | - Guijiang Sun
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, China
| | - Haibo Yu
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, China
| | - Jia Meng
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, China
| | - Fang Wei
- Department of Blood Purification, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, China.
| |
Collapse
|
22
|
Geng Z, Dong B, Lv W, Wang Z, Wang X, Huang Y, Wang Y, Xu L. LncRNA ZFAS1 regulates the proliferation, oxidative stress, fibrosis, and inflammation of high glucose-induced human mesangial cells via the miR-588/ROCK1 axis. Diabetol Metab Syndr 2022; 14:21. [PMID: 35090549 PMCID: PMC8796624 DOI: 10.1186/s13098-022-00791-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/08/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a critical and the most common microvascular complication and its pathogenesis is still faintly understood. Thus, this study was performed to examine the long non-coding RNA ZNFX1 Antisense Gene Protein 1 (lncRNA ZFAS1) biological function and mechanism of regulation in DN. METHOD Human glomerular mesangial cells (HGMC) were induced with high glucose (HG, 25 mM) to establish HG-induced cell viability, pro-inflammation observed in DN. After, target miRNA and mRNA were predicted through Lncbase and Targetscan. Subsequently, the expression of ZFAS1, miR-588, and ROCK1 in DN clinical samples and cell-model was examined through qRT-PCR and western blot analysis. We upheld the targeted interaction between miR-588 and ZFAS1 or ROCK1 through a dual-luciferase reporter assay. The proliferation of the cell was also examined through CCK-8 assay, while the level of HG-induced oxidative stress was established by measuring reactive oxygen species (ROS) level, and also the activities of antioxidant enzymes in the cell. Lastly, the level of accumulated extracellular matrix (ECM) protein-fibronectin and collagen type IV, and inflammatory cytokines produced by the cell was analyzed through western blot analysis and ELISA. RESULTS ZFAS1 was significantly upregulated in the DN blood samples and HG-induced HGMC. Prediction result revealed that the ZFAS1 endogenously targets the miR-588 seed sequence while miR-588 plays a role in post-transcriptional regulation of ROCK1 mRNA. Moreover, we found that miR-588 expression was significantly downregulated in DN blood samples and negatively correlates with ZFAS1 expression. Further results show that silencing ZFAS1 had a protective effect on HG-induced proliferation, oxidative stress, fibrosis, and inflammation in HGMC while miR-588 inhibition and ROCK1 overexpression reversed this effect. CONCLUSIONS Altogether, our data suggest that ZFAS1 regulates the proliferation, oxidative stress, fibrosis, and inflammation of high glucose-induced diabetic nephropathy through the miR-588/ROCK1 axis.
Collapse
Affiliation(s)
- Zhuang Geng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Wenshan Lv
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Zhongchao Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Xiang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - YaJing Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China.
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
23
|
Han S, Zhang XL, Jiang X, Li X, Ding J, Zuo LJ, Duan SS, Chen R, Sun BB, Hu XY, Gao YN, Zhang XL. Long Non-Coding RNA and mRNA Expression Analysis in Liver of Mice With Clonorchis sinensis Infection. Front Cell Infect Microbiol 2022; 11:754224. [PMID: 35127549 PMCID: PMC8807509 DOI: 10.3389/fcimb.2021.754224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Clonorchiasis is recognized as an important zoonotic parasitic disease worldwide. However, the roles of host long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in the response to Clonorchis sinensis (C. sinensis) infection remain unknown. Here we compared the expression of lncRNAs and mRNAs in the liver tissue of mice infected with C. sinensis, in order to further understand the molecular mechanisms of clonorchiasis. A total of 388 lncRNAs and 1,172 mRNAs were found to be differentially expressed with absolute value of fold change (FC) ≥ 2.0 and p < 0.05 by microarray. Compared with controls, Gm6135 and 4930581F22Rik were the most over- and under-expressed lncRNAs; flavin-containing monooxygenase 3 (Fmo3) and deleted in malignant brain tumors 1 (Dmbt1) were the most over- and under-expressed mRNAs. Moreover, functional annotation showed that the significantly different mRNAs were related with “FOXO signaling pathway”, “Wnt signaling pathway”, and “AMPK signaling pathway”. Remarkably, lncRNA Gm8801 were significantly correlated with mRNA glycerol-3-phosphate acyltransferase mitochondrial (Gpam), insulin receptor substrate 2 (Irs2), and tumor necrosis factor receptor superfamily member 19 (Tnfrsf19) in ceRNA networks. These results showed that the expression profiles of lncRNAs and mRNAs in the liver changed after C. sinensis infection. Our results provided valuable insights into the lncRNAs and mRNAs involved in clonorchiasis pathogenesis, which may be useful for future control strategies.
Collapse
Affiliation(s)
- Su Han
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xue-Li Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xu Jiang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiang Li
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Jian Ding
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Li-Jiao Zuo
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Shan-Shan Duan
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Rui Chen
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei-Bei Sun
- Clinical Laboratory, Zhuhai Maternal and Child Health Hospital, Zhuhai, China
| | - Xin-Yi Hu
- Department of Stomatology, Laixi People’s Hospital, Qingdao, China
| | - Yan-Nan Gao
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiao-Li Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
- *Correspondence: Xiao-Li Zhang,
| |
Collapse
|
24
|
Zhang D, Chen X, Zheng D. A Novel MIR503HG/miR-497-5p/CCL19 Axis Regulates High Glucose-Induced Cell Apoptosis, Inflammation, and Fibrosis in Human HK-2 Cells. Appl Biochem Biotechnol 2022; 194:2061-2076. [DOI: 10.1007/s12010-021-03776-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/29/2022]
|
25
|
Tu C, Wang L, Wei L, Jiang Z. The role of circular RNA in Diabetic Nephropathy. Int J Med Sci 2022; 19:916-923. [PMID: 35693742 PMCID: PMC9149631 DOI: 10.7150/ijms.71648] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetic nephropathy (DKD) is the most common chronic microvascular complication of diabetes. About 20%-40% of diabetics develop DKD, which eventually leads to chronic kidney failure. Although progress has been made in diagnosis and treatment tools, diabetic nephropathy is still a major clinical problem. In recent years, circular RNA (CircRNA) has become a research hotspot. CircRNA is a non-coding RNA formed by covalently closing the 5 'and 3' ends of the precursor RNA. CircRNA has powerful biological functions. CircRNA can regulate the expression of target genes through competitive binding with microRNA, thus playing the biological role of endogenous RNA (CeRNA). Many studies have shown that circRNAs plays an important role in malignant tumors, autoimmune system diseases, coronary heart disease and other diseases. More and more studies have shown that it can also be used as a biomarker of diabetes and diabetic nephropathy. This review summarizes the origin, classification, biogenesis and regulatory mechanisms of circRNAs. In addition, the pathogenesis and clinical significance of circRNAs as competing endogenous RNAs involved in diabetic nephropathy were also introduced. This will help us fully understand the pathological mechanism of diabetic nephropathy and develop new therapeutic targets or treatment options to improve the prognosis of patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Liangzhi Wang
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213000, China
| | - Zhuyan Jiang
- Department of Dermatology, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| |
Collapse
|
26
|
Fan X, Xu M, Chen X, Ren Q, Fan Y, Wang R, Chen J, Cui L, Wang Z, Sun X, Guo N. Proteomic profiling and correlations with clinical features reveal biomarkers indicative of diabetic retinopathy with diabetic kidney disease. Front Endocrinol (Lausanne) 2022; 13:1001391. [PMID: 36277688 PMCID: PMC9581084 DOI: 10.3389/fendo.2022.1001391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are complications of diabetes and place serious health and economic burdens on society. However, the identification and characterization of early biomarkers for DKD, especially for nonproliferative DR (NPDR) patients with DKD, are still needed. This study aimed to demonstrate the plasma proteomic profiles of NPDR+DKD and NPDR patients and identify potential biomarkers for early diagnosis of DKD. Fifteen plasma samples from the NPDR group and nine from the NPDR+DKD group were analyzed by LC-MS/MS to identify the differentially expressed proteins between the two groups. Functional enrichment, protein-protein interaction and clinical feature correlation analyses revealed the target protein candidates, which were verified using ELISA and receiver operating characteristic (ROC) analysis. In total, 410 proteins were detected in plasma; 15 were significantly upregulated and 7 were downregulated in the NPDR+DKD group. Bioinformatics analysis suggested that DKD is closely related to cell adhesion and immunity pathways. β-2-Microglobulin (B2M) and vimentin (VIM) were upregulated in NPDR+DKD, enriched as hub proteins and strongly correlated with clinical features. ELISA showed that B2M (p<0.001) and VIM (p<0.0001) were significantly upregulated in NPDR+DKD compared with NPDR. In ROC analysis, B2M and VIM could distinguish DKD from NPDR with area under the curve values of 0.9000 (p < 0.0001) and 0.9950. Our proteomic study revealed alterations in the proteomic profile and identified VIM and B2M as early biomarkers of DKD, laying the foundation for the prevention, diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Xiao’e Fan
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
- *Correspondence: Xiao’e Fan,
| | - Manhong Xu
- Department of Vitreoretinal and Ocular Trauma, Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research Center of Ophthalmology and Visual Science, Tianjin, China
| | - Xin Chen
- Department of Vitreoretinal and Ocular Trauma, Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research Center of Ophthalmology and Visual Science, Tianjin, China
| | - Qianfeng Ren
- Department of Pathology, Jincheng People’s Hospital, Jincheng, China
| | - Yan Fan
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| | - Ranran Wang
- Department of Laboratory, Jincheng People’s Hospital, Jincheng, China
| | - Jiaqi Chen
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| | - Li Cui
- Department of Nephrology, Jincheng People’s Hospital, Jincheng, China
| | - Zhengmin Wang
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| | - Xiaoyan Sun
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| | - Nannan Guo
- Department of Ophthalmology, Jincheng People’s Hospital, Jincheng, China
| |
Collapse
|
27
|
Zhao L, Chen H, Zeng Y, Yang K, Zhang R, Li Z, Yang T, Ruan H. Circular RNA circ_0000712 regulates high glucose-induced apoptosis, inflammation, oxidative stress, and fibrosis in (DN) by targeting the miR-879-5p/SOX6 axis. Endocr J 2021; 68:1155-1164. [PMID: 33980772 DOI: 10.1507/endocrj.ej20-0739] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN), a frequent diabetes complication, has complex pathogenesis. Circular RNAs (circRNAs) circ_0000712 has been reported to be upregulated in kidney tissues and high glucose (HG)-inducted Mesangial cells (MCs). This study is designed to explore the role and mechanism of circ_0000712 in the HG-inducted MCs injury in DN. Circ_0000712, microRNA-879-5p (miR-879-5p), and SRY-Box Transcription Factor 6 (SOX6) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell apoptosis was examined by flow cytometry assay. Protein levels of B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), fibronectin (FN), collagen type I (Col. I), collagen type IV (Col. IV), and SOX6 were assessed by western blot assay. Levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) were measured by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) generation, Lactate Dehydrogenase (LDH) activity, and Superoxide Dismutase (SOD) activity were detected by the corresponding kits. The binding relationship between miR-879-5p and circ_0000712 or SOX6 was predicted by starBase and Targetscan, and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. Circ_0000712 and SOX6 were highly expressed, and miR-879-5p was decreased in db/db DN mice and HG-inducted SV40-MES13 cells. Furthermore, circ_0000712 deficiency repressed HG-caused apoptosis, inflammation, oxidative stress, and fibrosis in SV40-MES13 cells. Mechanically, circ_0000712 could regulate SOX6 expression by sponging miR-879-5p. Circ_0000712 knockdown could hinder HG-inducted SV40-MES13 cell injury through targeting the miR-879-5p/SOX6 axis, implying a possible circRNA-targeted therapy for DN.
Collapse
Affiliation(s)
- Li Zhao
- Department of Nephrology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Huaqian Chen
- Department of Nephrology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Yan Zeng
- Department of Nephrology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Kun Yang
- Department of Endocrinology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Ren Zhang
- Department of Nephrology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Zhengdong Li
- Department of Nephrology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Tao Yang
- Department of Nephrology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Hualing Ruan
- Department of Endocrinology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| |
Collapse
|
28
|
Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 2021; 227:153618. [PMID: 34649056 DOI: 10.1016/j.prp.2021.153618] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a drastic renal complication of type 1 and type 2 diabetes mellitus (DM). Poorly controlled DM over the years, may disrupt kidneys' blood vessels, leading to the hypertension (HTN) and DN onset. During DN, kidneys' waste filtering ability becomes disturbed. Being on a healthy lifestyle and controlling both DM and HTN are now the best proceedings to prevent or at least delay DN occurrence. Unfortunately, about one-fourth of diabetic individuals eventually experience the corresponding renal failure, and thus it is critical to discover effective diagnostic biomarkers and therapeutic strategies to combat DN. In the past few years, circular RNAs (circRNAs), as covalently closed endogenous non-coding RNAs (ncRNAs), are believed to affect DN pathogenesis in a positive manner. CircRNAs are able to impact different cellular processes and signaling pathways by targeting biological molecules or various molecular mechanisms. Still, as a key regulatory axis, circRNAs can select miRNAs as their molecular targets, in which they are considered as miRNA sponges. In this way, circRNA-induced suppression of particular miRNAs may prevent from DN progression or promotes the DN elimination. Since the expression of circRNAs has also been reported to be increased in DN-associated cells and tissues, they can be employed as either diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marziyeh Salami
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Raziyeh Salami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran; Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
29
|
Zhang J, Ding J, Yu M, Li F, Zhou X, Shuai H. Long non-coding RNA TTC28-AS1 attenuates high glucose-induced damage in HK-2 cells depending on the regulation of miR-320a/CD2AP axis. Genes Genomics 2021; 43:1471-1482. [PMID: 34623609 DOI: 10.1007/s13258-021-01167-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD) worldwide. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play crucial roles in DN pathogenesis. OBJECTIVE The purpose of the present study was to explore the role and mechanism of lncRNA tetratricopeptide repeat domain 2B antisense RNA 1 (TTC28-AS1) in DN. METHODS Cell viability and apoptosis were assessed by the Cell Counting-8 Kit (CCK-8) assay and flow cytometry, respectively. The levels of TTC28-AS1, miR-320a and CD2-associated protein (CD2AP) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-8 were gauged by enzyme-linked immunosorbent assay (ELISA). Targeted relationship between miR-320a and TTC28-AS1 or CD2AP was evaluated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS Our data indicated that high glucose (HG) induced HK-2 cell damage by the repression of cell viability and autophagy and the enhancement of cell apoptosis, fibrosis and pro-inflammatory cytokines production. TTC28-AS1 was down-regulated and miR-320a was up-regulated in HG-induced HK-2 cells. TTC28-AS1 overexpression or miR-320a knockdown alleviated HG-induced damage in HK-2 cells. MiR-320 was a molecular mediator of TTC28-AS1 in regulating HG-induced HK-2 cell damage. Moreover, TTC28-AS1 functioned as a post-transcriptional regulator of CD2AP expression by miR-320a. MiR-320a knockdown relieved HG-induced damage in HK-2 cells by up-regulating CD2AP. CONCLUSIONS Our findings suggest that TTC28-AS1 attenuates HG-induced damage in HK-2 cells at least partially by targeting the miR-320a/CD2AP axis, highlighting its role as a promising therapeutic approach for DN treatment.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Pharmacology, Xiangyang Central Hospital, Affiliated Hospital of HuBei University of Arts and Science, Xiangyang, Hubei, China
| | - Juan Ding
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of HuBei University of Arts and Science, Xiangyang, Hubei, China
| | - Ming Yu
- Department of General Practice, Xiangyang Central Hospital, Affiliated Hospital of HuBei University of Arts and Science, Xiangyang, Hubei, China
| | - Fang Li
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of HuBei University of Arts and Science, Xiangyang, Hubei, China
| | - Xue Zhou
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of HuBei University of Arts and Science, Xiangyang, Hubei, China
| | - Hongxia Shuai
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of HuBei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
30
|
Tziastoudi M, Tsezou A, Stefanidis I. Cadherin and Wnt signaling pathways as key regulators in diabetic nephropathy. PLoS One 2021; 16:e0255728. [PMID: 34411124 PMCID: PMC8375992 DOI: 10.1371/journal.pone.0255728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
AIM A recent meta-analysis of genome-wide linkage studies (GWLS) has identified multiple genetic regions suggestive of linkage with DN harboring hundreds of genes. Moving this number of genetic loci forward into biological insight is truly the next step. Here, we approach this challenge with a gene ontology (GO) analysis in order to yield biological and functional role to the genes, an over-representation test to find which GO terms are enriched in the gene list, pathway analysis, as well as protein network analysis. METHOD GO analysis was performed using protein analysis through evolutionary relationships (PANTHER) version 14.0 software and P-values less than 0.05 were considered statistically significant. GO analysis was followed by over-representation test for the identification of enriched terms. Statistical significance was calculated by Fisher's exact test and adjusted using the false discovery rate (FDR) for correction of multiple tests. Cytoscape with the relevant plugins was used for the construction of the protein network and clustering analysis. RESULTS The GO analysis assign multiple GO terms to the genes regarding the molecular function, the biological process and the cellular component, protein class and pathway analysis. The findings of the over-representation test highlight the contribution of cell adhesion regarding the biological process, integral components of plasma membrane regarding the cellular component, chemokines and cytokines with regard to protein class, while the pathway analysis emphasizes the contribution of Wnt and cadherin signaling pathways. CONCLUSIONS Our results suggest that a core feature of the pathogenesis of DN may be a disturbance in Wnt and cadherin signaling pathways, whereas the contribution of chemokines and cytokines need to be studied in additional studies.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, School of Medicine, University of Thessaly, Larissa, Greece
| | - Aspasia Tsezou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, School of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
31
|
Wang X, Liu Y, Rong J, Wang K. LncRNA HCP5 knockdown inhibits high glucose-induced excessive proliferation, fibrosis and inflammation of human glomerular mesangial cells by regulating the miR-93-5p/HMGA2 axis. BMC Endocr Disord 2021; 21:134. [PMID: 34187448 PMCID: PMC8243433 DOI: 10.1186/s12902-021-00781-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are widely reported to be involved in the development of human diseases. HLA complex P5 (HCP5) deregulation is associated with various diseases. However, the function of HCP5 in diabetic nephropathy (DN) is unclear. METHODS Human glomerular mesangial cells (HGMCs) were treated with high glucose (HG) to establish DN cell models. The expression of HCP5, miR-93-5p and high mobility group AT-hook 2 (HMGA2) mRNA was detected using quantitative polymerase chain reaction (QPCR). Cell proliferation and cell apoptosis were assessed using cell counting kit-8 (CCK-8) assay and flow cytometry assay, respectively. The expression of apoptosis- and fibrosis-related proteins and HMGA2 protein was quantified by western blot. The release of pro-inflammatory factor was checked using enzyme-linked immunosorbent assay (ELISA). The predicted relationship between miR-93-5p and HCP5 or HMGA2 was verified using dual-luciferase reporter assay, pull-down assay or RNA immunoprecipitation (RIP) assay. RESULTS The expression of HCP5 and HMGA2 was enhanced, while the expression of miR-93-5p was declined in DN serum samples and HG-treated HGMCs. HCP5 knockdown or miR-93-5p restoration ameliorated HG-induced HGMC proliferation, fibrosis and inflammation. MiR-93-5p was a target of HCP5, and miR-93-5p inhibition reversed the effects caused by HCP5 knockdown. Moreover, HMGA2 was a target of miR-93-5p, and HMGA2 overexpression abolished the effects of miR-93-5p restoration. HCP5 knockdown inhibited the AKT/mTOR signaling pathway. CONCLUSION HCP5 was implicated in DN progression by modulating the miR-93-5p/HMGA2 axis, which provided new insights into the understanding of DN pathogenesis.
Collapse
Affiliation(s)
- Xuan Wang
- Department of International Medical Center, Tianjin Hospital, No. 406, Jiefangnan Road, Tianjin City, 300211, China
| | - Yan Liu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jian Rong
- Department of Emergency internal medicine, Tianjin Hospital, Tianjin, China
| | - Kai Wang
- Department of International Medical Center, Tianjin Hospital, No. 406, Jiefangnan Road, Tianjin City, 300211, China.
| |
Collapse
|
32
|
Sun L, Han Y, Shen C, Luo H, Wang Z. Emodin alleviates high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation of mesangial cells by the circ_0000064/miR-30c-5p/ Lmp7 axis. J Recept Signal Transduct Res 2021; 42:302-312. [PMID: 34151713 DOI: 10.1080/10799893.2021.1933028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Emodin has been shown to exert a renoprotective effect in diabetic nephropathy (DN). In this paper, we investigated whether circular RNAs (circRNAs) might be involved in the renoprotective mechanism of emodin in DN. The levels of malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD), interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) were measured using the corresponding assay kits. The expression levels of circ_0000064, microRNA (miR)-30c-5p, large multifunctional protease 7 (Lmp7), fibronectin (FN), and collagen type I (Col.1) were gauged by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Subcellular localization assay was used to assess the cellular localization of circ_0000064. Targeted relationships among circ_0000064, miR-30c-5p and Lmp7 were confirmed by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation (RIP) assays. Our data showed the alleviative effect of emodin on HG-induced oxidative stress, inflammation and extracellular matrix (ECM) accumulation in SV-MES13 cells. Circ_0000064 was an importantly downstream effector of emodin function in HG-induced SV40-MES13 cells. Moreover, circ_0000064 directly targeted miR-30c-5p, and circ_0000064 modulated Lmp7 expression through miR-30c-5p. Circ_0000064 silencing alleviated HG-induced cell oxidative stress, inflammation and ECM accumulation via up-regulating miR-30c-5p. The enforced expression of miR-30c-5p attenuated HG-induced oxidative stress, inflammation and ECM accumulation in SV40-MES13 cells by targeting Lmp7. Our findings identified that emodin alleviated HG-induced oxidative stress, inflammation and ECM accumulation in SV40-MES13 cells at least partially by the regulation of the circ_0000064/miR-30c-5p/Lmp7 axis.
Collapse
Affiliation(s)
- Li Sun
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yanquan Han
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Chuqiao Shen
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Huan Luo
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Zhuo Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
33
|
Srivastava SP, Goodwin JE, Tripathi P, Kanasaki K, Koya D. Interactions among Long Non-Coding RNAs and microRNAs Influence Disease Phenotype in Diabetes and Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms22116027. [PMID: 34199672 PMCID: PMC8199750 DOI: 10.3390/ijms22116027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Large-scale RNA sequencing and genome-wide profiling data revealed the identification of a heterogeneous group of noncoding RNAs, known as long noncoding RNAs (lncRNAs). These lncRNAs play central roles in health and disease processes in diabetes and cancer. The critical association between aberrant expression of lncRNAs in diabetes and diabetic kidney disease have been reported. LncRNAs regulate diverse targets and can function as sponges for regulatory microRNAs, which influence disease phenotype in the kidneys. Importantly, lncRNAs and microRNAs may regulate bidirectional or crosstalk mechanisms, which need to be further investigated. These studies offer the novel possibility that lncRNAs may be used as potential therapeutic targets for diabetes and diabetic kidney diseases. Here, we discuss the functions and mechanisms of actions of lncRNAs, and their crosstalk interactions with microRNAs, which provide insight and promise as therapeutic targets, emphasizing their role in the pathogenesis of diabetes and diabetic kidney disease.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Correspondence: or (S.P.S.); (D.K.)
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Pratima Tripathi
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow 226010, India;
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo 693-0021, Japan;
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Correspondence: or (S.P.S.); (D.K.)
| |
Collapse
|
34
|
Gu YY, Dou JY, Huang XR, Liu XS, Lan HY. Transforming Growth Factor-β and Long Non-coding RNA in Renal Inflammation and Fibrosis. Front Physiol 2021; 12:684236. [PMID: 34054586 PMCID: PMC8155637 DOI: 10.3389/fphys.2021.684236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is one of the most characterized pathological features in chronic kidney disease (CKD). Progressive fibrosis eventually leads to renal failure, leaving dialysis or allograft transplantation the only clinical option for CKD patients. Transforming growth factor-β (TGF-β) is the key mediator in renal fibrosis and is an essential regulator for renal inflammation. Therefore, the general blockade of the pro-fibrotic TGF-β may reduce fibrosis but may risk promoting renal inflammation and other side effects due to the diverse role of TGF-β in kidney diseases. Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides and have been regarded as promising therapeutic targets for many diseases. This review focuses on the importance of TGF-β and lncRNAs in renal inflammation, fibrogenesis, and the potential applications of TGF-β and lncRNAs as the therapeutic targets and biomarkers in renal fibrosis and CKD are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Yun Dou
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Shao BY, Zhang SF, Li HD, Meng XM, Chen HY. Epigenetics and Inflammation in Diabetic Nephropathy. Front Physiol 2021; 12:649587. [PMID: 34025445 PMCID: PMC8131683 DOI: 10.3389/fphys.2021.649587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) leads to high morbidity and disability. Inflammation plays a critical role in the pathogenesis of DN, which involves renal cells and immune cells, the microenvironment, as well as extrinsic factors, such as hyperglycemia, chemokines, cytokines, and growth factors. Epigenetic modifications usually regulate gene expression via DNA methylation, histone modification, and non-coding RNAs without altering the DNA sequence. During the past years, numerous studies have been published to reveal the mechanisms of epigenetic modifications that regulate inflammation in DN. This review aimed to summarize the latest evidence on the interplay of epigenetics and inflammation in DN, and highlight the potential targets for treatment and diagnosis of DN.
Collapse
Affiliation(s)
- Bao-Yi Shao
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shao-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Yong Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
36
|
Gu YY, Lu FH, Huang XR, Zhang L, Mao W, Yu XQ, Liu XS, Lan HY. Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Front Pharmacol 2021; 11:583528. [PMID: 33574750 PMCID: PMC7870688 DOI: 10.3389/fphar.2020.583528] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common diabetic complication and is a leading cause of end-stage kidney disease. Increasing evidence shows that DKD is regulated not only by many classical signaling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation, and non-coding RNA (ncRNAs). In this review, we focus on our current understanding of the role and mechanisms of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the pathogenesis of DKD. Of them, the regulatory role of TGF-β/Smad3-dependent miRNAs and lncRNAs in DKD is highlighted. Importantly, miRNAs and lncRNAs as biomarkers and therapeutic targets for DKD are also described, and the perspective of ncRNAs as a novel therapeutic approach for combating diabetic nephropathy is also discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fu-Hua Lu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Zhang
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Long Non-Coding RNAs (lncRNAs) in Cardiovascular Disease Complication of Type 2 Diabetes. Diagnostics (Basel) 2021; 11:diagnostics11010145. [PMID: 33478141 PMCID: PMC7835902 DOI: 10.3390/diagnostics11010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has opened a new paradigm to use ncRNAs as biomarkers to detect disease progression. Long non-coding RNAs (lncRNA) have garnered the most attention due to their specific cell-origin and their existence in biological fluids. Type 2 diabetes patients will develop cardiovascular disease (CVD) complications, and CVD remains the top risk factor for mortality. Understanding the lncRNA roles in T2D and CVD conditions will allow the future use of lncRNAs to detect CVD complications before the symptoms appear. This review aimed to discuss the roles of lncRNAs in T2D and CVD conditions and their diagnostic potential as molecular biomarkers for CVD complications in T2D.
Collapse
|
38
|
Hua F. New insights into diabetes mellitus and its complications: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1689. [PMID: 33490201 PMCID: PMC7812242 DOI: 10.21037/atm-20-7243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes is a metabolic disorder accompanied by complications of multiple organs and systems. Diabetic nephropathy (DN) is one of the most prevalent lethal complications of diabetes. Although numerous biomarkers have be clarified for early diagnosis of DN, renal biopsy is still the gold standard. As a noninvasive imaging diagnostic method, blood oxygen level-dependent (BOLD) MRI can help understand the kidney oxygenation status and fibrosis process and monitor the efficacy of new drugs for DN via monitoring renal blood oxygen levels. Recent studies have shown that noncoding RNAs including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) were all involved in the development of DN, which could be exploited as therapeutic strategy to control DN. Dyslipidemia is also a common complication of diabetes. Apolipoprotein M (apoM), as a novel apolipoprotein, may be related to the development and progression of diabetes, which need to further investigation. Obstructive sleep apnea (OSA) is another common complication of diabetes and is an independent risk factor for cardiovascular disease (CVD). At present, there is no simple, effective and rapid diagnostic method to early identification of OSA in patients with diabetes. A nomogram consisted of waist-to-hip ratio, smoking status, body mass index, serum uric acid, HOMA-IR and history of fatty liver might be an alternative method to early assess the risk of OSA.
Collapse
Affiliation(s)
- Fei Hua
- Department of Endocrinology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
39
|
Circular RNA HIPK3 exacerbates diabetic nephropathy and promotes proliferation by sponging miR-185. Gene 2020; 765:145065. [PMID: 32889056 DOI: 10.1016/j.gene.2020.145065] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of the present study was to investigate expression levels of circular RNA HIPK3 (circHIPK3) in mice with diabetic nephropathy (DN) and the role of circHIPK3 in rat mesangial cells (MCs). METHODS Quantitative real-time polymerase chain reaction was performed to detect expression levels of circHIPK3, miR-185, cyclin D1, proliferating cell nuclear antigen (PCNA), transforming growth factor-β1 (TGF-β1), collagen Ⅰ (Col. Ⅰ), and fibronectin (FN) in mice with DN and rat mesangial cells. Luciferase assay was performed to investigate the binding sites of circHIPK3 and miR-185. Silencing cells of circHIPK3 and miR-185 were constructed using cell transfection assay. RESULTS Our results revealed that the levels of 24-hour urinary albumin and urinary 8-hydroxy-2'-deoxyguanosine (8-OH-dG) from diabetic mice increased considerably. Up-regulation of circHIPK3 was observed in the renal tissues of mice with DN. Similarly, circHIPK3 expression in rat mesangial cells increased significantly in a microenvironment of high glucose. A loss-of-function experiment indicated that down-regulation of circHIPK3 inhibited cell proliferation and significantly decreased mRNA abundance of cyclin D1, PCNA, TGF-β1, Col. I, and FN in MCs. Luciferase assay demonstrated that circHIPK3 can specifically sponge miR-185, and silencing of miR-185 can reverse the effects of knocking down circHIPK3 on cell proliferation and mRNA abundance of cyclin D1, PCNA, TGF-β1, Col. I, and FN in MCs. CONCLUSION Overall, circHIPK3 exhibits a promotive function in DN by sponging miR-185 and this evidence suggests that circHIPK3 might be a biomarker or therapeutic target for DN.
Collapse
|
40
|
Zhao W, Liang J, Chen Z, Diao Y, Miao G. Combined analysis of circRNA and mRNA profiles and interactions in patients with Diabetic Foot and Diabetes Mellitus. Int Wound J 2020; 17:1183-1193. [PMID: 32573975 DOI: 10.1111/iwj.13420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
In order to elucidate the pathogenesis and explore new biomarkers for diabetes and diabetic foot (DF), an analysis using RNA sequencing affords broader insights into gene expression regulatory networks in DF. To better explore the molecular basis of DF, we carried out an analysis of circular RNA (circRNA) and messenger RNA (mRNA) expression profiles of serum samples from DF patients and diabetes mellitus (DM) patients. The potential roles and interactions of differentially expressed circRNAs and mRNAs were classified by gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Compared with diabetes patients, 279 mRNAs were upregulated and 353 mRNAs were downregulated in the serum of DF patients, and 33 circRNAs were differently expressed. The differential genes at the nodes of the interaction network were screened, and TLR6 RUNX1 and ST2 were found to be related to the progression of diabetes and DF. The enrichment pathway analysis revealed that the lysosomal pathway played a critical role in the occurrence and development of DF. TLR6, RUNX1, and ST2 mRNA expressions and the lysosomal pathway may be involved in the pathogenesis of diabetes and DF. In addition, methane metabolism and Chagas disease pathways were observed in the occurrence and development of DF, which is a new discovery in this study. This study provides clues on the molecular mechanisms of DF at the circRNA and mRNA levels.
Collapse
Affiliation(s)
- Wanni Zhao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianfeng Liang
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongpeng Diao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Miao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|