1
|
Yang JY. miR-574-5p in epigenetic regulation and Toll-like receptor signaling. Cell Commun Signal 2024; 22:567. [PMID: 39593070 PMCID: PMC11600836 DOI: 10.1186/s12964-024-01934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
miR-574-5p is an unusual microRNA (miRNA) that is often upregulated or downregulated following exposure to irradiation or toxic chemicals; bacterial, parasitic or viral infection; and a variety of other disease conditions. Canonically, miR-574-5p epigenetically regulates the expression of many messenger RNAs (mRNAs) through miRNA-mediated posttranscriptional regulation, thereby affecting cellular physiology or pathophysiology and contributing to the pathogenesis or progression of a variety of diseases. However, recent studies have established that in addition to serving as a fine-tuning repressor of gene expression, miR-574-5p also stimulates gene expression as an endogenous ligand for Toll-like receptor-8/7 (TLR8/7). Indeed, the binding of miR-574-5p to TLR8/7 triggers the TLR signaling pathway, leading to the induction of interferons, inflammatory cytokines and autoimmune signaling. These findings suggest that miR-574-5p is not only an important epigenetic regulator of gene expression, but also an important regulator of immune and inflammatory responses. Abnormal miR-574-5p-TLR8/7 signaling has been shown to be tightly associated with inflammation-related cancers and a number of autoimmune disorders. miR-574-5p can serve as a potential biomarker for many diseases. Most importantly, miR-574-5p is a promising therapeutic target for the treatment or prevention of human disorders, especially infectious diseases, cancers and autoimmune diseases.
Collapse
Affiliation(s)
- James Y Yang
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China.
- Wuhu Hospital of East China Normal University, Wuhu, 241000, Anhui, China.
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China.
| |
Collapse
|
2
|
Proestler E, Donzelli J, Nevermann S, Breitwieser K, Koch LF, Best T, Fauth M, Wickström M, Harter PN, Kogner P, Lavieu G, Larsson K, Saul MJ. The multiple functions of miR-574-5p in the neuroblastoma tumor microenvironment. Front Pharmacol 2023; 14:1183720. [PMID: 37731742 PMCID: PMC10507178 DOI: 10.3389/fphar.2023.1183720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood and arises from neural crest cells of the developing sympathetic nervous system. Prostaglandin E2 (PGE2) has been identified as a key pro-inflammatory mediator of the tumor microenvironment (TME) that promotes neuroblastoma progression. We report that the interaction between the microRNA miR-574-5p and CUG-binding protein 1 (CUGBP1) induces the expression of microsomal prostaglandin E2 synthase 1 (mPGES-1) in neuroblastoma cells, which contributes to PGE2 biosynthesis. PGE2 in turn specifically induces the sorting of miR-574-5p into small extracellular vesicles (sEV) in neuroblastoma cell lines. sEV are one of the major players in intercellular communication in the TME. We found that sEV-derived miR-574-5p has a paracrine function in neuroblastoma. It acts as a direct Toll-like receptor 7/8 (TLR7/8) ligand and induces α-smooth muscle actin (α-SMA) expression in fibroblasts, contributing to fibroblast differentiation. This is particularly noteworthy as it has an opposite function to that in the TME of lung carcinoma, another PGE2 dependent tumor type. Here, sEV-derived miR-574-5p has an autokrine function that inhibits PGE2 biosynthesis in lung cancer cells. We report that the tetraspanin composition on the surface of sEV is associated with the function of sEV-derived miR-574-5p. This suggests that the vesicles do not only transport miRs, but also appear to influence their mode of action.
Collapse
Affiliation(s)
- Eva Proestler
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julia Donzelli
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sheila Nevermann
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kai Breitwieser
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Leon F. Koch
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Tatjana Best
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
- Merck KGaA, Darmstadt, Germany
| | - Maria Fauth
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
- Prolytic GmbH, a Kymos Company, Frankfurt, Germany
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Children’s and Women’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Patrick N. Harter
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Frankfurt, Germany
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Children’s and Women’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Grégory Lavieu
- INSERM U1316, UMR7057, Centre National de la Recherche Scientifique (CNRS), Université Paris Cité, Paris, France
| | - Karin Larsson
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Meike J. Saul
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
3
|
Huang W, Zhao Y, Xu Z, Wu X, Qiao M, Zhu Z, Zhao Z. The Regulatory Mechanism of miR-574-5p Expression in Cancer. Biomolecules 2022; 13:biom13010040. [PMID: 36671425 PMCID: PMC9855975 DOI: 10.3390/biom13010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small, single-stranded, non-coding RNAs approximately 22 nucleotides in length. The dysregulation of miRNAs has been widely investigated in various pathological processes, including tumorigenesis, providing a biomarker for cancer diagnosis and prognosis. As a member of the miRNA family, miR-574-5p is located on the human chromosome 4p14 and is highly correlated with a high incidence of human cancers. Functional pathways as well as underlying novel mechanisms upregulate or downregulate miR-574-5p, which plays an important regulatory role in tumorigenesis and progression. In this review, we systematically summarize the context-dependent implications of miR-574-5p and review differences in miR-574-5p expression in cancer. We also investigate the intricate functions exerted by miR-574-5p in diverse pathological processes and highlight regulatory pathways, networks, and other underlying novel mechanisms. The clinical applications of miR-574-5p as a diagnostic biomarker, prognostic biomarker, and therapeutic mechanism are also discussed in this paper. On this basis, we anticipate that miR-574-5p will be a promising and effective biomarker and therapeutic target.
Collapse
|
4
|
Zhao C, Liu J, Xu Y, Guo J, Wang L, Chen L, Xu L, Dong G, Zheng W, Li Z, Cai H, Li S. MiR-574-5p promotes cell proliferation by negatively regulating small C-terminal domain phosphatase 1 in esophageal squamous cell carcinoma. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1243-1250. [PMID: 36311195 PMCID: PMC9588319 DOI: 10.22038/ijbms.2022.65886.14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
Objectives Esophageal cancer is one of the most common cancers with high incidence and mortality rates, especially in China. MicroRNA (miRNA) can be used as a prognostic marker for various human cancers. This study aims to detect suitable miRNA markers for esophageal squamous cell carcinoma (ESCC). Materials and Methods Our previous gene expression data of ESCC cells and the data from GSE43732 and GSE112840 were analyzed. The expression of miR-574-5p in ESCC patients and controls was analyzed by real-time quantitative PCR. The effect of miR-574-5p on proliferation was detected by real-time cell analysis (RTCA) and EdU proliferation assay after cell transfections. The target gene small C-terminal domain phosphatase 1 (CTDSP1) of miR-574-5p was validated by luciferase reporter assay and western blotting. Results In the current study, the bioinformatics analysis found miR-574-5p up-regulated in ESCC. The qPCR assay of 26 ESCC and 13 adjacent/ normal tissues confirmed these results. We further demonstrated that miR-574-5p overexpression promoted cell proliferation. Then the dual-luciferase reporter assay and the rescue experiment suggested that CTDSP1 was a direct target of miR-574-5p. Conclusion MiR-574-5p played an oncological role in ESCC by interacting and negatively regulating CTDSP1. These results provided a deeper understanding of the effect of miR-574-5p on ESCC.
Collapse
Affiliation(s)
- Chunming Zhao
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jialin Liu
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yong Xu
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiamei Guo
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liping Wang
- Department of Basic Pathology, Pathology College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Linfeng Chen
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lina Xu
- NGS Center, Hangzhou D.A. Medical Laboratory Co., Ltd., Hangzhou, Zhejiang, China
| | - Guokai Dong
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Zheng
- Department of Basic Pathology, Pathology College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhouru Li
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongxing Cai
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China,Corresponding authors: Shanshan Li. Department of Forensic Medicine, Xuzhou Medical University, 84 Huaihai Road, Xuzhou, Jiangsu, 221002, China. ; Hongxing Cai. Department of Forensic Medicine, Xuzhou Medical University, 84 Huaihai Road, Xuzhou, Jiangsu, 221002, China.
| | - Shanshan Li
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China,Corresponding authors: Shanshan Li. Department of Forensic Medicine, Xuzhou Medical University, 84 Huaihai Road, Xuzhou, Jiangsu, 221002, China. ; Hongxing Cai. Department of Forensic Medicine, Xuzhou Medical University, 84 Huaihai Road, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
5
|
Wang K, Liu J, Deng G, Ou Z, Li S, Xu X, Zhang M, Peng X, Chen F. LncSIK1 enhanced the sensitivity of AML cells to retinoic acid by the E2F1/autophagy pathway. Cell Prolif 2022; 55:e13185. [PMID: 35092119 PMCID: PMC8891555 DOI: 10.1111/cpr.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Ke Wang
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Jun‐da Liu
- Department of Anesthesiologythe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ge Deng
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Zi‐yao Ou
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Shu‐fang Li
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Xiao‐ling Xu
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Mei‐Ju Zhang
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| | - Xiao‐Qing Peng
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Fei‐hu Chen
- School of PharmacyAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsHefeiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical UniversityHefeiChina
| |
Collapse
|
6
|
Alternative Splicing, Epigenetic Modifications and Cancer: A Dangerous Triangle, or a Hopeful One? Cancers (Basel) 2022; 14:cancers14030560. [PMID: 35158828 PMCID: PMC8833605 DOI: 10.3390/cancers14030560] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Epigenetics studies the alteration of gene expression without changing DNA sequence and very often, epigenetic dysregulation causes cancer. Alternative splicing is a mechanism that results in the production of several mRNA isoforms from a single gene and aberrant splicing is also a frequent cause of cancer. The present review is built on the interrelations of epigenetics and alternative splicing. In an intuitive way, we say that epigenetic modifications and alternative splicing are at two vertices of a triangle, the third vertex being occupied by cancer. Interconnection between alternative splicing and epigenetic modifications occurs backward and forward and the mechanisms involved are widely reviewed. These connections also provide novel diagnostic or prognostic tools, which are listed. Finally, as epigenetic alterations are reversible and aberrant alternative splicing may be corrected, the therapeutic possibilities to break the triangle are discussed. Abstract The alteration of epigenetic modifications often causes cancer onset and development. In a similar way, aberrant alternative splicing may result in oncogenic products. These issues have often been individually reviewed, but there is a growing body of evidence for the interconnection of both causes of cancer. Actually, aberrant splicing may result from abnormal epigenetic signalization and epigenetic factors may be altered by alternative splicing. In this way, the interrelation between epigenetic marks and alternative splicing form the base of a triangle, while cancer may be placed at the vertex. The present review centers on the interconnections at the triangle base, i.e., between alternative splicing and epigenetic modifications, which may result in neoplastic transformations. The effects of different epigenetic factors, including DNA and histone modifications, the binding of non-coding RNAs and the alterations of chromatin organization on alternative splicing resulting in cancer are first considered. Other less-frequently considered questions, such as the epigenetic regulation of the splicing machinery, the aberrant splicing of epigenetic writers, readers and erasers, etc., are next reviewed in their connection with cancer. The knowledge of the above-mentioned relationships has allowed increasing the collection of biomarkers potentially useful as cancer diagnostic and/or prognostic tools. Finally, taking into account on one hand that epigenetic changes are reversible, and some epigenetic drugs already exist and, on the other hand, that drugs intended for reversing aberrations in alternative splicing, therapeutic possibilities for breaking the mentioned cancer-related triangle are discussed.
Collapse
|
7
|
Nasiri-Aghdam M, Garcia-Garduño TC, Jave-Suárez LF. CELF Family Proteins in Cancer: Highlights on the RNA-Binding Protein/Noncoding RNA Regulatory Axis. Int J Mol Sci 2021; 22:11056. [PMID: 34681716 PMCID: PMC8537729 DOI: 10.3390/ijms222011056] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional modifications to coding and non-coding RNAs are unquestionably a pivotal way in which human mRNA and protein diversity can influence the different phases of a transcript's life cycle. CELF (CUGBP Elav-like family) proteins are RBPs (RNA-binding proteins) with pleiotropic capabilities in RNA processing. Their responsibilities extend from alternative splicing and transcript editing in the nucleus to mRNA stability, and translation into the cytoplasm. In this way, CELF family members have been connected to global alterations in cancer proliferation and invasion, leading to their identification as potential tumor suppressors or even oncogenes. Notably, genetic variants, alternative splicing, phosphorylation, acetylation, subcellular distribution, competition with other RBPs, and ultimately lncRNAs, miRNAs, and circRNAs all impact CELF regulation. Discoveries have emerged about the control of CELF functions, particularly via noncoding RNAs, and CELF proteins have been identified as competing, antagonizing, and regulating agents of noncoding RNA biogenesis. On the other hand, CELFs are an intriguing example through which to broaden our understanding of the RBP/noncoding RNA regulatory axis. Balancing these complex pathways in cancer is undeniably pivotal and deserves further research. This review outlines some mechanisms of CELF protein regulation and their functional consequences in cancer physiology.
Collapse
Affiliation(s)
- Maryam Nasiri-Aghdam
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Texali C. Garcia-Garduño
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| |
Collapse
|
8
|
Donzelli J, Proestler E, Riedel A, Nevermann S, Hertel B, Guenther A, Gattenlöhner S, Savai R, Larsson K, Saul MJ. Small extracellular vesicle-derived miR-574-5p regulates PGE2-biosynthesis via TLR7/8 in lung cancer. J Extracell Vesicles 2021; 10:e12143. [PMID: 34596365 PMCID: PMC8485338 DOI: 10.1002/jev2.12143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/20/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
Intercellular communication plays an essential role in lung cancer (LC). One of the major players in cell-cell-communication is small extracellular vesicles (sEV). SEV trigger various biological responses by transporting cellular cargo to target cells. One essential sEV component are microRNAs (miRs), whose transport has recently attracted increasing research interest. We report that prostaglandin E2 (PGE2 ), a key inflammatory lipid mediator, specifically induces the sorting of miR-574-5p in sEV of A549 and 2106T cells. We found that sEV-derived miR-574-5p activates Toll-like receptors (TLR) 7/8, thereby decreasing PGE2 -levels. In contrast, intracellular miR-574-5p induces PGE2 -biosynthesis. Consequently, the combination of intracellular and sEV-derived miR-574-5p controls PGE2 -levels via a feedback loop. This was only observed in adeno- but not in squamous cell carcinoma, indicating a cell-specific response to sEV-derived miRs, which might be due to unique tetraspanin compositions. Hence, we describe a novel function of miR-574-5p unique to adenocarcinoma. Intracellular miR-574-5p induces PGE2 and thus the secretion of sEV-derived miR-574-5p, which in turn decreases PGE2 -biosynthesis in recipient cells.
Collapse
Affiliation(s)
- Julia Donzelli
- Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
| | - Eva Proestler
- Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
| | - Anna Riedel
- Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
| | - Sheila Nevermann
- Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
| | - Brigitte Hertel
- Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
| | - Andreas Guenther
- Department of Internal MedicineMember of the German Centre for Lung Research (DZL)Member of Cardio‐Pulmonary Institute (CPI)Justus Liebig UniversityGiessenGermany
| | | | - Rajkumar Savai
- Department of Internal MedicineMember of the German Centre for Lung Research (DZL)Member of Cardio‐Pulmonary Institute (CPI)Justus Liebig UniversityGiessenGermany
- Department of Lung Development and RemodellingMember of the DZLMember of CPIMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
- Lung Microenvironmental Niche in CancerogenesisInstitute for Lung Health (ILH)Justus Liebig UniversityGiessenGermany
| | - Karin Larsson
- Rheumatology UnitDepartment of MedicineKarolinska University HospitalStockholmSweden
| | - Meike J. Saul
- Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
| |
Collapse
|