1
|
Cong L, Zhou Z. Effect of Huo Li Su Oral Solution Combined with Zopiclone in the Treatment of Insomnia Symptoms. ALPHA PSYCHIATRY 2024; 25:369-374. [PMID: 39148602 PMCID: PMC11322733 DOI: 10.5152/alphapsychiatry.2024.231352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/22/2024] [Indexed: 08/17/2024]
Abstract
Objective Insomnia is a common symptom in subhealthy states. In patients, long-term insomnia symptoms can lead to decreased immune function, even mental depression, thus seriously affecting quality of life. Therefore, this study aims to observe the therapeutic effect of huo li su (HLS) oral solution combined with zopiclone in the treatment of insomnia to find suitable drugs for treatment. Methods A total of 161 patients with insomnia from January 2017 to March 2022 were selected in this retrospective cohort study. The patients were divided into the observation (82 cases, receiving HLS oral solution and zopiclone) and control (79 cases, receiving zopiclone alone) groups in accordance with therapeutic drug administration. The differences in the scores of the 2 groups on the Sleep Disorder Scale (SDRS), Pittsburgh Sleep Quality Index (PSQI), Fatigue Inventory 14 (FS-14), and traditional Chinese medicine (TCM) syndromes before and after treatment were compared. Results No significant differences in age, gender, disease duration, body mass index (BMI), and other general data were found between the 2 groups (P > .05). The TCM syndrome, PSQI, FS-14, and SDRS scores before treatment of the 2 groups were not significantly different (P < .05). After 4 weeks of treatment, the TCM syndrome, PSQI, FS-14, and SDRS scores of the observation group were significantly lower than those of the control group. Conclusion HLS oral solution combined with zopiclone can effectively improve insomnia symptoms and is superior to zopiclone alone.
Collapse
Affiliation(s)
- Lin Cong
- Department of Dermatology, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, China
| | - Zili Zhou
- Department of Gastroenterology, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Reyes-Hernández OD, Figueroa-González G, Quintas-Granados LI, Hernández-Parra H, Peña-Corona SI, Cortés H, Kipchakbayeva A, Mukazhanova Z, Habtemariam S, Leyva-Gómez G, Büsselberg D, Sharifi-Rad J. New insights into the anticancer therapeutic potential of icaritin and its synthetic derivatives. Drug Dev Res 2024; 85:e22175. [PMID: 38567708 DOI: 10.1002/ddr.22175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Icaritin is a natural prenylated flavonoid derived from the Chinese herb Epimedium. The compound has shown antitumor effects in various cancers, especially hepatocellular carcinoma (HCC). Icaritin exerts its anticancer activity by modulating multiple signaling pathways, such as IL-6/JAK/STAT3, ER-α36, and NF-κB, affecting the tumor microenvironment and immune system. Several clinical trials have evaluated the safety and efficacy of icaritin in advanced HCC patients with poor prognoses, who are unsuitable for conventional therapies. The results have demonstrated that icaritin can improve survival, delay progression, and produce clinical benefits in these patients, with a favorable safety profile and minimal adverse events. Moreover, icaritin can enhance the antitumor immune response by regulating the function and phenotype of various immune cells, such as CD8+ T cells, MDSCs, neutrophils, and macrophages. These findings suggest that icaritin is a promising candidate for immunotherapy in HCC and other cancers. However, further studies are needed to elucidate the molecular mechanisms and optimal dosing regimens of icaritin and its potential synergistic effects with other agents. Therefore, this comprehensive review of the scientific literature aims to summarize advances in the knowledge of icaritin in preclinical and clinical studies as well as the pharmacokinetic, metabolism, toxicity, and mechanisms action to recognize the main challenge, gaps, and opportunities to develop a medication that cancer patients can use. Thus, our main objective was to clarify the current state of icaritin for use as an anticancer drug.
Collapse
Affiliation(s)
- Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Itzel Quintas-Granados
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México. Ciudad de México, México, México
| | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Zhazira Mukazhanova
- Higher School of IT and Natural Sciences, Sarsen Amanzholov East Kazakhstan University, Ust-Kamenogorsk, Kazakhstan
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, London, UK
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | | |
Collapse
|
3
|
Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacother 2023; 158:114156. [PMID: 36584431 DOI: 10.1016/j.biopha.2022.114156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) and neurological diseases are widespread diseases with substantial rates of morbidity and mortality around the world. For the past few years, the preventive effects of Chinese herbal medicine on CVDs and neurological diseases have attracted a great deal of attention. Icariin (ICA), the main constituent of Epimedii Herba, is a flavonoid. It has been shown to provide neuroprotection, anti-tumor, anti-osteoporosis, and cardiovascular protection. The endothelial protection, anti-inflammatory, hypolipidemic, antioxidative stress, and anti-apoptosis properties of ICA can help stop the progression of CVDs and neurological diseases. Therefore, our review summarized the known mechanisms and related studies of ICA in the prevention and treatment of cardio-cerebrovascular diseases (CCVDs), to better understand its therapeutic potential.
Collapse
|
4
|
Sun Y, Pang B, Wang Y, Xiao J, Jiang D. Baohuoside I Inhibits the Proliferation of Hepatocellular Carcinoma Cells via Apoptosis Signaling and NF-kB Pathway. Chem Biodivers 2021; 18:e2100063. [PMID: 33904248 DOI: 10.1002/cbdv.202100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/09/2021] [Indexed: 11/09/2022]
Abstract
Baohuoside I is a flavonoid isolated from Epimedium koreanum Nakai and has many pharmacological activities. However, its role in liver cancer remains unclear. This study aimed to investigate the inhibitory effect of Baohuoside I on the Human Hepatocellular Carcinoma (HCC) cell lines QGY7703, and underlying mechanisms. QGY7703 cells were used as the model to assess the function of Baohuoside I in vitro. The effects of Baohuoside I on QGY7703 cells' growth, proliferation, and invasiveness were confirmed by CCK-8, lactate dehydrogenase release, and invasion assays. Cell apoptosis was analyzed by flow cytometry, and the levels of cleaved Caspase-3, Bax, and Bcl-2 were quantified by western blot. Western blot analysis, nuclear translocation of NF-κB, and Q-PCR were used to measure the expression of affected molecules. In QGY7703 cells, Baohuoside I induced the expression of molecules related to NF-κB pathway. The toxicity of Baohuoside I on QGY7703 cells was also confirmed in vivo, in a tumor model. Baohuoside I had a significant toxic effect on QGY7703 cells from a concentration of 10 μM. This compound significantly inhibited the proliferation of QGY7703 cells by inducing apoptosis and downregulating NF-κB signaling pathway. Thus, Baohuoside I is a novel candidate drug and opens new possibilities of clinical strategies for HCC treatment.
Collapse
Affiliation(s)
- Yunlong Sun
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Bo Pang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Yingzhe Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Jinglei Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Dacheng Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| |
Collapse
|
5
|
Huang C, Li Z, Zhu J, Chen X, Hao Y, Yang R, Huang R, Zhou J, Wang Z, Xiao W, Zheng C, Wang Y. Systems pharmacology dissection of Epimedium targeting tumor microenvironment to enhance cytotoxic T lymphocyte responses in lung cancer. Aging (Albany NY) 2021; 13:2912-2940. [PMID: 33460401 PMCID: PMC7880341 DOI: 10.18632/aging.202410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
The clinical notably success of immunotherapy fosters an enthusiasm in developing drugs by enhancing antitumor immunity in the tumor microenvironment (TME). Epimedium, is a promising herbal medicine for tumor immunotherapy due to the pharmacological actions in immunological function modulation and antitumor. Here, we developed a novel systems pharmacology strategy to explore the polypharmacology mechanism of Epimedium involving in targeting TME of non-small cell lung cancer (NSCLC). This strategy integrates the active compounds screening, target predicting, network pharmacology analysis and onco-immune interacting to predict the potential active compounds that trigger the antitumor immunity. Icaritin (ICT), a major active ingredient of Epimedium, was predicted to have good drug-like properties and target immune microenvironment in NSCLC via regulating multiple targets and pathways. Then, we evidenced that the ICT effectively inhibited tumor growth in LLC tumor-bearing mice and increases the infiltration of CD8+ T cells in TME. In addition, we demonstrated that ICT promotes infiltration of CD8+ T cells in TME by downregulating the immunosuppressive cytokine (TNF-α, IL10, IL6) and upregulating chemotaxis (CXCL9 and CXCL10). Overall, the systems pharmacology strategy offers an important paradigm to understand the mechanism of polypharmacology of natural products targeting TME.
Collapse
Affiliation(s)
- Chao Huang
- Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhihua Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xuetong Chen
- Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ruijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ruifei Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jun Zhou
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical, Co., Ltd., Lianyungang 222001, China
| | - Zhenzhong Wang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical, Co., Ltd., Lianyungang 222001, China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical, Co., Ltd., Lianyungang 222001, China
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yonghua Wang
- Bioinformatics Center, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|