1
|
Li H, Niu L, Wang M, Liu C, Wang Y, Su Y, Yang Y. Mechanism investigation of anti-NAFLD of Shugan Yipi Granule based on network pharmacology analysis and experimental verification. Heliyon 2024; 10:e35491. [PMID: 39170438 PMCID: PMC11336705 DOI: 10.1016/j.heliyon.2024.e35491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
As a classical traditional Chinese patent medicine, Shugan Yipi Granule is widely used in China to treat non-alcoholic fatty liver disease (NAFLD) recently. Our previous study confirmed that Shugan Yipi Granule are effective in NAFLD. However, its underlying mechanism is still unknown. This study aims to investigate the mechanism of Shugan Yipi Granule on NAFLD based on network pharmacology prediction, liquid chromatography-mass spectrometry (LC-MS) analysis and in vitro verification. We obtained the active ingredients and targets of Shugan Yipi Granule and NAFLD from 6 traditional Chinese medicine databases, and the crucial components and targets screened by protein-protein interaction (PPI) network were used for molecular docking. Plasma metabolomics of NAFLD patients treated with Shugan Yipi Granule for one month was analyzed using LC-MS methods and MetaboAnalyst 4.0 to obtain significant differential metabolites and pathways. Finally, free fatty acid (FFA) induced HepG2 cells were treated with different concentrations of quercetin and kaempferol, then oil red o (ORO) and triglyceride (TG) level were tested to verify the lipid deposition of the cell. Network pharmacology analysis showed that the main active ingredients of Shugan Yipi Granule include quercetin, kaempferol and other 58 ones, as well as 188 potential targets. PI3K/Akt signaling pathway was found to be the most relevant pathway for the treatment of NAFLD. Non-targeted metabolomics showed that quercetin and kaempferol were significantly up-regulated differential metabolites and were involved in metabolic pathways such as thyroid hormone signaling. In vitro results showed that quercetin, kaempferol were effective in reducing lipid deposition and TG content by inhibiting cellular fatty acid uptake. Ultimately, with the network pharmacology and serum metabolomics analysis, quercetin and kaempferol were found to be the important active ingredients and significantly up-regulated differential metabolites of Shugan Yipi Granule against NAFLD, which we inferred that they may regulate NAFLD through PI3K/Akt signaling pathway and thyroid hormone metabolism pathway. The in vitro experiment verification results showed that quercetin and kaempferol attenuated the lipid accumulation and TG content by inhibiting the fatty acid uptake in the FFA-induced HepG2 cell. Current study provides the necessary experimental basis for subsequent in-depth mechanism research.
Collapse
Affiliation(s)
- Hairong Li
- West China Second University Hospital, Sichuan University, Chengdu, 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
- Guangdong Pharmaceutical University, Xiaoguwei street, Panyu District, Guangzhou, 510006, China
| | - lijun Niu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Meiling Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglin Xia Road, Yuexiu District, Guangzhou, 510006, China
| | - Chunmei Liu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglin Xia Road, Yuexiu District, Guangzhou, 510006, China
| | - Yunlong Wang
- Academic Department, Giant Praise (HK) Pharmaceutical Group Limited, Changchun, 130033, China
| | - Yu Su
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglin Xia Road, Yuexiu District, Guangzhou, 510006, China
| | - Yubin Yang
- West China Second University Hospital, Sichuan University, Chengdu, 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| |
Collapse
|
2
|
Yijie D, Siqi Z, Ruiyin H, YuJing S, Hong M, Yinmao D, Tao Y, Changyong L. Mechanisms of Puerariae Lobatae Radix in regulating sebaceous gland secretion: insights from network pharmacology and experimental validation. Front Pharmacol 2024; 15:1414856. [PMID: 39114361 PMCID: PMC11303875 DOI: 10.3389/fphar.2024.1414856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Objective This research aims to explore how Puerariae Lobatae Radix regulates sebaceous gland secretion using network pharmacology, and validate its effects on important targets through animal studies. Methods This study utilized UPLC-EQ-MS to analyze Puerariae Lobatae Radix extract and identify potential bioactive compounds. Predicted targets of these compounds were obtained from the Swiss Target Prediction database, while targets associated with sebaceous gland secretion were obtained from the GeneCards database. Common targets between the databases were identified and a protein-protein interaction (PPI) network was established using the STRING platform. The PPI network was further analyzed using Cytoscape software. Pathway enrichment analysis was performed using Reactome, and molecular docking experiments targeted pivotal pathway proteins. Animal experiments were then conducted to validate the regulatory effects of the primary active compounds of Puerariae Lobatae Radix on key pathway proteins. Results This research identified 17 active compounds in Puerariae Lobatae Radix and 163 potential targets associated with the regulation of sebum secretion. Pathway enrichment analysis indicates that these targets may modulate lipid metabolism pathways through involvement in peroxisome proliferator-activated receptor α, SREB, steroid metabolism, and arachidonic acid metabolism pathways. Molecular docking analysis demonstrates that puerarin and daidzein show favorable binding interactions with key targets in these pathways. Animal experiments demonstrated that the administration of Puerariae Lobatae Radix resulted in a significant reduction in the area of sebaceous gland patches compared to the control group. Histological analysis revealed notable alterations in the structure of sebaceous glands, including reductions in size, thickness, and density. Furthermore, the expression levels of TG, DHT, and IL-6 were significantly decreased in the Puerariae Lobatae Radix group (p < 0.05), and immunoblotting indicated a significant decrease in the expression of PPARG and ACC1 (p < 0.05). Conclusion This study demonstrates that Puerariae Lobatae Radix can regulate skin lipid metabolism by targeting multiple pathways. The primary mechanism involves inhibiting sebaceous gland growth and reducing TG secretion by modulating the expression of PPARG and ACC1. Puerarin and Daidzein are identified as key bioactive compounds responsible for this regulatory effect. These findings highlight the therapeutic potential of Puerariae Lobatae Radix in addressing sebaceous gland-related conditions.
Collapse
Affiliation(s)
- Du Yijie
- Beijing Technology and Business University, Beijing Technology & Business University, Beijing, China
| | - Zhao Siqi
- R&D Center, Beijing Academy of TCM Beauty Supplements, Beijing, China
| | - Huang Ruiyin
- Dermatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shi YuJing
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Hong
- Beijing Technology and Business University, Beijing Technology & Business University, Beijing, China
| | - Dong Yinmao
- Beijing Technology and Business University, Beijing Technology & Business University, Beijing, China
| | - Yang Tao
- Traditional Chinese Medicine Department, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Luo Changyong
- Infectious Fever Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Yang X, Qian H, Yang C, Zhang Z. Investigation of the molecular mechanism of Smilax glabra Roxb. in treating hypertension based on proteomics and bioinformatics. Front Pharmacol 2024; 15:1360829. [PMID: 38783958 PMCID: PMC11112092 DOI: 10.3389/fphar.2024.1360829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/29/2024] [Indexed: 05/25/2024] Open
Abstract
Background Smilax glabra Roxb. (named tufuling in Chinese, SGR) has both medicinal and edible value. SGR has obvious pharmacological activity, especially in anti-inflammation and treating immune system diseases. This study investigated differential protein expression and its relationship with immune infiltration in hypertension treated with SGR using proteomics and bioinformatics. Methods N-Nitro L-arginine methyl ester (L-NAME) was used to replicate the hypertension model, with SGR administered by gavage for 4 weeks, and the systolic and diastolic blood pressure in each group of rats was measured using the tail-cuff method every 7 days. Furthermore, enzyme-linked immunosorbent assay (ELISA) was used to determine the serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) expressions in each group, followed by the detection of protein expression in rat liver samples using the tandem mass tag (TMT) technique. Additionally, hub targets were output using Cytoscape 3.9.1 software, and ALDH2 expression in the liver and serum in each group of rats was detected by ELISA. Moreover, R4.3.0 software was used to evaluate the relationship between acetaldehyde dehydrogenase 2 (ALDH2) and immune cells, and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was performed to identify the components of SGR. Furthermore, the association between components of SGR and ALDH2 was analyzed with molecular docking and LigPlot1.4.5 software. Results Compared with the model group (L-NAME), SGR at high and medium doses reduced systolic and diastolic blood pressure while reducing TC, TG, and LDL-C levels and increasing HDL-C levels in hypertensive rats (p < 0.05). Moreover, 92 differentially expressed proteins (DEPs) were identified using TMT. These DEPs participated in peroxisome functioning, fatty acid degradation, and other signaling pathways, with ALDH2 being the core target and correlated with various immune cells. In addition, 18 components were determined in SGR, with 8 compounds binding to ALDH2. Molecular docking was performed to confirm that SGR played a role in hypertension based on the combined action of multiple components. Conclusion In conclusion, SGR has an antihypertensive effect on L-NAME-induced hypertension, with ALDH2 as its hub target. SGR may regulate neutrophil, regulatory T cell, and other cells' infiltration by targeting ALDH2, thereby contributing to the treatment of hypertension.
Collapse
Affiliation(s)
| | - Haibing Qian
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | | | | |
Collapse
|
4
|
Xu C, Yang Y, He L, Li C, Wang X, Zeng X. Flavor, physicochemical properties, and storage stability of P. lobata-coix seed fermented beverage produced by A. aegerita. Food Chem 2024; 434:137428. [PMID: 37716144 DOI: 10.1016/j.foodchem.2023.137428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Pueraria lobata and coix seeds have complementary nutritional profiles, and their nutritional value can be enhanced through biotransformation. Agrocybe aegerita (A. aegerita) is a highly nutritious mushroom with a rich enzyme content. This study investigated the flavor, physicochemical properties, and storage stability of P. lobata-coix seed fermented beverage (PCFB) by A. aegerita. Sixty volatile compounds were detected by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Compared to unfermented PCFB, fermentation with A. aegerita enhanced its physicochemical properties, with the contents of essential amino acids, γ-Aminobutyric acid, and soluble proteins increasing from 16.81%, 2.64 mg/100 mL, and 49.40% to 21.06%, 4.20 mg/100 mL, and 53.08%, respectively. Two efficient shelf-life prediction models of PCFB were established with the Arrhenius model using pH and sensory evaluation as indexes. These findings demonstrate that PCFB is a novel, high-quality beverage and provide a foundation for potential industrial production of PCFB using A. aegerita.
Collapse
Affiliation(s)
- Changli Xu
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Yun Yang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Laping He
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Cuiqin Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China; School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Xiao Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Xuefeng Zeng
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| |
Collapse
|
5
|
Dawuti A, Ma L, An X, Guan J, Zhou C, He L, Xu Y, Han B, Abulizi A. Exploring the effect and mechanism of Aloin A against cancer cachexia-induced muscle atrophy via network pharmacology, molecular docking, molecular dynamics and experimental validation. Aging (Albany NY) 2023; 15:15557-15577. [PMID: 38180061 PMCID: PMC10781478 DOI: 10.18632/aging.205416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
80% of advanced cancer patients suffer from cachexia, but there are no FDA-approved drugs. Therefore, it is imperative to discover potential drugs. OBJECTIVE This study aims at exploring the effect and targets of Aloin A against cancer cachexia (CC)-induced muscle atrophy. METHODS Network pharmacology, molecular docking, molecular dynamics (MD) and animal model of CC-induced muscle atrophy with a series of behavior tests, muscle quality, HE staining and RT-PCR were performed to investigate the anticachectic effects and targets of Aloin A and its molecular mechanism. RESULTS Based on network pharmacology, 51 potential targets of Aloin A on CC-induced muscle atrophy were found, and then 10 hub genes were predicted by the PPI network. Next, KEGG and GO enrichment analysis showed that the anticachectic effect of Aloin A is associated with PI3K-AKT, MAPK, TNF, TLR, etc., pathways, and biological processes like inflammation, apoptosis and cell proliferation. Molecular docking and MD results showed good binding ability between the Aloin A and key targets. Moreover, experiments in vivo demonstrated that Aloin A effectively rescued muscle function and wasting by improving muscle quality, mean CSA, and distribution of muscle fibers by regulating HSP90AA1/AKT signaling in tumor-bearing mice. CONCLUSION This study offers new insights for researchers to understand the effect and mechanism of Aloin A against CC using network pharmacology, molecular docking, MD and experimental validation, and Aloin A retards CC-induced muscle wasting through multiple targets and pathways, including HSP90AA1/AKT signaling, which provides evidence for Aloin A as a potential therapy for cancer cachexia in clinic.
Collapse
Affiliation(s)
- Awaguli Dawuti
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lisha Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Xueyan An
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jiawei Guan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Changdong Zhou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Linyun He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Abudumijiti Abulizi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Yang SH, Zhu J, Wu WT, Li JM, Tong HL, Huang Y, Gong QF, Gong FP, Zhong LY. Rhizoma Atractylodis Macrocephalae-Assessing the influence of herbal processing methods and improved effects on functional dyspepsia. Front Pharmacol 2023; 14:1236656. [PMID: 37601055 PMCID: PMC10436233 DOI: 10.3389/fphar.2023.1236656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background: The unique pharmaceutical methods for the processing of botanical drugs according to the theory of traditional Chinese medicine (TCM) affect clinical syndrome differentiation and treatment. The objective of this study was to comprehensively elucidate the principles and mechanisms of an herbal processing method by investigating the alterations in the metabolites of Rhizoma Atractylodis Macrocephalae (AMR) processed by Aurantii Fructus Immaturus (AFI) decoction and to determine how these changes enhance the efficacy of aqueous extracts in treating functional dyspepsia (FD). Methods: A qualitative analysis of AMR before and after processing was conducted using UPLC-Q-TOF-MS/MS, and HPLC was employed for quantitative analysis. A predictive analysis was then conducted using a network analysis strategy to establish a botanical drug-metabolite-target-disease (BMTD) network and a protein-protein interaction (PPI) network, and the predictions were validated using an FD rat model. Results: A total of 127 metabolites were identified in the processed AMR (PAMR), and substantial changes were observed in 8 metabolites of PAMR after processing, as revealed by the quantitative analysis. The enhanced aqueous extracts of processed AMR (PAMR) demonstrate improved efficacy in treating FD, which indicates that this processing method enhances the anti-inflammatory properties and promotes gastric motility by modulating DRD2, SCF, and c-kit. However, this enhancement comes at the cost of attenuating the regulation of motilin (MTL), gastrin (GAS), acetylcholine (Ach), and acetylcholinesterase (AchE). Conclusion: Through this series of investigations, we aimed to unravel the factors influencing the efficacy of this herbal formulation in improving FD in clinical settings.
Collapse
Affiliation(s)
- Song-Hong Yang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jing Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wen-Ting Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun-Mao Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Heng-Li Tong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yi Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qian-Feng Gong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fei-Peng Gong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Ling-Yun Zhong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
7
|
The Potential Mechanism of Zishen Yutai Pills against Threatened Abortion: An Approach Involving Network Pharmacology and Experimental Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023. [DOI: 10.1155/2023/5797767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Threatened abortion (TA) is the most common complication in early pregnancy and is caused by anxiety and depressive symptoms. The Zishen Yutai Pill (ZYP) is a traditional herbal formula that is commonly used to treat TA. However, the pharmacological mechanisms underlying the effect of ZYP have yet to be elucidated. To disclose the mechanism of ZYP in the treatment of TA, first, we identified the chemical constituents of ZYP from multiple databases and then predicted the potential targets of TA by applying the GeneCards database. A protein-protein interaction (PPI) network was then constructed to allow the screening of hub targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) enrichment analyses were also performed and the Database for Annotation Visualization and Integrated Discovery server was used to identify critical biological processes and signaling pathways. Cytoscape software was used to construct a Compound-Target-Pathway. Furthermore, we analyzed ZYP by UPLC-Q-TOF/MS, then the RU486-induced TA rat model was established, and the reliability of the network pharmacology prediction results was verified. Finally, the mechanisms responsible for the action of ZYP on TA were revealed by qRT-PCR and molecular docking. Database screening identified a total of 161 active compounds in ZYP and 324 TA-related targets. And, we identified 42 compounds from ZYP by UPLC-Q-TOF/MS. Inflammation and apoptosis were identified as the main biological processes. GO and KEGG analyses identified that the MAPK and PI3K/Akt pathways were the key functional pathways that respond to ZYP. The results showed that ZYP treatment significantly increased maternal weight, significantly increased the levels of estradiol and progesterone, and attenuated histopathological changes in a rat model of TA. Data indicated that ZYP treatment improved pregnancy outcomes in the rat model of TA. QRT-PCR data showed that ZYP reduced inflammation and apoptosis by regulating the MAPK and PI3K/Akt pathways. In addition, molecule docking results identified a range of key compounds, including Pik3a, Mapk14, Mapk1, Mapk3, Mapk8 Tnf, Il6, and Cas8. In summary, we performed network pharmacological analysis and experimental validation and identified that ZYP exerts an effect on TA by regulating the MAPK and PI3K/Akt pathways and by inhibiting the expression levels of proinflammatory cytokines and genes related to apoptosis.
Collapse
|
8
|
Omit SBS, Akhter S, Rana HK, Rana ARMMH, Podder NK, Rakib MI, Nobi A. Identification of Comorbidities, Genomic Associations, and Molecular Mechanisms for COVID-19 Using Bioinformatics Approaches. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6996307. [PMID: 36685671 PMCID: PMC9848821 DOI: 10.1155/2023/6996307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Several studies have been done to identify comorbidities of COVID-19. In this work, we developed an analytical bioinformatics framework to reveal COVID-19 comorbidities, their genomic associations, and molecular mechanisms accomplishing transcriptomic analyses of the RNA-seq datasets provided by the Gene Expression Omnibus (GEO) database, where normal and infected tissues were evaluated. Using the framework, we identified 27 COVID-19 correlated diseases out of 7,092 collected diseases. Analyzing clinical and epidemiological research, we noticed that our identified 27 diseases are associated with COVID-19, where hypertension, diabetes, obesity, and lung cancer are observed several times in COVID-19 patients. Therefore, we selected the above four diseases and performed assorted analyses to demonstrate the association between COVID-19 and hypertension, diabetes, obesity, and lung cancer as comorbidities. We investigated genomic associations with the cross-comparative analysis and Jaccard's similarity index, identifying shared differentially expressed genes (DEGs) and linking DEGs of COVID-19 and the comorbidities, in which we identified hypertension as the most associated illness. We also revealed molecular mechanisms by identifying statistically significant ten pathways and ten ontologies. Moreover, to understand cellular physiology, we did protein-protein interaction (PPI) analyses among the comorbidities and COVID-19. We also used the degree centrality method and identified ten biomarker hub proteins (IL1B, CXCL8, FN1, MMP9, CXCL10, IL1A, IRF7, VWF, CXCL9, and ISG15) that associate COVID-19 with the comorbidities. Finally, we validated our findings by searching the published literature. Thus, our analytical approach elicited interconnections between COVID-19 and the aforementioned comorbidities in terms of remarkable DEGs, pathways, ontologies, PPI, and biomarker hub proteins.
Collapse
Affiliation(s)
- Shudeb Babu Sen Omit
- Department of Computer Science and Telecommunication Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Salma Akhter
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Humayan Kabir Rana
- Department of Computer Science and Engineering, Green University of Bangladesh, Dhaka 1207, Bangladesh
| | - A. R. M. Mahamudul Hasan Rana
- Department of Computer Science and Telecommunication Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Nitun Kumar Podder
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Mahmudul Islam Rakib
- Department of Computer Science and Telecommunication Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Ashadun Nobi
- Department of Computer Science and Telecommunication Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| |
Collapse
|
9
|
Wang Y, Li Y, Guo W, Yang X, Qu J, Gao M, Chen S, Dong J, Li Q, Wang T. Comparison of the Chemical Components, Efficacy and Mechanisms of Action of Chrysanthemum morifolium Flower and Its Wild Relative Chrysanthemum indicum Flower against Liver-Fire Hyperactivity Syndrome of Hypertension via Integrative Analyses. Int J Mol Sci 2022; 23:ijms232213767. [PMID: 36430265 PMCID: PMC9692626 DOI: 10.3390/ijms232213767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
To clarify the differences in the clinical application scope of Chrysanthemum morifolium flower (CMF) and Chrysanthemum indicum flower (CIF), two herbs of similar origin, an integrated strategy of network pharmacology, molecular pharmacology, and metabolomics was employed, with a view to investigating the commonalities and dissimilarities in chemical components, efficacy and mechanisms of action. Initial HPLC-Q-TOF-MS analysis revealed that CMF and CIF had different flavonoid constituents. The biological processes underlying the therapeutic effects of CMF and CIF on liver-fire hyperactivity syndrome of hypertension (LFHSH) were predicted to be related to inflammatory response, fatty acid production, and other pathways based on network pharmacology analysis. ELISA, molecular docking, Western blot, and metabolomics techniques showed similar effects of CMF and CIF in lowering blood pressure, resistance to tissue, organ and functional damage, and dyslipidemia. However, distinct effects were found in the regulation of inflammatory response, PI3K-Akt and NF-κB signaling pathways, lipid anabolism, renin-angiotensin system, and metabolic abnormalities. The comparable efficacies of CMF and CIF, despite having distinct mechanisms of action, may be attributed to the integration and counteraction of their different regulating capabilities on the above anti-LFHSH mechanisms. This study offers a vital platform for assessment of differential and precise applications of herbs of close origin with similar but slightly different medicinal properties, and provides a research strategy for bridging Chinese medicine and modern precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing Li
- Correspondence: (Q.L.); (T.W.); Tel.: +86-024-4352-0589 (Q.L.); +86-0755-2603-1728 (T.W.)
| | - Tiejie Wang
- Correspondence: (Q.L.); (T.W.); Tel.: +86-024-4352-0589 (Q.L.); +86-0755-2603-1728 (T.W.)
| |
Collapse
|
10
|
Liu L, Shi J, Yuan Y, Yue T. Changes in the metabolite composition and enzyme activity of fermented tea during processing. Food Res Int 2022; 158:111428. [DOI: 10.1016/j.foodres.2022.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
11
|
Systems Pharmacology-Based Strategy to Investigate Pharmacological Mechanisms of Total Flavonoids in Dracocephalum moldavica on Chronic Heart Failure. Int J Mol Sci 2022; 23:ijms23158409. [PMID: 35955548 PMCID: PMC9368860 DOI: 10.3390/ijms23158409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Heart failure (HF) is a clinical syndrome of cardiac insufficiency caused by abnormalities in cardiac structure and function that arise for various reasons, and it is the final stage of most cardiovascular diseases’ progression. Total flavonoid extract from Dracocephalum moldavica L. (TFDM) has many pharmacological and biological roles, such as cardioprotective, neuroprotective, anti-atherogenic, antihypertensive, anti-diabetic, anti-inflammatory, antioxidant, etc. However, its effect on HF and its molecular mechanism are still unclear. In this study, we used systems pharmacology and an animal model of HF to investigate the cardioprotective effect of TFDM and its molecular mechanism. Eleven compounds in TFDM were obtained from the literature, and 114 overlapping genes related to TFDM and HF were collected from several databases. A PPI network and C-T network were established, and GO enrichment analysis and KEGG pathway analysis were performed. The top targets from the PPI network and C-T network were validated using molecular docking. The pharmacological activity was investigated in an HFpEF (heart failure with preserved ejection fraction) mouse model. This study shows that TFDM has a protective effect on HFpEF, and its protective mechanism may be related to the regulation of proinflammatory cytokines, apoptosis-related genes, fibrosis-related genes, etc. Collectively, this study offers new insights for researchers to understand the protective effect and mechanism of TFDM against HFpEF using a network pharmacology method and a murine model of HFpEF, which suggest that TFDM is a promising therapy for HFpEF in the clinic.
Collapse
|
12
|
Mining Important Herb Combinations of Traditional Chinese Medicine against Hypertension Based on the Symptom-Herb Network Combined with Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5850899. [PMID: 35360657 PMCID: PMC8964163 DOI: 10.1155/2022/5850899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
Although data mining methods are extensively used in the rule analysis of famous old traditional Chinese medicine (TCM) experts' prescriptions for the treatment of hypertension, most of them only mine the association between herbs and herbs, ignoring the importance of symptoms in the disease. This study collected 439 cases of hypertension treated by famous old TCM experts from the FangNet platform. Using the structure network algorithm, the symptom-herb network was constructed, which redefined the importance of herb in disease. Based on the network, 21 driver herbs, 76 herb pairs, and 41 symptom-herb associations were mined. Finally, the basic prescription composed of Gouteng (Uncariae Ramulus cum Uncis), Huanglian (Coptidis Rhizoma), Chuanxiong (Chuanxiong Rhizoma), Gegen (Puerariae Lobatae Radix), Danggui (Angelicae Sinensis Radix), and Huangqin (Scutellariae Radix) was found. These herbs are the most significant among all herbs, and they have a potential correlation with each other. To further verify the rationality of the data mining results, we adopted the network pharmacology method. Network pharmacological analysis shows that the five core targets in the basic prescription include IL6, VEGFA, TNF, TP53, and EGF, which link 10 significant active compounds and 7 important KEGG pathways. It was predicted that anti-inflammatory, antioxidant, vascular endothelial protection, emotion regulation, and ion channel intervention might be the main mechanisms of the basic prescription against hypertension. This study reveals the prescription rule of famous old TCM experts for treating hypertension from a new perspective, which provides a new approach to inherit the academic experience of famous old TCM experts and develop new drugs.
Collapse
|
13
|
Guo S, Tan Y, Huang Z, Li Y, Liu W, Fan X, Zhang J, Stalin A, Fu C, Wu Z, Wang P, Zhou W, Liu X, Wu C, Jia S, Zhang J, Duan X, Wu J. Revealing Calcium Signaling Pathway as Novel Mechanism of Danhong Injection for Treating Acute Myocardial Infarction by Systems Pharmacology and Experiment Validation. Front Pharmacol 2022; 13:839936. [PMID: 35281886 PMCID: PMC8905633 DOI: 10.3389/fphar.2022.839936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: Danhong injection (DHI) is a traditional Chinese medicine preparation commonly used in the clinical treatment of acute myocardial infarction (AMI). In this study, the active components of DHI and its mechanism in the treatment of AMI were investigated. Methods: The chemical components of DHI were detected by the ultra-high-performance liquid chromatography-linear trap quadrupole-orbitrap-tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS), and the targets and pathways of DHI in the treatment of AMI were analyzed by systems pharmacology, which was verified by molecular docking and animal experiments. Results: A total of 12 active components of DHI were obtained, and 158 common targets of component and disease were identified by systems pharmacology. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results showed that DHI is closely related to the calcium signaling pathway in the treatment of AMI. Molecular docking showed that the key target protein has good binding affinity to related compounds. The experimental results showed that compared with the model group, LVAWs, EF, and FS significantly (p < 0.05) increased in the DHI group. The percentage of myocardial infarction significantly (p < 0.01) decreased, both in the ventricular and total cardiac regions, and the pathological damage of myocardial tissue also decreased. In addition, the expression of the protein CaMK II decreased (p < 0.01) and the expression of SERCA significantly increased (p < 0.01). Conclusion: This study revealed that ferulic acid, caffeic acid and rosmarinic acid could inhibit AMI by regulating PLB, CaMK II, SERCA, etc. And mechanistically, calcium signaling pathway was critically involved. Combination of systems pharmacology prediction with experimental validation may provide a scientific basis for in-depth clinical investigation of the material basis of DHI.
Collapse
Affiliation(s)
- Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihong Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yikui Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiyu Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotian Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Changgeng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhishan Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,China-Japan Friendship Hospital, Beijing, China
| | - Xinkui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxia Duan
- Beijing Zest Bridge Medical Technology Inc., Beijing, China
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Wen X, Gu Y, Chen B, Gong F, Wu W, Tong H, Gong Q, Yang S, Zhong L, Liu X. Exploring the Potential Mechanism of Chuanxiong Rhizoma Treatment for Migraine Based on Systems Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2809004. [PMID: 34992663 PMCID: PMC8727101 DOI: 10.1155/2021/2809004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Migraine is a disease whose aetiology and mechanism are not yet clear. Chuanxiong Rhizoma (CR) is employed in traditional Chinese medicine (TCM) to treat various disorders. CR is effective for migraine, but its active compounds, drug targets, and exact molecular mechanism remain unclear. In this study, we used the method of systems pharmacology to address the above issues. We first established the drug-compound-target-disease (D-C-T-D) network and protein-protein interaction (PPI) network related to the treatment of migraine with CR and then established gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The results suggest that the treatment process may be related to the regulation of inflammation and neural activity. The docking results also revealed that PTGS2 and TRPV1 could directly bind to the active compounds that could regulate them. In addition, we found that CR affected 11 targets that were more highly expressed in the liver or heart but were the lowest in the whole brain. It also expounds the description of CR channel tropism in TCM theory from these angles. These findings not only indicate that CR can be developed as a potential effective drug for the treatment of migraine but also demonstrate the application of systems pharmacology in the discovery of herbal-based disease therapies.
Collapse
Affiliation(s)
- Xianhua Wen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuncheng Gu
- Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Beili Chen
- Tiantai County Food and Drug Testing Center, Taizhou, China
| | - Feipeng Gong
- Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Wenting Wu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hengli Tong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qianfeng Gong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Songhong Yang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lingyun Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xuping Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial Institute for Drug Control, NMPA Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Province Engineering Research Center of Drug and Medical Device Quality, Nanchang, China
| |
Collapse
|
15
|
Verification of the Potential Targets of the Herbal Prescription Sochehwan for Drug Repurposing Processes as Deduced by Network Pharmacology. Processes (Basel) 2021. [DOI: 10.3390/pr9112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Network pharmacology (NP) is a useful, emerging means of understanding the complex pharmacological mechanisms of traditional herbal medicines. Sochehwan (SCH) is a candidate herbal prescription for drug repurposing as it has been suggested to have beneficial effects on metabolic syndrome. In this study, NP was adopted to complement the shortcomings of literature-based drug repurposing strategies in traditional herbal medicine. We conducted in vitro studies to confirm the effects of SCH on potential pharmacological targets identified by NP analysis. Herbal compounds and molecular targets of SCH were explored and screened from a traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and an oriental medicine advanced searching integrated system (OASIS). Forty-seven key targets selected from a protein-protein interaction (PPI) network were analyzed with gene ontology (GO) term enrichment and KEGG pathway enrichment analysis to identify relevant categories. The tumor necrosis factor (TNF) and mitogen-activated protein kinase (MAPK) signaling pathways were presented as significant signaling pathways with lowest p-values by NP analysis, which were downregulated by SCH treatment. The signal transducer and activator of transcription 3 (STAT3) was identified as a core key target by NP analysis, and its phosphorylation ratio was confirmed to be significantly suppressed by SCH. In conclusion, the NP-based approach used for target prediction and experimental data obtained from Raw 264.7 cells strongly suggested that SCH can attenuate inflammatory status by modulating the phosphorylation status of STAT3.
Collapse
|
16
|
Li Q, Lan T, He S, Chen W, Li X, Zhang W, Liu Y, Zhang Q, Chen X, Han Y, Su Z, Zhu D, Guo H. A network pharmacology-based approach to explore the active ingredients and molecular mechanism of Lei-gong-gen formula granule on a spontaneously hypertensive rat model. Chin Med 2021; 16:99. [PMID: 34627325 PMCID: PMC8501634 DOI: 10.1186/s13020-021-00507-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022] Open
Abstract
Background Lei-gong-gen formula granule (LFG) is a folk prescription derived from Zhuang nationality, the largest ethnic minority among 56 nationalities in China. It consists of three herbs, namely Eclipta prostrata (L.) L., Smilax glabra Roxb, and Centella asiatica (L.) Urb. It has been widely used as health protection tea for hundreds of years to prevent hypertension in Guangxi Zhuang Autonomous Region. The purpose of this study is to validate the antihypertensive effect of LFG on the spontaneously hypertensive rat (SHR) model, and to further identify the effective components and anti-hypertension mechanism of LFG. Methods The effects of LFG on blood pressure, body weight, and heart rate were investigated in vivo using the SHR model. The levels of NO, ANG II, and ET-1 in the serum were measured, and pathological changes in the heart were examined by H&E staining. The main active components of LFG, their corresponding targets, and hypertension associated pathways were discerned through network pharmacology analysis based on the Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Then the predicted results were further verified by molecular biology experiments such as RT-qPCR and western blot. Additionally, the potential active compounds were predicted by molecular docking technology, and the chemical constituents of LFG were analyzed and identified by UPLC-QTOF/MS technology. Finally, an in vitro assay was performed to investigate the protective effects of potential active compounds against hydrogen peroxide (H2O2) induced oxidative damage in human umbilical vein endothelial cells (HUVEC). Results LFG could effectively reduce blood pressure and increase serum NO content in SHR model. Histological results showed that LFG could ameliorate pathological changes such as cardiac hypertrophy and interstitial inflammation. From network pharmacology analysis, 53 candidate active compounds of LFG were collected, which linked to 765 potential targets, and 828 hypertension associated targets were retrieved, from which 12 overlapped targets both related to candidate active compounds from LFG and hypertension were screened and used as the potential targets of LFG on antihypertensive effect. The molecular biology experiments of the 12 overlapped targets showed that LFG could upregulate the mRNA and protein expressions of NOS3 and proto-oncogene tyrosine-protein kinase SRC (SRC) in the thoracic aorta. Pathway enrichment analysis showed that the PI3K-AKT signaling pathway was closely related to the expression of NOS3 and SRC. Moreover, western blot results showed that LFG significantly increased the protein expression levels of PI3K and phosphorylated AKT in SHR model, suggesting that LFG may active the PI3K-AKT signaling pathway to decrease hypertension. Molecular docking study further supported that p-hydroxybenzoic acid, cedar acid, shikimic acid, salicylic acid, nicotinic acid, linalool, and histidine can be well binding with NOS3, SRC, PI3K, and AKT. UPLC-QTOF/MS analysis confirmed that p-hydroxybenzoic acid, shikimic acid, salicylic acid, and nicotinic acid existed in LFG. Pre-treatment of HUVEC with nicotinic acid could alleviate the effect on cell viability induced by H2O2 and increase the NO level in cell supernatants. Conclusions LFG can reduce the blood pressure in SHR model, which might be attributed to increasing the NO level in serum for promoting vasodilation via upregulating SRC expression level and activating the PI3K-AKT-NOS3 signaling pathway. Nicotinic acid might be the potential compound for LFG antihypertensive effect. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00507-1.
Collapse
Affiliation(s)
- Qiaofeng Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Taijin Lan
- School of preclinical medicine, Guangxi University of Chinese Medicine, 179 Mingxiu Dong Road, Nanning, 530001, China
| | - Songhua He
- Guangxi Institute for Food and Drug Control, 9 Qinghu Road, Nanning, 530021, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China.,International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Medical University, Guangxi, 530021, China
| | - Xiaolan Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Weiquan Zhang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.,College of Pharmacy, Guangxi University of Chinese Medicine, 179 Mingxiu Dong Road, Nanning, 530001, China
| | - Qiuping Zhang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.,The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Xin Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yaoyao Han
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China. .,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
17
|
Prasain JK, Barnes S, Wyss JM. Kudzu isoflavone C‐glycosides: Analysis, biological activities, and metabolism. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jeevan K. Prasain
- Departments of Pharmacology and Toxicology University of Alabama Birmingham Alabama United States
| | - Stephen Barnes
- Departments of Pharmacology and Toxicology University of Alabama Birmingham Alabama United States
| | - J. Michael Wyss
- Department of Cell Development and Integrative Biology University of Alabama Birmingham Alabama United States
| |
Collapse
|
18
|
Huai Y, Zhang WJ, Wang W, Dang K, Jiang SF, Li DM, Li M, Hao Q, Miao ZP, Li Y, Qian AR. Systems pharmacology dissection of action mechanisms for herbs in osteoporosis treatment. CHINESE HERBAL MEDICINES 2021; 13:313-331. [PMID: 36118922 PMCID: PMC9476722 DOI: 10.1016/j.chmed.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Osteoporosis has become the biggest cause of non-fatal health issue. Currently, the limitations of traditional anti-osteoporosis drugs such as long-term ill-effects and drug resistance, have raised concerns toward complementary and alternative therapies, particularly herbal medicines and their natural active compounds. Thus, this study aimed to provide an integrative analysis of active chemicals, drug targets and interacting pathways of the herbs for osteoporosis treatment. Methods Here, we introduced a systematic pharmacology model, combining the absorption, distribution, metabolism, and excretion (ADME) screening model, drug targeting and network pharmacology, to probe into the therapeutic mechanisms of herbs in osteoporosis. Results We obtained 86 natural compounds with favorable pharmacokinetic profiles and their 58 targets from seven osteoporosis-related herbs. Network analysis revealed that they probably synergistically work through multiple mechanisms, such as suppressing inflammatory response, maintaining bone metabolism or improving organism immunity, to benefit patients with osteoporosis. Furthermore, experimental results showed that all the five compounds (calycosin, asperosaponin VI, hederagenin, betulinic acid and luteolin) enhanced osteoblast proliferation and differentiation in vitro, which corroborated the validity of this system pharmacology approach. Notably, gentisin and aureusidin among the identified compounds were first predicted to be associated with osteoporosis. Conclusion Herbs and their natural compounds, being characterized as the classical combination therapies, might be engaged in multiple mechanisms to coordinately improve the osteoporosis symptoms. This work may contribute to offer novel strategies and clues for the therapy and drug discovery of osteoporosis and other complex diseases.
Collapse
|
19
|
Hu Y, Lei S, Yan Z, Hu Z, Guo J, Guo H, Sun B, Pan C. Angelica Dahurica Regulated the Polarization of Macrophages and Accelerated Wound Healing in Diabetes: A Network Pharmacology Study and In Vivo Experimental Validation. Front Pharmacol 2021; 12:678713. [PMID: 34234674 PMCID: PMC8256266 DOI: 10.3389/fphar.2021.678713] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
Diabetic wounds exhibit retarded and partial healing processes. Therefore, patients are exposed to an elevated risk of infection. It has been verified that Angelica dahurica (Hoffm.) Benth. and Hook. f. ex Franch. and Sav (A. dahurica) is conducive for wound healing. However, the pharmacological mechanisms of A. dahurica are yet to be established. The present study uses network pharmacology and in vivo experimental validation to investigate the underlying process that makes A. dahurica conducive for faster wound healing in diabetes patients. 54 potential targets in A. dahurica that act on wound healing were identified through network pharmacology assays, such as signal transducer and activator of transcription 3 (STAT3), JUN, interleukin-1β (IL-1β), tumor necrosis factor (TNF), and prostaglandin G/H synthase 2 (PTGS2). Furthermore, in vivo validation showed that A. dahurica accelerated wound healing through anti-inflammatory effects. More specifically, it regulates the polarization of M1 and M2 subtypes of macrophages. A. dahurica exerted a curative effect on diabetic wound healing by regulating the inflammation. Hence, pharmacologic network analysis combined with in vivo validation elucidated the probable effects and underlying mechanisms of A. dahurica's therapeutic effect on diabetic wound healing.
Collapse
Affiliation(s)
- Yonghui Hu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Sisi Lei
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Emergency, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyue Yan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhibo Hu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jun Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hang Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Congqing Pan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Li WH, Han JR, Ren PP, Xie Y, Jiang DY. Exploration of the mechanism of Zisheng Shenqi decoction against gout arthritis using network pharmacology. Comput Biol Chem 2020; 90:107358. [PMID: 33243703 DOI: 10.1016/j.compbiolchem.2020.107358] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND In this study, the network pharmacological methods were used to predict the target of effective components of compounds in Zisheng Shenqi Decoction (ZSD, or Nourishing Kidney Qi Decoction) in the treatment of gouty arthritis (GA). METHOD The main effective components and corresponding key targets of herbs in the ZSD were discerned through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis (TCMSP), Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine (BATMAN-TCM) database. UniProt database and Swiss Target Prediction (STP) database was used to rectify and unify the target names and supply the target information. The targets related to GA were obtained by using GeneCards database. After we discovered the potential common targets between ZSD and GA, the interaction network diagram of "ZSD-component-GA-target" was constructed by Cytoscape software (Version 3.7.1). Subsequently, the Protein-protein interaction (PPI) network of ZSD effective components-targets and GA-related targets was constructed by Search Tool for the Retrieval of Interacting Genes Database (STRING). Bioconductor package "org.Hs.eg.db" and "cluster profiler" package were installed in R software (Version 3.6.0) which used for Gene Ontology analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis. RESULTS 146 components and 613 targets of 11 herbal medicines in the ZSD were got from TCMSP database and BATMAN-TCM database. 987 targets of GA were obtained from GeneCards database. After intersected and removed duplications, 132 common targets between ZSD and GA were screened out by Cytoscape software (Version 3.7.1). These common targets derived from 81 effective components of 146 components, such as quercetin, stigmasterol and kaempferol. They were closely related to anti-inflammatory, analgesic and anti oxidative stress and the principal targets comprised of Purinergic receptor P2X, ligand-gated ion channel 7 (P2x7R), Nod-like receptor protein 3 (NLRP3) and IL-1β. GO enrichment analysis and KEGG pathway enrichment analysis by R software (Version 3.6.0) showed that the key target genes had close relationship with oxidative stress, reactive oxygen species (ROS) metabolic process and leukocyte migration in aspects of biological process, cell components and molecular function. It also indicated that ZSD could decrease inflammatory reaction, alleviate ROS accumulation and attenuate pain by regulating P2 × 7R and NOD like receptor signaling pathway of inflammatory reaction. CONCLUSION A total of 81 effective components and 132 common target genes between ZSD and GA were screened by network pharmacology. The PPI network, GO enrichment analysis and KEGG pathway enrichment analysis suggested that ZSD can exerte anti-inflammatory and analgesic effects on the treatment of GA by reducing decreasing inflammatory reaction, alleviating ROS accumulation, and attenuating pain. The possible molecular mechanism of it mainly involved multiple components, multiple targets and multiple signaling pathways, which provided a comprehensive understanding for further study. In general, the network pharmacological method applied in this study provides an alternative strategy for the mechanism of ZSD in the treatment of GA.
Collapse
Affiliation(s)
- Wen-Hao Li
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Jie-Ru Han
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Peng-Peng Ren
- Department of Integrated Chinese and Western medicine, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Ying Xie
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - De-You Jiang
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|