1
|
Avgustinovich DF, Tenditnik MV, Bondar NP, Marenina MK, Zhanaeva SY, Lvova MN, Katokhin AV, Pavlov KS, Evseenko VI, Tolstikova TG. Behavioral effects and inflammatory markers in the brain and periphery after repeated social defeat stress burdened by Opisthorchis felineus infection in mice. Physiol Behav 2022; 252:113846. [PMID: 35594930 DOI: 10.1016/j.physbeh.2022.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
The combination of 4-week repeated social defeat stress (RSDS) and Opisthorchis felineus infection was modeled in C57BL/6 mice. Various parameters were compared between three experimental groups of male mice (SS: mice subjected to RSDS, OF: mice infected with O. felineus, and OF + SS: mice subjected to both adverse factors) and behavior-tested and intact (INT) controls. The combination caused liver hypertrophy and increased the blood level of proinflammatory cytokine interleukin 6 and proteolytic activity of cathepsin B in the hippocampus. Meanwhile, hypertrophy of the spleen and of adrenal glands was noticeable. Anxious behavior in the elevated plus-maze test was predominantly due to the infection, with synergistic effects of an interaction of the two adverse factors on multiple parameters in OF + SS mice. Depression-like behavior in the forced swimming test was caused only by RSDS and was equally pronounced in SS mice and OF + SS mice. Helminths attenuated the activities of cathepsin B in the liver and hypothalamus (which were high in SS mice) and increased cathepsin L activity in the liver. The highest blood level of corticosterone was seen in SS mice but was decreased to control levels by the trematode infection. OF mice had the lowest level of corticosterone, comparable to that in INT mice. Thus, the first data were obtained on the ability of O. felineus helminths-even at the immature stage-to modulate the effects of RSDS, thereby affecting functional connections of the host, namely "helminths → liver↔brain axis."
Collapse
Affiliation(s)
- Damira F Avgustinovich
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva, 10, Novosibirsk 630090, Russia; Group of Mechanochemistry of Organic Substances, Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Novosibirsk, Russia.
| | - Mikhail V Tenditnik
- Laboratory of Experimental Models of Neurodegenerative Processes, Scientific-Research Institute of Neurosciences and Medicine, SB RAS, Novosibirsk, Russia
| | - Natalia P Bondar
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva, 10, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Mariya K Marenina
- Department of Medicinal Chemistry, Laboratory of Pharmacological Research, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Novosibirsk, Russia
| | - Svetlana Ya Zhanaeva
- Department of Psychoneuroimmunology, Scientific-Research Institute of Neurosciences and Medicine, SB RAS, Novosibirsk, Russia
| | - Maria N Lvova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva, 10, Novosibirsk 630090, Russia
| | - Alexey V Katokhin
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva, 10, Novosibirsk 630090, Russia
| | - Konstantin S Pavlov
- Laboratory of Experimental Models of Neurodegenerative Processes, Scientific-Research Institute of Neurosciences and Medicine, SB RAS, Novosibirsk, Russia
| | - Veronica I Evseenko
- Group of Mechanochemistry of Organic Substances, Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Novosibirsk, Russia
| | - Tatiana G Tolstikova
- Department of Medicinal Chemistry, Laboratory of Pharmacological Research, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Novosibirsk, Russia
| |
Collapse
|
2
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|