1
|
Channelopathy-causing mutations in the S 45A/S 45B and HA/HB helices of K Ca2.3 and K Ca3.1 channels alter their apparent Ca 2+ sensitivity. Cell Calcium 2022; 102:102538. [PMID: 35030515 PMCID: PMC8844225 DOI: 10.1016/j.ceca.2022.102538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
Abstract
Small- and intermediate-conductance Ca2+-activated potassium (KCa2.x and KCa3.1, also called SK and IK) channels are activated exclusively by a Ca2+-calmodulin gating mechanism. Wild-type KCa2.3 channels have a Ca2+ EC50 value of ∼0.3 μM, while the apparent Ca2+ sensitivity of wild-type KCa3.1 channels is ∼0.27 μM. Heterozygous genetic mutations of KCa2.3 channels have been associated with Zimmermann-Laband syndrome and idiopathic noncirrhotic portal hypertension, while KCa3.1 channel mutations were reported in hereditary xerocytosis patients. KCa2.3_S436C and KCa2.3_V450L channels with mutations in the S45A/S45B helices exhibited hypersensitivity to Ca2+. The corresponding mutations in KCa3.1 channels also elevated the apparent Ca2+ sensitivity. KCa3.1_S314P, KCa3.1_A322V and KCa3.1_R352H channels with mutations in the HA/HB helices are hypersensitive to Ca2+, whereas KCa2.3 channels with the equivalent mutations are not. The different effects of the equivalent mutations in the HA/HB helices on the apparent Ca2+ sensitivity of KCa2.3 and KCa3.1 channels may imply distinct modulation of the two channel subtypes by the HA/HB helices. AP14145 reduced the apparent Ca2+ sensitivity of the hypersensitive mutant KCa2.3 channels, suggesting the potential therapeutic usefulness of negative gating modulators.
Collapse
|
2
|
Gaur N, Qi XY, Benoist D, Bernus O, Coronel R, Nattel S, Vigmond EJ. A computational model of pig ventricular cardiomyocyte electrophysiology and calcium handling: Translation from pig to human electrophysiology. PLoS Comput Biol 2021; 17:e1009137. [PMID: 34191797 PMCID: PMC8277015 DOI: 10.1371/journal.pcbi.1009137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/13/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022] Open
Abstract
The pig is commonly used as an experimental model of human heart disease, including for the study of mechanisms of arrhythmia. However, there exist differences between human and porcine cellular electrophysiology: The pig action potential (AP) has a deeper phase-1 notch, a longer duration at 50% repolarization, and higher plateau potentials than human. Ionic differences underlying the AP include larger rapid delayed-rectifier and smaller inward-rectifier K+-currents (IKr and IK1 respectively) in humans. AP steady-state rate-dependence and restitution is steeper in pigs. Porcine Ca2+ transients can have two components, unlike human. Although a reliable computational model for human ventricular myocytes exists, one for pigs is lacking. This hampers translation from results obtained in pigs to human myocardium. Here, we developed a computational model of the pig ventricular cardiomyocyte AP using experimental datasets of the relevant ionic currents, Ca2+-handling, AP shape, AP duration restitution, and inducibility of triggered activity and alternans. To properly capture porcine Ca2+ transients, we introduced a two-step process with a faster release in the t-tubular region, followed by a slower diffusion-induced release from a non t-tubular subcellular region. The pig model behavior was compared with that of a human ventricular cardiomyocyte (O’Hara-Rudy) model. The pig, but not the human model, developed early afterdepolarizations (EADs) under block of IK1, while IKr block led to EADs in the human but not in the pig model. At fast rates (pacing cycle length = 400 ms), the human cell model was more susceptible to spontaneous Ca2+ release-mediated delayed afterdepolarizations (DADs) and triggered activity than pig. Fast pacing led to alternans in human but not pig. Developing species-specific models incorporating electrophysiology and Ca2+-handling provides a tool to aid translating antiarrhythmic and arrhythmogenic assessment from the bench to the clinic. The pig is an animal commonly used experimentally to study diseases of the heart, as well as investigate therapies to treat them, such as drugs. However, although similar, pigs differ from humans in certain aspects which may mean experimental results do not always directly translate between species. We propose a mathematical model of porcine electrophysiology which can serve as a tool to understand differences between the species and translate responses. Using new measurements along with values from literature, we built a computer model of porcine cardiac myocyte which replicated voltage and calcium behaviour over a range of pacing frequencies. The pig cell had a two-stage calcium release, unlike humans with a single stage. We predict that pigs and humans differ in the type of potassium current block that makes them most susceptible to cardiac arrhythmia. The model we developed can elucidate important differences between human and pig arrhythmia response.
Collapse
Affiliation(s)
- Namit Gaur
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Univ. Bordeaux, IMB, UMR 5251, Talence, France
| | - Xiao-Yan Qi
- Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - David Benoist
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Univ. Bordeaux, Inserm, CRCTB, U1045, Pessac, France
| | - Olivier Bernus
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Univ. Bordeaux, Inserm, CRCTB, U1045, Pessac, France
| | - Ruben Coronel
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Stanley Nattel
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Edward J. Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Univ. Bordeaux, IMB, UMR 5251, Talence, France
- * E-mail:
| |
Collapse
|