1
|
Poppe JA, Smorenburg RS, Goos TG, Taal HR, Reiss IKM, Simons SHP. Development of a Web-Based Oxygenation Dashboard for Preterm Neonates: A Quality Improvement Initiative. J Med Syst 2024; 48:46. [PMID: 38656727 PMCID: PMC11043117 DOI: 10.1007/s10916-024-02064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Preterm neonates are extensively monitored to require strict oxygen target attainment for optimal outcomes. In daily practice, detailed oxygenation data are hardly used and crucial patterns may be missed due to the snapshot presentations and subjective observations. This study aimed to develop a web-based dashboard with both detailed and summarized oxygenation data in real-time and to test its feasibility to support clinical decision making. METHODS Data from pulse oximeters and ventilators were synchronized and stored to enable real-time and retrospective trend visualizations in a web-based viewer. The dashboard was designed based on interviews with clinicians. A preliminary version was evaluated during daily clinical rounds. The routine evaluation of the respiratory condition of neonates (gestational age < 32 weeks) with respiratory support at the NICU was compared to an assessment with the assistance of the dashboard. RESULTS The web-based dashboard included data on the oxygen saturation (SpO2), fraction of inspired oxygen (FiO2), SpO2/FiO2 ratio, and area < 80% and > 95% SpO2 curve during time intervals that could be varied. The distribution of SpO2 values was visualized as histograms. In 65% of the patient evaluations (n = 86) the level of hypoxia was assessed differently with the use of the dashboard. In 75% of the patients the dashboard was judged to provide added value for the clinicians in supporting clinical decisions. CONCLUSIONS A web-based customized oxygenation dashboard for preterm neonates at the NICU was developed and found feasible during evaluation. More clear and objective information was found supportive for clinicians during the daily rounds in tailoring treatment strategies.
Collapse
Affiliation(s)
- J A Poppe
- Department of Neonatal and Paediatric Intensive Care, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - R S Smorenburg
- Department of Neonatal and Paediatric Intensive Care, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - T G Goos
- Department of Neonatal and Paediatric Intensive Care, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - H R Taal
- Department of Neonatal and Paediatric Intensive Care, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - I K M Reiss
- Department of Neonatal and Paediatric Intensive Care, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - S H P Simons
- Department of Neonatal and Paediatric Intensive Care, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Allegaert K, Salaets T, Wade K, Short MA, Ward R, Singh K, Turner MA, Davis JM, Lewis T. The neonatal adverse event severity scale: current status, a stakeholders' assessment, and future perspectives. Front Pediatr 2024; 11:1340607. [PMID: 38259600 PMCID: PMC10800487 DOI: 10.3389/fped.2023.1340607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
To support informed decisions on drug registration and prescription, clinical trials need tools to assess the efficacy and safety signals related to a given therapeutic intervention. Standardized assessment facilitates reproducibility of results. Furthermore, it enables weighted comparison between different interventions, instrumental to facilitate shared decisions. When focused on adverse events in clinical trials, tools are needed to assess seriousness, causality and severity. As part of such a toolbox, the international Neonatal Consortium (INC) developed a first version of the neonatal adverse event severity scale (NAESS). This version underwent subsequent validation in retro-and prospective trials to assess its applicability and impact on the inter-observer variability. Regulators, sponsors and academic researchers also reported on the use of the NAESS in regulatory documents, trial protocols and study reports. In this paper, we aim to report on the trajectory, current status and impact of the NAESS score, on how stakeholders within INC assess its relevance, and on perspectives to further develop this tool.
Collapse
Affiliation(s)
- Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Clinical Pharmacy, Erasmus MC, Rotterdam, Netherlands
| | - Thomas Salaets
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Pediatric Cardiology, University Hospitals, Leuven, Belgium
| | - Kelly Wade
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Mary A. Short
- International Neonatal Consortium, Communications Workgroup, Tucson, AZ, United States
| | - Robert Ward
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Kanwaljit Singh
- International Neonatal Consortium, Critical Path Institute, Tucson, AZ, United States
| | - Mark A. Turner
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
- Centre for Women’s Health Research, Liverpool Women’s Hospital, Liverpool, United Kingdom
| | - Jonathan M. Davis
- Department of Pediatrics, Tufts Children’s Hospital, Tufts University School of Medicine, Boston, MA, United States
| | - Tamorah Lewis
- Department of Pediatrics, City School of Medicine, Kansas Children’s Mercy Hospital, University of Missouri Kansas, Kansas City, MO, United States
- Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
3
|
Poppe JA, Flint RB, Smits A, Willemsen SP, Storm KK, Nuytemans DH, Onland W, Poley MJ, de Boode WP, Carkeek K, Cassart V, Cornette L, Dijk PH, Hemels MAC, Hermans I, Hütten MC, Kelen D, de Kort EHM, Kroon AA, Lefevere J, Plaskie K, Stewart B, Voeten M, van Weissenbruch MM, Williams O, Zonnenberg IA, Lacaze-Masmonteil T, Pas ABT, Reiss IKM, van Kaam AH, Allegaert K, Hutten GJ, Simons SHP. Doxapram versus placebo in preterm newborns: a study protocol for an international double blinded multicentre randomized controlled trial (DOXA-trial). Trials 2023; 24:656. [PMID: 37817255 PMCID: PMC10566117 DOI: 10.1186/s13063-023-07683-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Apnoea of prematurity (AOP) is one of the most common diagnoses among preterm infants. AOP often leads to hypoxemia and bradycardia which are associated with an increased risk of death or disability. In addition to caffeine therapy and non-invasive respiratory support, doxapram might be used to reduce hypoxemic episodes and the need for invasive mechanical ventilation in preterm infants, thereby possibly improving their long-term outcome. However, high-quality trials on doxapram are lacking. The DOXA-trial therefore aims to investigate the safety and efficacy of doxapram compared to placebo in reducing the composite outcome of death or severe disability at 18 to 24 months corrected age. METHODS The DOXA-trial is a double blinded, multicentre, randomized, placebo-controlled trial conducted in the Netherlands, Belgium and Canada. A total of 396 preterm infants with a gestational age below 29 weeks, suffering from AOP unresponsive to non-invasive respiratory support and caffeine will be randomized to receive doxapram therapy or placebo. The primary outcome is death or severe disability, defined as cognitive delay, cerebral palsy, severe hearing loss, or bilateral blindness, at 18-24 months corrected age. Secondary outcomes are short-term neonatal morbidity, including duration of mechanical ventilation, bronchopulmonary dysplasia and necrotising enterocolitis, hospital mortality, adverse effects, pharmacokinetics and cost-effectiveness. Analysis will be on an intention-to-treat principle. DISCUSSION Doxapram has the potential to improve neonatal outcomes by improving respiration, but the safety concerns need to be weighed against the potential risks of invasive mechanical ventilation. It is unknown if the use of doxapram improves the long-term outcome. This forms the clinical equipoise of the current trial. This international, multicentre trial will provide the needed high-quality evidence on the efficacy and safety of doxapram in the treatment of AOP in preterm infants. TRIAL REGISTRATION ClinicalTrials.gov NCT04430790 and EUDRACT 2019-003666-41. Prospectively registered on respectively June and January 2020.
Collapse
Affiliation(s)
- Jarinda A Poppe
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Sophia Children's Hospital, Room Sk-4113, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Robert B Flint
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Sophia Children's Hospital, Room Sk-4113, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anne Smits
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Sten P Willemsen
- Department of Biostatistics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kelly K Storm
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Sophia Children's Hospital, Room Sk-4113, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Debbie H Nuytemans
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wes Onland
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Marten J Poley
- Department of Paediatric Surgery and Intensive Care, Erasmus University Medical Center Sophia Children's Hospital, Rotterdam, the Netherlands
- Institute for Medical Technology Assessment (iMTA), Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Willem P de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Katherine Carkeek
- Neonatal Intensive Care Unit, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Vincent Cassart
- Department of Neonatology, Grand hôpital de Charleroi, Charleroi, Belgium
| | - Luc Cornette
- Department Neonatology, AZ St-Jan, Bruges, Belgium
| | - Peter H Dijk
- Division of Neonatology, Department of Paediatrics, Beatrix Children's Hospital, University Medical Centre Groningen, Groningen, the Netherlands
| | | | - Isabelle Hermans
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Matthias C Hütten
- Division of Neonatology, Department of Pediatrics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Dorottya Kelen
- Neonatal Department, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Ellen H M de Kort
- Division of Neonatology, Department of Pediatrics, Máxima Medical Center, Veldhoven, the Netherlands
| | - André A Kroon
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Sophia Children's Hospital, Room Sk-4113, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Julie Lefevere
- Neonatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Katleen Plaskie
- Department of Neonatology, GasthuisZusters Antwerpen, Antwerp, Belgium
| | - Breanne Stewart
- Quality Management in Clinical Research (QMCR), University of Alberta, Edmonton, AB, Canada
| | - Michiel Voeten
- Department of Neonatal Intensive Care, University Hospital Antwerp, Edegem, Belgium
| | - Mirjam M van Weissenbruch
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Olivia Williams
- Neonatology and Neonatal Intensive Care Unit, CHIREC-Delta Hospital, Brussels, Belgium
| | - Inge A Zonnenberg
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thierry Lacaze-Masmonteil
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Maternal Infant Child & Youth Research Network (MICYRN), Vancouver, Canada
| | - Arjan B Te Pas
- Division of Neonatology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, the Netherlands
| | - Irwin K M Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Sophia Children's Hospital, Room Sk-4113, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Anton H van Kaam
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - G Jeroen Hutten
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Sinno H P Simons
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Sophia Children's Hospital, Room Sk-4113, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Borenstein-Levin L, Poppe JA, van Weteringen W, Taal HR, Hochwald O, Kugelman A, Reiss IKM, Simons SHP. Oxygen saturation histogram classification system to evaluate response to doxapram treatment in preterm infants. Pediatr Res 2023; 93:932-937. [PMID: 35739260 DOI: 10.1038/s41390-022-02158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/25/2022] [Accepted: 05/22/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND An oxygen saturation (SpO2) histogram classification system has been shown to enable quantification of SpO2 instability into five types, based on histogram distribution and time spent at SpO2 ≤ 80%. We aimed to investigate this classification system as a tool to describe response to doxapram treatment in infants with severe apnea of prematurity. METHODS This retrospective study included 61 very-low-birth-weight infants who received doxapram. SpO2 histograms were generated over the 24-h before and after doxapram start. Therapy response was defined as a decrease of ≥1 histogram types after therapy start. RESULTS The median (IQR) histogram type decreased from 4 (3-4) before to 3 (2-3) after therapy start (p < 0.001). The median (IQR) FiO2 remained constant before (27% [24-35%]) and after (26% [22-35%]) therapy. Thirty-six infants (59%) responded to therapy within 24 h. In 34/36 (94%) of the responders, invasive mechanical ventilation (IMV) was not required during the first 72 h of therapy, compared to 15/25 (60%) of non-responders (p = 0.002). Positive and negative predictive values of the 24-h response for no IMV requirement within 72 h were 0.46 and 0.94, respectively. CONCLUSIONS Classification of SpO2 histograms provides an objective bedside measure to assess response to doxapram therapy and can serve as a tool to detect changes in oxygenation status around respiratory interventions. IMPACT The SpO2 histogram classification system provides a tool for quantifying response to doxapram therapy. The classification system allowed estimation of the probability of invasive mechanical ventilation requirement, already within a few hours of treatment. The SpO2 histogram classification system allows an objective bedside assessment of the oxygenation status of the preterm infant, making it possible to assess the changes in oxygenation status in response to respiratory interventions.
Collapse
Affiliation(s)
- Liron Borenstein-Levin
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Campus, Haifa, Israel.
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Jarinda A Poppe
- Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem van Weteringen
- Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - H Rob Taal
- Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ori Hochwald
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amir Kugelman
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Irwin K M Reiss
- Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sinno H P Simons
- Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Early prediction of severe retinopathy of prematurity requiring laser treatment using physiological data. Pediatr Res 2023:10.1038/s41390-023-02504-6. [PMID: 36788288 PMCID: PMC10382319 DOI: 10.1038/s41390-023-02504-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Early risk stratification for developing retinopathy of prematurity (ROP) is essential for tailoring screening strategies and preventing abnormal retinal development. This study aims to examine the ability of physiological data during the first postnatal month to distinguish preterm infants with and without ROP requiring laser treatment. METHODS In this cohort study, preterm infants with a gestational age <32 weeks and/or birth weight <1500 g, who were screened for ROP were included. Differences in the physiological data between the laser and non-laser group were identified, and tree-based classification models were trained and independently tested to predict ROP requiring laser treatment. RESULTS In total, 208 preterm infants were included in the analysis of whom 30 infants (14%) required laser treatment. Significant differences were identified in the level of hypoxia and hyperoxia, oxygen requirement, and skewness of heart rate. The best model had a balanced accuracy of 0.81 (0.72-0.87), a sensitivity of 0.73 (0.64-0.81), and a specificity of 0.88 (0.80-0.93) and included the SpO2/FiO2 ratio and baseline demographics (including gestational age and birth weight). CONCLUSIONS Routinely monitored physiological data from preterm infants in the first postnatal month are already predictive of later development of ROP requiring laser treatment, although validation is required in larger cohorts. IMPACT Routinely monitored physiological data from the first postnatal month are predictive of later development of ROP requiring laser treatment, although model performance was not significantly better than baseline characteristics (gestational age, birth weight, sex, multiple birth, prenatal glucocorticosteroids, route of delivery, and Apgar scores) alone. A balanced accuracy of 0.81 (0.72-0.87), a sensitivity of 0.73 (0.64-0.81), and a specificity of 0.88 (0.80-0.93) was achieved with a model including the SpO2/FiO2 ratio and baseline characteristics. Physiological data have potential to play a significant role for future ROP prediction and provide opportunities for early interventions to protect infants from abnormal retinal development.
Collapse
|
6
|
Bao J, Wu Y, Zhang K, Qi H. AC099850.3/NCAPG Axis Predicts Poor Prognosis and is Associated with Resistance to EGFR Tyrosine-Kinase Inhibitors in Lung Adenocarcinoma. Int J Gen Med 2022; 15:6917-6930. [PMID: 36061963 PMCID: PMC9439153 DOI: 10.2147/ijgm.s365695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background TKI-acquired resistance markedly interferes with treatment of lung cancer patients with EGFR mutant features. Long non-coding RNAs (lncRNAs) modify EGFR-TKI resistance during tumor progression. Non-structural maintenance of chromosomes condensin I complex subunit G (NCAPG) is a mitosis-related protein that is involved in tumorigenesis. We investigated the potential regulatory lncRNAs of NCAPG in lung adenocarcinoma (LUAD) and assessed their roles in EGFR-TKI resistance. Methods Data for 1678 lung cancer patients were retrieved from TCGA and GEO databases and used to evaluate NCAPG and lncRNAs expressions, as well as their prognostic significance in LUAD. Protein levels of NCAPG in LUAD were validated by immuno-histochemistry. To assess the relationship between NCAPG levels and EGFR-TKIs sensitivity, a cohort of 57 LUAD patients administered with EGFR-TKIs was used. Results Both NCAPG and lncRNA AC099850.3 were over-expressed in LUAD tissues, and correlated with tumor progression and poor prognosis in LUAD. LncRNA AC099850.3 was identified as a potential regulator of NCAPG expressions. The AC099850.3/NCAGP axis was markedly correlated with EGFR mutations and IC50 of EGFR-TKIs. Besides, elevated NCAPG levels were associated with EGFR-TKIs resistance in 57 LUAD patients undergoing TKIs treatment. Gene set enrichment analysis revealed that both AC099850.3 and NCAGP were abundant in the cell cycle and the p53 signaling pathway. Conclusion The AC099850.3/NCAPG axis is a potential prognostic predictor and therapeutic biomarker for EGFR-TKIs in LUAD.
Collapse
Affiliation(s)
- Jiaqi Bao
- Department of Thoracic Surgery, Affiliated Hospital of Chifeng University, Chifeng, People’s Republic of China
| | - Yanlong Wu
- Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, People’s Republic of China
| | - Kun Zhang
- Department of Radiology, Huhhot First Hospital, Huhhot, People’s Republic of China
| | - Huijuan Qi
- Department of Gynecology, Affiliated Hospital of Chifeng University, Chifeng, People’s Republic of China
- Correspondence: Huijuan Qi, Department of Gynecology, Affiliated Hospital of Chifeng University, Chifeng, People’s Republic of China, Email
| |
Collapse
|
7
|
Maudsley S, Leysen H, van Gastel J, Martin B. Systems Pharmacology: Enabling Multidimensional Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022:725-769. [DOI: 10.1016/b978-0-12-820472-6.00017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Hartley C. Toward personalized medicine for pharmacological interventions in neonates using vital signs. PAEDIATRIC AND NEONATAL PAIN 2021; 3:147-155. [PMID: 35372840 PMCID: PMC8937573 DOI: 10.1002/pne2.12065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Vital signs, such as heart rate and oxygen saturation, are continuously monitored for infants in neonatal care units. Pharmacological interventions can alter an infant's vital signs, either as an intended effect or as a side effect, and consequently could provide an approach to explore the wide variability in pharmacodynamics across infants and could be used to develop models to predict outcome (efficacy or adverse effects) in an individual infant. This will enable doses to be tailored according to the individual, shifting the balance toward efficacy and away from the adverse effects of a drug. Pharmacological analgesics are frequently not given in part due to the risk of adverse effects, yet this exposes infants to the short‐ and long‐term effects of painful procedures. Personalized analgesic dosing will be an important step forward in providing safer effective pain relief in infants. The aim of this paper was to describe a framework to develop predictive models of drug outcome from analysis of vital signs data, focusing on analgesics as a representative example. This framework investigates changes in vital signs in response to the analgesic (prior to the painful procedure) and proposes using machine learning to examine if these changes are predictive of outcome—either efficacy (with pain response measured using a multimodal approach, as changes in vital signs alone have limited sensitivity and specificity) or adverse effects. The framework could be applied to both preterm and term infants in neonatal care units, as well as older children. Sharing vital signs data are proposed as a means to achieve this aim and bring personalized medicine rapidly to the forefront in neonatology.
Collapse
|
9
|
The bioavailability and maturing clearance of doxapram in preterm infants. Pediatr Res 2021; 89:1268-1277. [PMID: 32698193 DOI: 10.1038/s41390-020-1037-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Doxapram is used for the treatment of apnea of prematurity in dosing regimens only based on bodyweight, as pharmacokinetic data are limited. This study describes the pharmacokinetics of doxapram and keto-doxapram in preterm infants. METHODS Data (302 samples) from 75 neonates were included with a median (range) gestational age (GA) 25.9 (23.9-29.4) weeks, bodyweight 0.95 (0.48-1.61) kg, and postnatal age (PNA) 17 (1-52) days at the start of continuous treatment. A population pharmacokinetic model was developed using non-linear mixed-effects modelling (NONMEM®). RESULTS A two-compartment model best described the pharmacokinetics of doxapram and keto-doxapram. PNA and GA affected the formation clearance of keto-doxapram (CLFORMATION KETO-DOXAPRAM) and clearance of doxapram via other routes (CLDOXAPRAM OTHER ROUTES). For a median individual of 0.95 kg, GA 25.6 weeks, and PNA 29 days, CLFORMATION KETO-DOXAPRAM was 0.115 L/h (relative standard error (RSE) 12%) and CLDOXAPRAM OTHER ROUTES was 0.645 L/h (RSE 9%). Oral bioavailability was estimated at 74% (RSE 10%). CONCLUSIONS Dosing of doxapram only based on bodyweight results in the highest exposure in preterm infants with the lowest PNA and GA. Therefore, dosing may need to be adjusted for GA and PNA to minimize the risk of accumulation and adverse events. For switching to oral therapy, a 33% dose increase is required to maintain exposure. IMPACT Current dosing regimens of doxapram in preterm infants only based on bodyweight result in the highest exposure in infants with the lowest PNA and GA. Dosing of doxapram may need to be adjusted for GA and PNA to minimize the risk of accumulation and adverse events. Describing the pharmacokinetics of doxapram and its active metabolite keto-doxapram following intravenous and gastroenteral administration enables to include drug exposure to the evaluation of treatment of AOP. The oral bioavailability of doxapram in preterm neonates is 74%, requiring a 33% higher dose via oral than intravenous administration to maintain exposure.
Collapse
|
10
|
Abdulla A, Edwina EE, Flint RB, Allegaert K, Wildschut ED, Koch BCP, de Hoog M. Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative Review. Front Pediatr 2021; 9:624639. [PMID: 33708753 PMCID: PMC7940353 DOI: 10.3389/fped.2021.624639] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Optimal pharmacotherapy in pediatric patients with suspected infections requires understanding and integration of relevant data on the antibiotic, bacterial pathogen, and patient characteristics. Because of age-related physiological maturation and non-maturational covariates (e.g., disease state, inflammation, organ failure, co-morbidity, co-medication and extracorporeal systems), antibiotic pharmacokinetics is highly variable in pediatric patients and difficult to predict without using population pharmacokinetics models. The intra- and inter-individual variability can result in under- or overexposure in a significant proportion of patients. Therapeutic drug monitoring typically covers assessment of pharmacokinetics and pharmacodynamics, and concurrent dose adaptation after initial standard dosing and drug concentration analysis. Model-informed precision dosing (MIPD) captures drug, disease, and patient characteristics in modeling approaches and can be used to perform Bayesian forecasting and dose optimization. Incorporating MIPD in the electronic patient record system brings pharmacometrics to the bedside of the patient, with the aim of a consisted and optimal drug exposure. In this narrative review, we evaluated studies assessing optimization of antibiotic pharmacotherapy using MIPD in pediatric populations. Four eligible studies involving amikacin and vancomycin were identified from 418 records. Key articles, independent of year of publication, were also selected to highlight important attributes of MIPD. Although very little research has been conducted until this moment, the available data on vancomycin indicate that MIPD is superior compared to conventional dosing strategies with respect to target attainment. The utility of MIPD in pediatrics needs to be further confirmed in frequently used antibiotic classes, particularly aminoglycosides and beta-lactams.
Collapse
Affiliation(s)
- Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Elma E Edwina
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Robert B Flint
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Enno D Wildschut
- Department of Pediatric Intensive Care, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Matthijs de Hoog
- Department of Pediatric Intensive Care, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|