1
|
Tao ZS, Hu XF, Wu XJ, Wang ZY, Yang M, Shen CL. Ganoderic Acid A prevents bone loss in lipopolysaccharide-treated male rats by reducing oxidative stress and inflammatory. Chem Biol Interact 2024; 401:111164. [PMID: 39111524 DOI: 10.1016/j.cbi.2024.111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Ganoderic Acid A (GAA) has demonstrated beneficial effects in anti-inflammatory and anti-oxidative stress studies. However, it remains unknown whether GAA exerts positive impacts on bone loss induced by lipopolysaccharide (LPS). This study aims to investigate the influence of GAA on bone loss in LPS-treated rats. The study assesses changes in the viability and osteogenic potential of MC3T3-E1 cells, as well as osteoclast differentiation in RAW264.7 cells in the presence of LPS using CCK-8, ALP staining, AR staining, and Tartrate-resistant acid phosphatase (TRAP) staining. In vitro experiments indicate that LPS-induced inhibition of osteoclasts (OC) and Superoxide Dismutase 2 (SOD2) correlates with heightened levels of inflammation and oxidative stress. Furthermore, GAA has displayed the ability to alleviate oxidative stress and inflammation, enhance osteogenic differentiation, and suppress osteoclast differentiation. Animal experiment also proves that GAA notably upregulates SOD2 expression and downregulates TNF-α expression, leading to the restoration of impaired bone metabolism, improved bone strength, and increased bone mineral density. The collective experimental findings strongly suggest that GAA can enhance osteogenic activity in the presence of LPS by reducing inflammation and oxidative stress, hindering osteoclast differentiation, and mitigating bone loss in LPS-treated rat models.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China; Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, PR China
| | - Xu-Feng Hu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Xing-Jing Wu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Zheng-Yu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Cai-Liang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, PR China.
| |
Collapse
|
2
|
Wang X, Tang P, Yang K, Guo S, Tang Y, Zhang H, Wang Q. Regulation of bone homeostasis by traditional Chinese medicine active scaffolds and enhancement for the osteoporosis bone regeneration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118141. [PMID: 38570149 DOI: 10.1016/j.jep.2024.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.
Collapse
Affiliation(s)
- Xi Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Pengfei Tang
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Shuangquan Guo
- Chengdu Holy (Group) Industry Co. Ltd., Chengdu, 610041, China
| | - Youhong Tang
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China; Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Wang S, Wang R, Li R, Li Y. Research Progress on Application of Inonotus obliquus in Diabetic Kidney Disease. J Inflamm Res 2023; 16:6349-6359. [PMID: 38161352 PMCID: PMC10756068 DOI: 10.2147/jir.s431913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the prime causes of end-stage renal disease. At present, the treatment of DKD is mainly confined to inhibiting the renin-angiotensin-aldosterone system, but the therapeutic effects is not satisfactory. As a kind of very rare and precious medicinal fungi, Inonotus obliquus has a very high medicinal value. Due to its special hypoglycemic and pharmacological effect, researchers currently have attached great importance to it. In this paper, the biological activities, pharmacological effects and application status in the treatment of DKD-related diseases of Inonotus obliquus and the latest progress of metabolites isolated from it in DKD were summarized, thus providing detailed insights and basic understanding of the potential application prospects in DKD.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Ruihua Wang
- The Third Clinical College, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030002, People’s Republic of China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| |
Collapse
|
4
|
Liu B, Wu Y, Liang T, Zhou Y, Chen G, He J, Ji C, Liu P, Zhang C, Lin J, Shi K, Luo Z, Liu N, Su X. Betulinic Acid Attenuates Osteoarthritis via Limiting NLRP3 Inflammasome Activation to Decrease Interleukin-1 β Maturation and Secretion. Mediators Inflamm 2023; 2023:3706421. [PMID: 37789884 PMCID: PMC10545461 DOI: 10.1155/2023/3706421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/09/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Osteoarthritis (OA) is the most common degenerative joint disorder. Prior studies revealed that activation of NLRP3 inflammasome could promote the activation and secretion of interleukin-1β (IL-1β), which has an adverse effect on the progression of OA. Betulinic acid (BA) is a compound extract of birch, whether it can protect against OA and the mechanisms involved are still unknown. Materials and Methods In vivo experiments, using gait analysis, ELISA, micro-CT, and scanning electron microscopy (SEM), histological staining, immunohistological (IHC) and immunofluorescence (IF) staining, and atomic force microscopy (AFM) to assess OA progression after intraperitoneal injection of 5 and 15 mg/kg BA in an OA mouse model. In vitro experiments, caspase-1, IL-1β, and the N-terminal fragment of gasdermin D (GSDMD-NT) were measured in bone marrow-derived macrophages (BMDMs) by using ELISA, western blot, and immunofluorescence staining. Results We demonstrated that OA progression can be postponed with intraperitoneal injection of 5 and 15 mg/kg BA in an OA mouse model. Specifically, BA postponed DMM-induced cartilage deterioration, alleviated subchondral bone sclerosis, and relieved synovial inflammation. In vitro studies, the activated NLRP3 inflammasome produces mature IL-1β by facilitating the cleavage of pro-IL-1β, and BA could inhibit the activation of NLRP3 inflammasome in BMDMs. Conclusions Taken together, our analyses revealed that BA attenuates OA via limiting NLRP3 inflammasome activation to decrease the IL-1β maturation and secretion.
Collapse
Affiliation(s)
- Bo Liu
- Department of Orthopaedics, People's Hospital of Leshan, 238 Baita Road, Leshan 614000, Sichuan, China
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
- Orthopaedic Institute, Soochow University, 708 Renmin Road, Suzhou 215006, Jiangsu, China
| | - Yanglin Wu
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
- Orthopaedic Institute, Soochow University, 708 Renmin Road, Suzhou 215006, Jiangsu, China
- Department of Orthopaedics, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai 200072, Shanghai, China
| | - Ting Liang
- Orthopaedic Institute, Soochow University, 708 Renmin Road, Suzhou 215006, Jiangsu, China
| | - Yunlong Zhou
- Department of Orthopaedics, People's Hospital of Leshan, 238 Baita Road, Leshan 614000, Sichuan, China
| | - Guangdong Chen
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Jiaheng He
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
- Orthopaedic Institute, Soochow University, 708 Renmin Road, Suzhou 215006, Jiangsu, China
- Department of Orthopaedics, Jiangsu Shengze Hospital, No. 1399, Market West Road, Shengze 215000, Jiangsu, China
| | - Chenchen Ji
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
- Orthopaedic Institute, Soochow University, 708 Renmin Road, Suzhou 215006, Jiangsu, China
- Stroke Intensive Care Unit, Children's Hospital of Soochow University, 92 Zhongnan Road, Suzhou 215006, Jiangsu, China
| | - Peixin Liu
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
- Orthopaedic Institute, Soochow University, 708 Renmin Road, Suzhou 215006, Jiangsu, China
- Department of Orthopedics, Suzhou Xiangcheng People's Hospital, 1060 Huayuan Road, Suzhou 215131, Jiangsu, China
| | - Chenhui Zhang
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
- Orthopaedic Institute, Soochow University, 708 Renmin Road, Suzhou 215006, Jiangsu, China
| | - Jun Lin
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215001, Jiangsu, China
| | - Kece Shi
- Department of Orthopaedics, People's Hospital of Leshan, 238 Baita Road, Leshan 614000, Sichuan, China
| | - Zongping Luo
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
- Orthopaedic Institute, Soochow University, 708 Renmin Road, Suzhou 215006, Jiangsu, China
| | - Naicheng Liu
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Xinlin Su
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| |
Collapse
|
5
|
Lee SJ, Jang SA, Kim SC, Gu DR, Yang H, Ryuk JA, Ha H. Euonymus alatus (Thunb.) Siebold Prevents Osteoclast Differentiation and Osteoporosis. Nutrients 2023; 15:3996. [PMID: 37764779 PMCID: PMC10535286 DOI: 10.3390/nu15183996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Euonymus alatus (Thunb.) Siebold, a traditional medicinal plant, has been used in China and several other Asian countries to address a variety of health concerns. The extensive research conducted on E. alatus is driven by its diverse pharmacological applications. However, its biological effects on osteoclastogenesis and osteoporosis have not been previously studied. In this research, we investigated the impact of an ethanolic extract of E. alatus (EEEA) on osteoclast differentiation and function as well as estrogen deficiency-induced bone loss. We found that EEEA inhibits osteoclast differentiation by downregulating the expression of the receptor activator of nuclear factor-κB ligand (RANKL) in osteoclast-supporting cells and by directly impeding RANKL-mediated signaling pathways for osteoclastogenesis in precursor cells. In addition, EEEA inhibited the bone-resorptive function of mature osteoclasts in vitro. Furthermore, oral administration of EEEA significantly alleviated bone loss in an ovariectomy-induced osteoporosis mouse model. Additionally, we identified phytochemicals in EEEA that have suppressive effects on osteoclast differentiation and bone loss. Collectively, these results suggest that EEEA holds potential as a biotherapeutic candidate for anti-postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sung-Ju Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea; (S.-J.L.); (S.C.K.); (D.R.G.); (H.Y.); (J.A.R.)
| | - Seon-A Jang
- Future Technology Research Center, KT&G Corporation, 30, Gajeong-ro, Yuseong-gu, Daejeon 34128, Republic of Korea;
| | - Seong Cheol Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea; (S.-J.L.); (S.C.K.); (D.R.G.); (H.Y.); (J.A.R.)
| | - Dong Ryun Gu
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea; (S.-J.L.); (S.C.K.); (D.R.G.); (H.Y.); (J.A.R.)
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea; (S.-J.L.); (S.C.K.); (D.R.G.); (H.Y.); (J.A.R.)
| | - Jin Ah Ryuk
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea; (S.-J.L.); (S.C.K.); (D.R.G.); (H.Y.); (J.A.R.)
| | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Daejeon 34054, Republic of Korea; (S.-J.L.); (S.C.K.); (D.R.G.); (H.Y.); (J.A.R.)
| |
Collapse
|
6
|
Liu J, Zhao N, Su SH, Gao Y, Qi B. Anti-Arthritic Effect of Edaravone Against Complete Freund Adjuvant Induced Arthritis via Osteoclast Differentiation and HIF-1α-VEGF-ANG-1 Axis. Drug Des Devel Ther 2023; 17:519-534. [PMID: 36845667 PMCID: PMC9946814 DOI: 10.2147/dddt.s391606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 02/19/2023] Open
Abstract
Background Bone dysfunction is a crucial problem that occurs during rheumatoid arthritis (RA) disease. Osteoclast plays a significant role in bone resorption and osteoclast differentiation and its enhancement of bone destruction. Edaravone remarkably exhibited free radical scavenging and anti-inflammatory effects. The objective of the current investigation is to comfort the inhibitory effect of Edaravone (ED) against complete Freund adjuvant (CFA) rat model via inhibition of angiogenesis and inflammation. Methods Subcutaneous injection of CFA (1%) was used to induce arthritis; the rats were divided into different groups and received the oral administration of ED. Paw edema, body weight, and arthritis score were regularly estimated. Biochemical parameters were estimated, respectively. We also estimate the level of hypoxia-inducible factor-1α (HIF-1α), angiopoietin 1 (ANG-1), and vascular endothelial growth factor (VEGF). We also checked into how ED affected the differentiation of osteoclasts utilising a co-culture system with monocytes and synovial fibroblasts in arthritis rats. Results ED treatment significantly (P<0.001) suppressed the arthritis score and paw edema and improved the body weight. ED treatment significantly (P<0.001) altered the antioxidant parameters and pro-inflammatory cytokines: inflammatory mediator nuclear kappa B factor (NF-κB), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2), respectively. Furthermore, ED treatment significantly (P<0.001) suppressed the level of ANG-1, HIF-1α, and VEGF, respectively. The results suggest that ED suppressed osteoclast differentiation and also decreased the level of cytokines and osteopontin (OPN), receptor activator for nuclear factor-κ B Ligand (RANKL) and macrophage colony stimulating factor (M-CSF) in the co-culture supernatant of monocytes and synovial fibroblasts. Conclusion Edaravone could mitigate CFA via inhibiting angiogenesis and inflammatory reactions, which may be linked with the HIF-1α-VEGF-ANG-1 axis and also enhance the bone destruction of murine arthritis via suppression of osteoclast differentiation and inflammatory reaction.
Collapse
Affiliation(s)
- Jichao Liu
- Department of Hand and Foot Micro Burn Plastic Surgery, 3201 Hospital, Hanzhong, People’s Republic of China
| | - Nan Zhao
- Department of Neurosurgery, The First Hospital of Kunming, Kunming, People’s Republic of China
| | - Shi-Han Su
- Department of Internal Medicine-Neurology, 920th Hospital of Joint Logistics Support Force, Kunming, People’s Republic of China
| | - Yun Gao
- Department of Neurosurgery, The First Hospital of Kunming, Kunming, People’s Republic of China
| | - Bo Qi
- Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming, People’s Republic of China,Correspondence: Bo Qi, Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming, 650000, People’s Republic of China, Email
| |
Collapse
|
7
|
Asperuloside Prevents Peri-Implantitis via Suppression of NF-κB and ERK1/2 on Rats. Pharmaceuticals (Basel) 2022; 15:ph15081027. [PMID: 36015175 PMCID: PMC9412302 DOI: 10.3390/ph15081027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Peri-implantitis is characterized by inflammatory cell infiltration and hyperactivation of the osteoclasts surrounding dental implants which can result in bone resorption and ultimately implant failure. Therefore, coordinating the activity of inflammatory response and bone-resorbing osteoclasts is crucial for the prevention of peri-implantitis. Asperuloside (ASP), an iridoid glycoside, has significant anti-inflammatory activities, suggesting the great potential in attenuating peri-implantitis bone resorption. A ligature-induced peri-implantitis model in the maxilla of rats was established, and the effects of ASP on preventing peri-implantitis were evaluated after four weeks of ligation using micro-CT and histological staining. RT-PCR, western blotting, tartrate-resistant acid phosphatase (TRAP), and immunofluorescent staining were conducted on osteoclasts to confirm the mechanisms of ASP on osteoclastogenesis. The results show that ASP could lead to attenuation of alveolar bone resorption in peri-implantitis by inhibiting osteoclast formation and decreasing pro-inflammatory cytokine levels in vivo. Furthermore, ASP could inhibit osteoclastogenesis by downregulating expression levels of transcription factors nuclear factor of activated T-cell (NFATc1) via restraining the activations of nuclear factor kappa beta (NF-κB) and the phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2). In conclusion, ASP could significantly attenuate bone resorption in peri-implantitis via inhibition of osteoclastogenesis by suppressing NF-κB and ERK1/2 signaling pathways activations.
Collapse
|
8
|
Cao J, Zhou MX, Chen X, Sun M, Wei C, Peng Q, Cheng Z, Sun W, Wang H. Sec-O-Glucosylhamaudol Inhibits RANKL-Induced Osteoclastogenesis by Repressing 5-LO and AKT/GSK3β Signaling. Front Immunol 2022; 13:880988. [PMID: 35558084 PMCID: PMC9087042 DOI: 10.3389/fimmu.2022.880988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Sec-O-glucosylhamaudol (SOG), an active flavonoid compound derived from the root of Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., exhibits analgesic, anti-inflammatory, and high 5-lipoxygenase (5-LO) inhibitory effects. However, its effect on osteoclastogenesis was unclear. We demonstrated that SOG markedly attenuated RANKL-induced osteoclast formation, F-actin ring formation, and mineral resorption by reducing the induction of key transcription factors NFATc1, c-Fos, and their target genes such as TRAP, CTSK, and DC-STAMP during osteoclastogenesis. Western blotting showed that SOG significantly inhibited the phosphorylation of AKT and GSK3β at the middle–late stage of osteoclastogenesis without altering calcineurin catalytic subunit protein phosphatase-2β-Aα expression. Moreover, GSK3β inhibitor SB415286 partially reversed SOG-induced inhibition of osteoclastogenesis, suggesting that SOG inhibits RANKL-induced osteoclastogenesis by activating GSK3β, at least in part. 5-LO gene silencing by small interfering RNA in mouse bone marrow macrophages markedly reduced RANKL-induced osteoclastogenesis by inhibiting NFATc1. However, it did not affect the phosphorylation of AKT or GSK3β, indicating that SOG exerts its inhibitory effects on osteoclastogenesis by suppressing both the independent 5-LO pathway and AKT-mediated GSK3β inactivation. In support of this, SOG significantly improved bone destruction in a lipopolysaccharide-induced mouse model of bone loss. Taken together, these results suggest a potential therapeutic effect for SOG on osteoclast-related bone lysis disease.
Collapse
Affiliation(s)
- Jinjin Cao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ming-Xue Zhou
- Department of Neurology, Ruikang Hospital of Guangxi Traditional Chinese Medicine (TCM) University, Nanning, China
| | - Xinyan Chen
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Menglu Sun
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Congmin Wei
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qisheng Peng
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Zhou Cheng
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wanchun Sun
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Hongbing Wang
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Wu L, Liang J, Li J, Xu Y, Chen J, Su Y, Xian Y, Wei J, Xu J, Zhao J, Liu Q, Yang Y. Onc201 reduces osteoclastogenesis and prevents ovariectomy-induced bone loss via inhibiting RANKL-induced NFATc1 activation and the integrin signaling pathway. Eur J Pharmacol 2022; 923:174908. [PMID: 35405113 DOI: 10.1016/j.ejphar.2022.174908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Osteoporosis is an osteolytic disease with a disrupted balance between the resorption and formation of bone as well as bone microstructure degeneration, leading to bone loss and increased fracture risk, which greatly affects patients' quality of life. Currently, inhibition of osteoclast bone resorption remains the mainstream treatment for osteoporosis. Onc201, a new compound, induces the gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and has an efficient anticancer effect in clinical trials. However, its effects on osteolytic disease and the mechanism of action are unclear. We examined the effect of Onc201 on nuclear factor κB ligand-receptor activator (RANKL)-induced osteoclasts via Cell Counting Kit-8, bone resorption assay, luciferase reporter assay, immunofluorescence staining, calcium ion intensity assay and employed an ovariectomy model to investigate the effect of Onc201 on osteoporosis in the mice. Results showed that Onc201 inhibited the function and formation of osteoclasts induced by RANKL in a manner that was dependent on time and concentration, and did not cause cytotoxicity. Mechanistically, Onc201 inhibited osteoclast-relevant genes and NFATc1 expression, the main transcriptional regulatory factor of the formation of osteoclasts induced by RANKL; meanwhile, downregulating the expressions of the osteoclast cytoskeleton key signal molecules integrin αvβ3, focal adhesion kinase (FAK), c-Src, and spleen-associated tyrosine kinase (SYK). In addition, Onc201 had a protective effect on the mouse model of bone loss caused by ovariectomy-induced estrogen deficiency, which is consistent with the in vitro results. Our findings suggest that the new small-molecular compound Onc201 has the potential to prevent osteoclast-related osteolytic diseases.
Collapse
Affiliation(s)
- Liwei Wu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiamin Liang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jing Li
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yang Xu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Junchun Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yansi Xian
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiyong Wei
- Department of Orthopedics, The First People's Hospital of Nanning, Nanning, Guangxi, 530016, People's Republic of China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| | - Yuan Yang
- Department of Orthopedics, Kaiyuan Langdong Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, 530028, People's Republic of China; Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
10
|
Zhuo Y, Li M, Jiang Q, Ke H, Liang Q, Zeng LF, Fang J. Evolving Roles of Natural Terpenoids From Traditional Chinese Medicine in the Treatment of Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:901545. [PMID: 35651977 PMCID: PMC9150774 DOI: 10.3389/fendo.2022.901545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disease which can lead to reduction in bone mass and increased risk of bone fracture due to the microstructural degradation. Traditional Chinese medicine (TCM) has been applied in the prevention and treatment of osteoporosis for a long time. Terpenoids, a class of natural products that are rich in TCM, have been widely studied for their therapeutic efficacy on bone resorption, osteogenesis, and concomitant inflammation. Terpenoids can be classified in four categories by structures, monoterpenoids, sesquiterpenoids, diterpenoids, and triterpenoids. In this review, we comprehensively summarize all the currently known TCM-derived terpenoids in the treatment of OP. In addition, we discuss the possible mechanistic-of-actions of all four category terpenoids in anti-OP and assess their therapeutic potential for OP treatment.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yue Zhuo, ; Ling-Feng Zeng, ; Jiansong Fang,
| | - Meng Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Women and Children’s Medical Center, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Guangzhou Medical University, Guangzhou, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Qingchun Liang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ling-Feng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yue Zhuo, ; Ling-Feng Zeng, ; Jiansong Fang,
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yue Zhuo, ; Ling-Feng Zeng, ; Jiansong Fang,
| |
Collapse
|
11
|
Li C, Qi Y, Zhou Q, Huang X, Deng X, Yu Y, Shi LE. Betulinic acid promotes the osteogenic differentiation of human periodontal ligament stem cells by upregulating EGR1. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1266-1276. [PMID: 34519779 DOI: 10.1093/abbs/gmab111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is one of the most common chronic inflammations of the oral cavity, which eventually leads to tooth loss. Betulinic acid (BetA) is an organic acid that has anti-inflammatory effects and is derived from fruits and plants, but its effect on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is still unclear. This study aimed to explore the effect of BetA on the osteogenic differentiation of hPDLSCs and its mechanism. Our results revealed that BetA not only promoted the viability of hPDLSCs but also induced their osteogenic differentiation in a dose-dependent manner. In addition, RNA sequencing was used to screen the differentially expressed genes (DEGs) after hPDLSCs were treated with BetA, and 127 upregulated and 138 downregulated genes were identified. Gene Ontology enrichment analysis showed that DEGs were mainly involved in the response to lithium ions and the positive regulation of macrophage-derived foam cell differentiation. The Kyoto Encyclopedia of Genes and Genomes analysis results revealed that DEGs were enriched in the nuclear factor-κB and interleukin-17 signaling pathways. More importantly, we confirmed that early growth response gene 1 (EGR1), one of the three DEGs involved in bone formation, significantly promoted the expression of osteogenic markers and the mineralization of hPDLSCs. Knockdown of EGR1 obviously limited the effect of BetA on the osteogenic differentiation of hPDLSCs. In conclusion, BetA promoted the osteogenic differentiation of hPDLSCs through upregulating EGR1, and BetA might be a promising candidate in the clinical application of periodontal tissue regeneration.
Collapse
Affiliation(s)
- Cheng Li
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| | - Yuesun Qi
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Stomatology, Jinshan Hospital, Fudan University, Shanghai 200540, China
| | - Qin Zhou
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| | - Xin Huang
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| | - Xiaolin Deng
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - L e Shi
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| |
Collapse
|
12
|
Liu S, Song D, Yuan D. Bergamottin protects against LPS-induced endotoxic shock by regulating the NF-κB signaling pathway. Immunol Res 2021; 70:33-43. [PMID: 34632552 DOI: 10.1007/s12026-021-09235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Bergamottin is a natural furanocoumarin compound that possesses antioxidative and anti-cancer properties; however, the effect of Bergamottin on lipopolysaccharide (LPS)-induced inflammation response is unknown. In this study, we investigated the protective effects and mechanisms of Bergamottin against LPS-induced inflammatory responses.Raw264.7 cells were pre-treated with Bergamottin, then stimulated with LPS. Morphologic analysis and flow cytometry were used to measure Bergamottin-related cytotoxicity. ELISA and qPCR were performed to measure secretion and transcription activities of inflammatory cytokines. Biochemical analysis was used to determine the expression of tissues damage indicators. Western blots were used to determine protein expression, and immunofluorescence staining was used to determine the co-localization of NF-κB and RelA. Hematoxylin and eosin staining was used to show the pathological damages.Bergamottin had no cytotoxic effects on Raw264.7 cells. Pre-treatment with Bergamottin inhibited inflammatory cytokines expression and secretion induced by LPS, due to the inhibition of LPS-induced NF-κB signaling pathway activation, and improved pathological damages. These findings suggest that Bergamottin protects against LPS-induced endotoxin shock by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Saisai Liu
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory for Molecular Genetic Mechanisms and Intervention Research On High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Dan Song
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China. .,Key Laboratory for Molecular Genetic Mechanisms and Intervention Research On High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.
| | - Dongya Yuan
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.,Key Laboratory for Molecular Genetic Mechanisms and Intervention Research On High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| |
Collapse
|
13
|
The pathophysiology of immunoporosis: innovative therapeutic targets. Inflamm Res 2021; 70:859-875. [PMID: 34272579 DOI: 10.1007/s00011-021-01484-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/14/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The physiological balance between bone resorption and bone formation is now known to be mediated by a cascade of events parallel to the classic osteoblast-osteoclast interaction. Thus, osteoimmunology now encompasses the role played by other cell types, such as cytokines, lymphocytes and chemokines, in immunological responses and how they help modulate bone metabolism. All these factors have an impact on the RANK/RANKL/OPG pathway, which is the major pathway for the maturation and resorption activity of osteoclast precursor cells, responsible for osteoporosis development. Recently, immunoporosis has emerged as a new research area in osteoimmunology dedicated to the immune system's role in osteoporosis. METHODS The first part of this review presents theoretical concepts on the factors involved in the skeletal system and osteoimmunology. Secondly, existing treatments and novel therapeutic approaches to treat osteoporosis are summarized. These were selected from to the most recent studies published on PubMed containing the term osteoporosis. All data relate to the results of in vitro and in vivo studies on the osteoimmunological system of humans, mice and rats. FINDINGS Treatments for osteoporosis can be classified into two categories. They either target osteoclastogenesis inhibition (denosumab, bisphosphonates), or they aim to restore the number and function of osteoblasts (romozumab, abaloparatide). Even novel therapies, such as resolvins, gene therapy, and mesenchymal stem cell transplantation, fall within this classification system. CONCLUSION This review presents alternative pathways in the pathophysiology of osteoporosis, along with some recent therapeutic breakthroughs to restore bone homeostasis.
Collapse
|