1
|
Zhu B, Wei R, Li X, Bi Q. Targeting CCL5 Attenuates Fibrosis via Activation of PI3k/Akt Signaling Axis After Glaucoma Filtration Surgery. Curr Eye Res 2024:1-11. [DOI: 10.1080/02713683.2024.2432399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 01/02/2025]
Affiliation(s)
- Baixue Zhu
- Yulin Hospital of Traditional Chinese Medicine, Yulin, Shaanxi, China
| | - Ran Wei
- Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Xinying Li
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingyun Bi
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Wang Y, Geng X, Guo Z, Chu D, Liu R, Cheng B, Cui H, Li C, Li J, Li Z. M2 macrophages promote subconjunctival fibrosis through YAP/TAZ signalling. Ann Med 2024; 56:2313680. [PMID: 38335557 PMCID: PMC10860428 DOI: 10.1080/07853890.2024.2313680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
PURPOSE To evaluate the role of M2 macrophages in subconjunctival fibrosis after silicone implantation (SI) and investigate the underlying mechanisms. MATERIALS AND METHODS A model of subconjunctival fibrosis was established by SI surgery in rabbit eyes. M2 distribution and collagen deposition were evaluated by histopathology. The effects of M2 cells on the migration (using wound-scratch assay) and activation (by immunofluorescence and western blotting) of human Tenon's fibroblasts (HTFs) were investigated. RESULTS There were more M2 macrophages (CD68+/CD206+ cells) occurring in tissue samples around silicone implant at 2 weeks postoperatively. Dense collagen deposition was observed at 8 weeks after SI. In vitro experiment showed M2 expressed high level of CD206 and transforming growth factor-β1 (TGF-β1). The M2-conditioned medium promoted HTFs migration and the synthesis of collagen I and fibronectin. Meanwhile, M2-conditioned medium increased the protein levels of TGF-β1, TGF-βR II, p-Smad2/3, yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ). Verteporfin, a YAP inhibitor, suppressedTGF-β1/Smad2/3-YAP/TAZ pathway and attenuated M2-induced extracellular matrix deposition by HTFs. CONCLUSIONS TGF-β1/Smad2/3-YAP/TAZ signalling may be involved in M2-induced fibrotic activities in HTFs. M2 plays a key role in promoting subconjunctival fibrosis and can serve as an attractive target for anti-fibrotic therapeutics.
Collapse
Affiliation(s)
- Yiwei Wang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Xingchen Geng
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Boyuan Cheng
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengcheng Li
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Yang CC, Liu MJ, Li YZP, Xu ZH, Liu Y, Guo ZH, Li BH, Yang XX. 17β-estradiol inhibits TGF-β-induced collagen gel contraction mediated by human Tenon fibroblasts via Smads and MAPK signaling pathways. Int J Ophthalmol 2023; 16:1441-1449. [PMID: 37724268 PMCID: PMC10475634 DOI: 10.18240/ijo.2023.09.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/14/2023] [Indexed: 09/20/2023] Open
Abstract
AIM To investigate the impact of 17β-estradiol on the collagen gels contraction (CGC) and inflammation induced by transforming growth factor (TGF)-β in human Tenon fibroblasts (HTFs). METHODS HTFs were three-dimensionally cultivated in type I collagen-generated gels with or without TGF-β (5 ng/mL), 17β-estradiol (12.5 to 100 µmol/L), or progesterone (12.5 to 100 µmol/L). Then, the collagen gel diameter was determined to assess the contraction, and the development of stress fibers was analyzed using immunofluorescence staining. Immunoblot and gelatin zymography assays were used to analyze matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) being released into culture supernatants. Enzyme-linked immunosorbent assay (ELISA) and reverse transcription-quantitative polymerase chain reaction (RT-PCR) were used to detect interleukin (IL)-6, monocyte chemoattractant proteins (MCP)-1, and vascular endothelial growth factor (VEGF) in HTFs at the translational and transcriptional levels. The phosphorylation levels of Sma- and Mad-related proteins (Smads), mitogen-activated protein kinases (MAPKs), and protein kinase B (AKT) were measured by immunoblotting. Statistical analysis was performed using either the Tukey-Kramer test or Student's unpaired t-test to compare the various treatments. RESULTS The CGC caused by TGF-β in HTFs was significantly inhibited by 17β-estradiol (25 to 100 µmol/L), and a statistically significant difference was observed when comparing the normal control group with 17β-estradiol concentrations exceeding 25 µmol/L (P<0.05). The suppressive impact of 17β-estradiol became evident 24h after administration and peaked at 72h (P<0.05), whereas progesterone had no impact. Moreover, 17β-estradiol attenuated the formation of stress fibers, and the production of MMP-3 and MMP-1 in HTFs stimulated by TGF-β. The expression of MCP-1, IL-6, and VEGF mRNA and protein in HTFs were suppressed by 100 µmol/L 17β-estradiol (P<0.01). Additionally, the phosphorylation of Smad2 Smad3, p38, and extracellular signal-regulated kinase (ERK) were downregulated (P <0.01). CONCLUSION 17β-estradiol significantly inhibits the CGC and inflammation caused by TGF-β in HTFs. This inhibition is likely related to the suppression of stress fibers, inhibition of MMPs, and attenuation of Smads and MAPK (ERK and p38) signaling. 17β-estradiol may have potential clinical benefits in preventing scar development and inflammation in the conjunctiva.
Collapse
Affiliation(s)
- Cheng-Cheng Yang
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Meng-Jie Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Yun-Ze-Peng Li
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Zheng-Hua Xu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Yang Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Zi-Han Guo
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361000, Fujian Province, China
| | - Bin-Hui Li
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Xiu-Xia Yang
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
4
|
Regu VPR, Behera D, Sunkara SP, Gohel V, Tripathy S, Swain RP, Subudhi BB. Ocular Delivery of Metformin for Sustained Release and in Vivo Efficacy. J Pharm Sci 2023; 112:2494-2505. [PMID: 37031863 DOI: 10.1016/j.xphs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Metformin is known to lower inflammation, independent of its anti-diabetic action. Thus, topical metformin can be a therapeutic strategy for managing ocular inflammation associated with diabetes. To achieve this and address the issues of ocular retention and controlled release an in situ gel of metformin was developed. The formulations were prepared using sodium hyaluronate, hypromellose, and gellan gum. The composition was optimized by monitoring gelling time/capacity, viscosity, and mucoadhesion. MF5 was selected as the optimized formulation. It showed both chemical and physiological compatibility. It was found to be sterile and stable. MF5 exhibited sustained release of metformin for 8h that fitted best with zero-order kinetics. Further, the release mode was found to be close to the Korsmeyer-Peppas model. Supported by an ex vivo permeation study, it showed potential for prolonged action. It showed a significant reduction in ocular inflammation that was comparable to that of the standard drug. MF5 shows translational potential as a safe alternative to steroids for managing ocular inflammation.
Collapse
Affiliation(s)
- Vara Prasada Rao Regu
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Dhananjay Behera
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Sai Prathyusha Sunkara
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Vinit Gohel
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India; ProCyto Labs Pvt Ltd., KIIT-TBI, Bhubaneswar, Odisha 751024, India
| | - Shyamalendu Tripathy
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Ranjit Prasad Swain
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Buonfiglio F, Pfeiffer N, Gericke A. Immunomodulatory and Antioxidant Drugs in Glaucoma Treatment. Pharmaceuticals (Basel) 2023; 16:1193. [PMID: 37765001 PMCID: PMC10535738 DOI: 10.3390/ph16091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma, a group of diseases characterized by progressive retinal ganglion cell loss, cupping of the optic disc, and a typical pattern of visual field defects, is a leading cause of severe visual impairment and blindness worldwide. Elevated intraocular pressure (IOP) is the leading risk factor for glaucoma development. However, glaucoma can also develop at normal pressure levels. An increased susceptibility of retinal ganglion cells to IOP, systemic vascular dysregulation, endothelial dysfunction, and autoimmune imbalances have been suggested as playing a role in the pathophysiology of normal-tension glaucoma. Since inflammation and oxidative stress play a role in all forms of glaucoma, the goal of this review article is to present an overview of the inflammatory and pro-oxidant mechanisms in the pathophysiology of glaucoma and to discuss immunomodulatory and antioxidant treatment approaches.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| |
Collapse
|
6
|
Zhang K, Wang T, Sun GF, Xiao JX, Jiang LP, Tou FF, Qu XH, Han XJ. Metformin protects against retinal ischemia/reperfusion injury through AMPK-mediated mitochondrial fusion. Free Radic Biol Med 2023; 205:47-61. [PMID: 37253410 DOI: 10.1016/j.freeradbiomed.2023.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Retinal ischemia/reperfusion (I/R) injury is a common pathological process responsible for cellular damage in glaucoma, diabetic retinopathy and hypertensive retinopathy. Metformin is a biguanide drug that exerts strong effects on multiple diseases. This study aims to evaluate the protective effect of metformin against retinal I/R injury and its underlying mechanism. I/R induced reduction in retina thickness and cell number in ganglion cell layer, and metformin alleviated I/R-induced retinal injury. Both retinal I/R and simulated ischemia/reperfusion (SIR) in R28 cells down-regulated expression of mitochondrial fusion protein Mfn2 and OPA1, which led to mitochondrial fission. Metformin also alleviated damage in R28 cells, and reversed the alteration in Mfn2 and OPA1, mitochondrial fission and mitochondrial membrane potential (MMP) disruption-induced by I/R or SIR as well. Intriguingly, inhibition of AMPK by compound C or siRNA prevented metformin-mediated up-regulation of Mfn2 and OPA1. Compound C and knockdown of Mfn2 or OPA1 dramatically alleviated the protective effect of metformin against intracellular ROS generation, MMP disruption, mitochondrial fission and loss of RGCs in ganglion cell layer induced by SIR or I/R. Moreover, scavenging mitochondrial ROS (mito-ROS) by mito-TEMPO exerted the similar protection against I/R-induced retinal injury or SIR-induced damage in R28 cells as metformin. Our data show for the first time that metformin protects against retinal I/R injury through AMPK-mediated mitochondrial fusion and the decreased mito-ROS generation. These findings might also repurpose metformin as a therapeutic agent for retinal I/R injury.
Collapse
Affiliation(s)
- Kun Zhang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Ophthalmology, Shenzhen People's Hospital & the Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, PR China
| | - Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Gui-Feng Sun
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Jin-Xing Xiao
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Li-Ping Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Fang-Fang Tou
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Xin-Hui Qu
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; The Second Department of Neurology, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China.
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China; The Second Department of Neurology, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
7
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
8
|
Geng X, Wang Y, Cui H, Li C, Cheng B, Cui B, Liu R, Zhang J, Zhu L, Li J, Shen J, Li Z. Carboxymethyl chitosan regulates macrophages polarization to inhibit early subconjunctival inflammation in conjunctival injury. Int J Biol Macromol 2023:125159. [PMID: 37268068 DOI: 10.1016/j.ijbiomac.2023.125159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Persistent subconjunctival inflammation leads to subconjunctival fibrosis and eventual visual impairment. There is an unmet need for how to effectively inhibit subconjunctival inflammation. Herein, the effect of carboxymethyl chitosan (CMCS) on subconjunctival inflammation was investigated and the mechanism was involved. The evaluation of cytocompatibility demonstrated that CMCS had good biocompatibility. The in vitro results showed that CMCS inhibited secretions of pro-inflammatory cytokines (IL-6, TNF-α, IL-8 and IFN-γ) and chemokines (MCP-1), and downregulated TLR4/MyD88/NF-κB pathway in M1. The in vivo results displayed that CMCS alleviated conjunctival edema and congestion, and improved conjunctival epithelial reconstruction significantly. Both in vitro and in vivo results demonstrated that CMCS inhibited the infiltration of macrophages and reduced the expressions of iNOS, IL-6, IL-8 and TNF-α in the conjunctiva. Given that CMCS indicated the activities of inhibiting M1 polarization, NF-κB pathway, and subconjunctival inflammation, which may be employed as a potent treatment for subconjunctival inflammation.
Collapse
Affiliation(s)
- Xingchen Geng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yiwei Wang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Chengcheng Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Boyuan Cheng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Bingbing Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Jianliang Shen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
9
|
Li M, Gao ZL, Zhang QP, Luo AX, Xu WY, Duan TQ, Wen XP, Zhang RQ, Zeng R, Huang JF. Autophagy in glaucoma pathogenesis: Therapeutic potential and future perspectives. Front Cell Dev Biol 2022; 10:1068213. [PMID: 36589756 PMCID: PMC9795220 DOI: 10.3389/fcell.2022.1068213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a common blinding eye disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons, progressive loss of visual field, and optic nerve atrophy. Autophagy plays a pivotal role in the pathophysiology of glaucoma and is closely related to its pathogenesis. Targeting autophagy and blocking the apoptosis of RGCs provides emerging guidance for the treatment of glaucoma. Here, we provide a systematic review of the mechanisms and targets of interventions related to autophagy in glaucoma and discuss the outlook of emerging ideas, techniques, and multidisciplinary combinations to provide a new basis for further research and the prevention of glaucomatous visual impairment.
Collapse
Affiliation(s)
- Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhao-Lin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Quan-Peng Zhang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China,Anatomy Laboratory, Hainan Medical University, Haikou, China
| | - Ai-Xiang Luo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-Ye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Tian-Qi Duan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xu-Peng Wen
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ru-Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China,*Correspondence: Ju-Fang Huang,
| |
Collapse
|
10
|
Ou K, Li Y, Liu L, Li H, Cox K, Wu J, Liu J, Dick AD. Recent developments of neuroprotective agents for degenerative retinal disorders. Neural Regen Res 2022; 17:1919-1928. [PMID: 35142668 PMCID: PMC8848613 DOI: 10.4103/1673-5374.335140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Retinal degeneration is a debilitating ocular complication characterized by the progressive loss of photoreceptors and other retinal neurons, which are caused by a group of retinal diseases affecting various age groups, and increasingly prevalent in the elderly. Age-related macular degeneration, diabetic retinopathy and glaucoma are among the most common complex degenerative retinal disorders, posing significant public health problems worldwide largely due to the aging society and the lack of effective therapeutics. Whilst pathoetiologies vary, if left untreated, loss of retinal neurons can result in an acquired degeneration and ultimately severe visual impairment. Irrespective of underlined etiology, loss of neurons and supporting cells including retinal pigment epithelium, microvascular endothelium, and glia, converges as the common endpoint of retinal degeneration and therefore discovery or repurposing of therapies to protect retinal neurons directly or indirectly are under intensive investigation. This review overviews recent developments of potential neuroprotectants including neuropeptides, exosomes, mitochondrial-derived peptides, complement inhibitors, senolytics, autophagy enhancers and antioxidants either still experimentally or in clinical trials. Effective treatments that possess direct or indirect neuroprotective properties would significantly lift the burden of visual handicap.
Collapse
Affiliation(s)
- Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ling Liu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Li
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Katherine Cox
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jiahui Wu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Liu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew D Dick
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol; Institute of Ophthalmology, University College London, London; National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| |
Collapse
|
11
|
Wang L, Li H, Zhang W, Ren M, Shao M, Wang J. AGTR1 blocker attenuates activation of Tenon's capsule fibroblasts after glaucoma filtration surgery via the NF-κB signaling pathway. Exp Cell Res 2021; 407:112786. [PMID: 34411608 DOI: 10.1016/j.yexcr.2021.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/21/2022]
Abstract
Activation of Tenon's capsule fibroblasts limits the success rate of glaucoma filtration surgery (GFS), the most efficacious therapy for patients with glaucoma. Angiotensin type 1 receptor (AGTR1) is involved in tissues remodeling and fibrogenesis. However, whether AGTR1 is involved in the progress of fibrogenesis after GFS is not fully elucidated. The aim of this study was to investigate the role of an AGTR1 in scar formation after GFS and the potential anti-fibrosis effect of AGTR1 blocker. AGTR1 expression level was increased in subconjunctival tissues in a rat model of GFS and transforming growth factor-beta 2 (TGF-β2)-induced human Tenon's capsule fibroblasts (HTFs). AGTR1 blocker treatment suppressed TGF-β2-induced HTF migration and α-smooth muscle actin (α-SMA) and fibronectin (FN) expression. AGTR1 blocker treatment also attenuated collagen deposition and α-SMA and FN expression in subconjunctival tissues of the rat model after GFS. Moreover, AGTR1 blocker decreased TGF-β2-induced P65 phosphorylation, P65 nuclear translocation, and nuclear factor kappa B (NF-κB) luciferase activity. Additionally, BAY 11-7082 (an NF-κB inhibitor) significantly suppressed HTF fibrosis. In conclusion, our results indicate that AGTR1 is involved in scar formation after GFS. The AGTR1 blocker attenuates subconjunctival fibrosis after GFS by inhibiting the NF-κB signaling pathway. These findings indicate that targeting AGTR1 is a potential approach to attenuate fibrosis after GFS.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Hongsong Li
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Wenyi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Meimei Ren
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Meilin Shao
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Jianming Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China.
| |
Collapse
|
12
|
Wang L, Tian Y, Shang Z, Zhang B, Hua X, Yuan X. Metformin attenuates the epithelial-mesenchymal transition of lens epithelial cells through the AMPK/TGF-β/Smad2/3 signalling pathway. Exp Eye Res 2021; 212:108763. [PMID: 34517004 DOI: 10.1016/j.exer.2021.108763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 01/10/2023]
Abstract
Posterior capsule opacification (PCO) is a common ocular fibrosis disease related to the epithelial-mesenchymal transition (EMT) of human lens epithelial cells (HLECs). However, safe and effective drugs that prevent or treat PCO are lacking. Metformin (Mtf) has been used to treat fibrosis-related diseases affecting many organs and tissues, but its effect on ocular fibrosis-related diseases is unclear. We investigated whether Mtf can inhibit EMT and fibrosis in HLECs to prevent and treat PCO and elucidated the potential molecular mechanism. Here, we established an HLEC model of TGF-β-induced EMT and found that 400 μM Mtf inhibited vertical and lateral migration and EMT-related gene and protein expression in HLECs. Smad2/3 are downstream molecules of TGF-β that enter the nucleus to regulate EMT-related gene expression during the occurrence and development of PCO. We revealed that Mtf suppressed TGF-β-induced Smad2/3 phosphorylation and nuclear translocation. Mtf induces AMP-activated protein kinase (AMPK) phosphorylation. In this study, we found that Mtf induced the activation of AMPK phosphorylation in HLECs. To further explore the mechanism of Mtf, we pretreated HLECs with Compound C (an AMPK inhibitor) to repeat the above experiments and found that Compound C abolished the inhibitory effect of Mtf on HLEC EMT and the TGF-β/Smad2/3 signalling pathway. Thus, Mtf targets AMPK phosphorylation to inhibit the TGF-β/Smad2/3 signalling pathway and prevent HLEC EMT. Notably, we first illustrated the AMPK/TGF-β/Smad2/3 signalling pathway in HLECs, which may provide a new therapeutic strategy for PCO.
Collapse
Affiliation(s)
- Ling Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Ye Tian
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boya Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xia Hua
- Tianjin Aier Eye Hospital, Tianjin, 300191, China; Aier Eye Institute, Changsha, 410000, China.
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China.
| |
Collapse
|
13
|
Hurley DJ, Irnaten M, O’Brien C. Metformin and Glaucoma-Review of Anti-Fibrotic Processes and Bioenergetics. Cells 2021; 10:cells10082131. [PMID: 34440899 PMCID: PMC8394782 DOI: 10.3390/cells10082131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally. With an aging population, disease incidence will rise with an enormous societal and economic burden. The treatment strategy revolves around targeting intraocular pressure, the principle modifiable risk factor, to slow progression of disease. However, there is a clear unmet clinical need to find a novel therapeutic approach that targets and halts the retinal ganglion cell (RGC) degeneration that occurs with fibrosis. RGCs are highly sensitive to metabolic fluctuations as a result of multiple stressors and thus their viability depends on healthy mitochondrial functioning. Metformin, known for its use in type 2 diabetes, has come to the forefront of medical research in multiple organ systems. Its use was recently associated with a 25% reduced risk of glaucoma in a large population study. Here, we discuss its application to glaucoma therapy, highlighting its effect on fibrotic signalling pathways, mitochondrial bioenergetics and NAD oxidation.
Collapse
Affiliation(s)
- Daire J. Hurley
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Correspondence:
| | - Mustapha Irnaten
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
| | - Colm O’Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, D07 R2WY Dublin, Ireland; (M.I.); (C.O.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
14
|
Dang KR, Wu T, Hui YN, Du HJ. Newly-found functions of metformin for the prevention and treatment of age-related macular degeneration. Int J Ophthalmol 2021; 14:1274-1280. [PMID: 34414094 PMCID: PMC8342286 DOI: 10.18240/ijo.2021.08.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Metformin (MET), a first-line oral agent used to treat diabetes, exerts its function mainly by activating adenosine monophosphate-activated protein. The accumulation of oxidized phospholipids in the outer layer of the retina plays a key role in retinal pigment epithelium (RPE) cells death and the formation of choroidal neovascularization (CNV), which mean the development of age-related macular degeneration (AMD). Recent studies have shown that MET can regulate lipid metabolism, inhibit inflammation, and prohibit retinal cell death and CNV formation due to various pathological factors. Here, newly discovered functions of MET that may be used for the prevention and treatment of AMD were reviewed.
Collapse
Affiliation(s)
- Kuan-Rong Dang
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Tong Wu
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yan-Nian Hui
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hong-Jun Du
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
15
|
Ma X, Liu L. Knockdown of FAM225B inhibits the progression of the hypertrophic scar following glaucoma surgery by inhibiting autophagy. Mol Med Rep 2021; 23:204. [PMID: 33495826 PMCID: PMC7821338 DOI: 10.3892/mmr.2021.11843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
The formation of a hypertrophic scar (HS) may lead to failure of glaucoma surgery. Long non-coding RNAs (lncRNAs) are involved in the formation of HSs. Moreover, family with sequence similarity 225 member B (FAM225B) is upregulated in HS. However, the role of the lncRNA FAM225B in HS remains unknown. Thus, the present study aimed to investigate the function of FAM225B in HS. Scar fibroblasts were isolated from patients who had undergone glaucoma surgery. Western blotting was used to detect the expressions of Bax, Bcl-2, cleaved caspase 3, p62, ATG7 and Beclin 1, and reverse transcription-quantitative PCR (RT-qPCR) were conducted to determine the level of FAM225B in scar fibroblasts. Microtubule associated protein 1 light chain 3 α staining was performed to examine autophagosomes in scar fibroblasts. Furthermore, cell proliferation was evaluated via 5-ethynyl-2′-deoxyuridine staining. Flow cytometry was conducted to determine cell apoptosis and the levels of reactive oxygen species (ROS) in scar fibroblasts. The cell migratory ability was assessed using a Transwell assay. The results demonstrated that FAM225B knockdown significantly attenuated scar fibroblast proliferation and induced apoptosis. Additionally, transfection of scar fibroblasts with FAM225B small interfering RNA (siRNA) significantly increased the ROS levels and significantly decreased the migration of scar fibroblasts. The FAM225B overexpression-induced increase of scar fibroblast proliferation and migration was significantly reversed by 3-methyladenine administration. The results suggested that knockdown of FAM225B significantly inhibited the proliferation of scar fibroblasts by inhibiting autophagy. Therefore, knockdown of FAM225B could inhibit scar fibroblast proliferation after glaucoma surgery by inhibiting autophagy. These findings may provide a novel perspective of developing treatment strategy for the patients with HSs after glaucoma surgery.
Collapse
Affiliation(s)
- Xianpeng Ma
- Department of Dermatology, Affiliated Hospital of Beihua University, Jilin, Jilin 132001, P.R. China
| | - Lili Liu
- Department of Dermatology, Affiliated Hospital of Beihua University, Jilin, Jilin 132001, P.R. China
| |
Collapse
|