1
|
Kim J, Won Choi J, Jeong Kim H, Kim B, Kim Y, Hwejin Lee E, Kim R, Kim J, Park J, Jeong Y, Park JH, Duk Park K. Phloroglucinol Derivatives Exert Anti-Inflammatory Effects and Attenuate Cognitive Impairment in LPS-Induced Mouse Model. ChemMedChem 2024; 19:e202400056. [PMID: 38757206 DOI: 10.1002/cmdc.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Neuroinflammation is an inflammatory immune response that arises in the central nervous system. It is one of the primary causes of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Phloroglucinol (PG) is a natural product contained in extracts of plant, algae and microbe and has been reported to have antioxidant and anti-inflammatory properties. In this study, we synthesized PG derivatives to enhance antioxidant and anti-inflammatory activity. Among PG derivatives, 6 a suppressed pro-oxidative and inflammatory molecule nitric oxide (NO) production more effectively than PG. Moreover, 6 a dose-dependently reduced the expression of proinflammatory cytokines such as IL-6, IL-1β, TNF-α, and NO producing enzyme iNOS in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Additionally, we confirmed that 6 a alleviated cognitive impairment and glial activation in mouse model of LPS-induced neuroinflammation. These findings suggest that novel PG derivative, 6 a, is a potential treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jushin Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Department of Biotechnology, Yonsei University, 03722, Seoul, Republic of Korea
| | - Ji Won Choi
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
| | - Hyeon Jeong Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
| | - Byungeun Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Yoowon Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Department of Biotechnology, Yonsei University, 03722, Seoul, Republic of Korea
| | - Elijah Hwejin Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Rium Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Jaehwan Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Jiwoo Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Yeeun Jeong
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Jong-Hyun Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| |
Collapse
|
2
|
Osorio-Olivares ME, Vásquez-Martínez Y, Díaz K, Canelo J, Taborga L, Espinoza-Catalán L. Antibacterial and Antioxidant Activity of Synthetic Polyoxygenated Flavonoids. Int J Mol Sci 2024; 25:5999. [PMID: 38892186 PMCID: PMC11172986 DOI: 10.3390/ijms25115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Flavonoids are an abundant class of naturally occurring compounds with broad biological activities, but their limited abundance in nature restricts their use in medicines and food additives. Here we present the synthesis and determination of the antibacterial and antioxidant activities of twenty-two structurally related flavonoids (five of which are new) by scientifically validated methods. Flavanones (FV1-FV11) had low inhibitory activity against the bacterial growth of MRSA 97-7. However, FV2 (C5,7,3',4' = OH) and FV6 (C5,7 = OH; C4' = SCH3) had excellent bacterial growth inhibitory activity against Gram-negative E. coli (MIC = 25 µg/mL for both), while Chloramphenicol (MIC = 25 µg/mL) and FV1 (C5,7,3' = OCH3; 4' = OH) showed inhibitory activity against Gram-positive L. monocytogenes (MIC = 25 µg/mL). From the flavone series (FO1-FO11), FO2 (C5,7,3',4' = OH), FO3 (C5,7,4' = OH; 3' = OCH3), and FO5 (C5,7,4' = OH) showed good inhibitory activity against Gram-positive MRSA 97-7 (MIC = 50, 12, and 50 µg/mL, respectively), with FO3 being more active than the positive control Vancomycin (MIC = 25 µg/mL). FO10 (C5,7= OH; 4' = OCH3) showed high inhibitory activity against E. coli and L. monocytogenes (MIC = 25 and 15 µg/mL, respectively). These data add significantly to our knowledge of the structural requirements to combat these human pathogens. The positions and number of hydroxyl groups were key to the antibacterial and antioxidant activities.
Collapse
Affiliation(s)
| | - Yesseny Vásquez-Martínez
- Escuela de Medicina, Facultad de Ciencias Médicas, Laboratorio de Virología Molecular y Control de Patógenos, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (Y.V.-M.); (J.C.)
| | - Katy Díaz
- Laboratorio de Pruebas Biológicas, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Javiera Canelo
- Escuela de Medicina, Facultad de Ciencias Médicas, Laboratorio de Virología Molecular y Control de Patógenos, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (Y.V.-M.); (J.C.)
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Luis Espinoza-Catalán
- Laboratorio de Síntesis Orgánica, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| |
Collapse
|
3
|
Fabbrini M, D’Amico F, Barone M, Conti G, Mengoli M, Brigidi P, Turroni S. Polyphenol and Tannin Nutraceuticals and Their Metabolites: How the Human Gut Microbiota Influences Their Properties. Biomolecules 2022; 12:875. [PMID: 35883431 PMCID: PMC9312800 DOI: 10.3390/biom12070875] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Nutraceuticals have been receiving increasing attention in the last few years due to their potential role as adjuvants against non-communicable chronic diseases (cardiovascular disease, diabetes, cancer, etc.). However, a limited number of studies have been performed to evaluate the bioavailability of such compounds, and it is generally reported that a substantial elevation of their plasma concentration can only be achieved when they are consumed at pharmacological levels. Even so, positive effects have been reported associated with an average dietary consumption of several nutraceutical classes, meaning that the primary compound might not be solely responsible for all the biological effects. The in vivo activities of such biomolecules might be carried out by metabolites derived from gut microbiota fermentative transformation. This review discusses the structure and properties of phenolic nutraceuticals (i.e., polyphenols and tannins) and the putative role of the human gut microbiota in influencing the beneficial effects of such compounds.
Collapse
Affiliation(s)
- Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
4
|
Anti-Inflammatory Phytoconstituents of Origanum Majorana. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3888075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Origanum majorana belongs to the Lamiaceae family as a famous spice plant in Egypt, which is used to treat arthritis, allergies, fever, flu, hypertension, respiratory infections, migraine, and asthma. In our studies, it was found that the ethanol extract of O. marjoram could significantly reduce NO release at 200 (
), 100 (
) and 50 (
) μg/mL compared with the model group. Therefore, the chemical constituents were further studied to obtain the bioactive compounds. As a result, ten compounds were isolated and identified from the 70% ethanol extract of O. marjoram, including six flavonoids (3–8), two terpene derivatives (9-10), one lignan (2), and one phenolic glycoside (1). Among them, compounds 1–3, 5, and 9-10 were isolated from this genus for the first time. Compounds 1, 9, and 10 could significantly decrease the content of NO at the concentration of 100 μm (
) in RAW264.7 cells induced by LPS. Furthermore, compounds 9 and 10 were more effective than compound 1 to lower the content at 50 μm (
).
Collapse
|
5
|
Muñoz MA, Simirgiotis M, Joseph-Nathan P. Vibrational Circular Dichroism Similarity-Guided Absolute Configuration Determination of 11-Acyloxytremetones. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221095342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although tremetone [5-acetyl-2-(1-methylvinyl)-2,3-dihydrobenzofuran] has only one stereogenic center, the absolute configuration (AC) determination of its naturally occurring 11-acyloxy derivatives 1 and 2 by vibrational circular dichroism (VCD) turned out to be difficult. Similarity-based comparison of the experimental VCD spectrum of 11-coumaryloxytremetone (1), isolated from Parastrephia quadrangularis, with spectra calculated using popular density functional theory (DFT) levels of theory, provided poor enantiomeric similarity indices ( ESI), even when the p-coumaroyl ester group of 1 was replaced by the acetyl group in 2. In search for a better understanding of these results, IR-guided individual scaling factors (ISFs), recently introduced as part of the Vibrational Spectra Similarity and Analysis Tool (VISSAT) software, were used to correct DFT frequencies, while a VCD-guided conformational analysis was developed to explore conformational preferences. These studies showed that for both molecules 72% of the individual conformations gave ESI values in favor of the ( R) enantiomer. Likewise, when conformer abundances were optimized to produce the best possible similarity for each enantiomer, the obtained ESI values were always larger for the ( R) isomer than for the ( S) isomer. These results point toward the ( R) AC in both compounds and highlight the incorrect conformer abundance prediction by DFT calculations as the potential source of the initial difficulties. In addition, the AC of 1 was independently verified using the Flack and Hooft parameters gained after a single-crystal x-ray diffraction (XRD) study.
Collapse
Affiliation(s)
- Marcelo A. Muñoz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pedro Joseph-Nathan
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
6
|
Yang J, Hu DB, Xia MY, Luo JF, Li XY, Wang YH. Bioassay-guided isolation of cytotoxic constituents from the flowers of Aquilaria sinensis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:11. [PMID: 35364755 PMCID: PMC8975978 DOI: 10.1007/s13659-022-00334-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Bioassay-guided fractionation of the EtOH extract from the flowers of Aquilaria sinensis (Lour.) Spreng. (Thymelaeaceae) led to the isolation of a new cucurbitane-type triterpenoid, aquilarolide A (1), along with five known compounds (2-6). The structure of 1 was elucidated by extensive 1D and 2D nuclear magnetic resonance (NMR) experiments and mass spectrometry (MS) data and theoretical calculations of its electronic circular dichroism (ECD) spectra. Aquilarolide A, cucurbitacin E (3), cucurbitacin B (4), and 7-hydroxy-6-methoxy-2-[2-(4-methoxyphenyl)ethyl]-4H-1-benzopyran-4-one (6) showed significant cytotoxicity against human lung adenocarcinoma SPC-A-1, human lung squamous cell carcinoma NCI-H520, human lung adenocarcinoma A549, and paclitaxel-resistant A549 (A549/Taxol) cell lines. All four active compounds, with IC50 values ranging from 0.002 to 0.91 μM, had better inhibitory activities against A549/Taxol cells than paclitaxel (IC50 = 1.80 μM). Among them, cucurbitacin E (IC50 = 0.002 μM) is the most active. Further studies are needed to evaluate their in vivo antitumor activities and to clarify their mechanisms.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Dong-Bao Hu
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi, 653100, People's Republic of China
| | - Meng-Yuan Xia
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ji-Feng Luo
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xing-Yu Li
- College of Science, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
7
|
Zhang XF, Tang YJ, Guan XX, Lu X, Li J, Chen XL, Deng JL, Fan JM. Flavonoid constituents of Amomum tsao-ko Crevost et Lemarie and their antioxidant and antidiabetic effects in diabetic rats - in vitro and in vivo studies. Food Funct 2022; 13:437-450. [PMID: 34918725 DOI: 10.1039/d1fo02974f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amomum tsao-ko Crevost et Lemarie (A. tsao-ko) is a well-known dietary spice and traditional Chinese medicine. This study aimed to identify the flavonoids in A. tsao-ko and evaluate their antioxidant and antidiabetic activities in in vitro and in vivo studies. A. tsao-ko methanol extracts possessed a high flavonoid content (1.21 mg QE per g DW) and a total of 29 flavonoids were identified by employing UPLC-MS/MS. In vitro, A. tsao-ko demonstrated antioxidant activity (ORAC value of 34276.57 μM TE/100 g DW, IC50 of ABTS of 3.49 mg mL-1 and FRAP value of 207.42 μM Fe2+ per g DW) and α-amylase and α-glucosidase inhibitory ability with IC50 values of 14.23 and 1.76 mg mL-1, respectively. In vivo, type 2 diabetes mellitus (T2DM) models were induced by a combined high-fat diet (HFD) and streptozotocin (STZ) injection in rats. Treatment with the A. tsao-ko extract (100 mg freeze-dried powder per kg bw) for 6 weeks could significantly improve impaired glucose tolerance, decrease the levels of fasting blood glucose (FBG), insulin, and malondialdehyde (MDA), and increase the superoxide dismutase (SOD) level. Histopathology revealed that the A. tsao-ko extract preserved the architecture and function of the pancreas. In conclusion, the flavonoid composition of A. tsao-ko exhibits excellent antioxidant and antidiabetic activity in vitro and in vivo. A. tsao-ko could be a novel natural material and developed as a related functional food and medicine in T2DM management.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Yu-Jun Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xiao-Xian Guan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xin Lu
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, 116 Park Road, Zhengzhou, Henan 450002, China
| | - Jiao Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xiao-Li Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Jin-Lan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Jian-Ming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
8
|
In Lee J. A review of the syntheses of flavanones, thioflavanones, and azaflavanones from 2'‐substituted chalcones. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jae In Lee
- Department of Chemistry College of Science and Technology, Duksung Women's University Seoul Republic of Korea
| |
Collapse
|
9
|
Osorio M, Carvajal M, Vergara A, Butassi E, Zacchino S, Mascayano C, Montoya M, Mejías S, Martín MCS, Vásquez-Martínez Y. Prenylated Flavonoids with Potential Antimicrobial Activity: Synthesis, Biological Activity, and In Silico Study. Int J Mol Sci 2021; 22:ijms22115472. [PMID: 34067346 PMCID: PMC8196815 DOI: 10.3390/ijms22115472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Prenylated flavonoids are an important class of naturally occurring flavonoids with important biological activity, but their low abundance in nature limits their application in medicines. Here, we showed the hemisynthesis and the determination of various biological activities of seven prenylated flavonoids, named 7–13, with an emphasis on antimicrobial ones. Compounds 9, 11, and 12 showed inhibitory activity against human pathogenic fungi. Compounds 11, 12 (flavanones) and 13 (isoflavone) were the most active against clinical isolated Staphylococcus aureus MRSA, showing that structural requirements as prenylation at position C-6 or C-8 and OH at positions C-5, 7, and 4′ are key to the antibacterial activity. The combination of 11 or 12 with commercial antibiotics synergistically enhanced the antibacterial activity of vancomycin, ciprofloxacin, and methicillin in a factor of 10 to 100 times against drug-resistant bacteria. Compound 11 combined with ciprofloxacin was able to decrease the levels of ROS generated by ciprofloxacin. According to docking results of S enantiomer of 11 with ATP-binding cassette transporter showed the most favorable binding energy; however, more studies are needed to support this result.
Collapse
Affiliation(s)
- Mauricio Osorio
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
- Correspondence: (M.O.); (Y.V.-M.)
| | - Marcela Carvajal
- Centro de Biotecnología CB-DAL, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile; (M.C.); (A.V.)
| | - Alejandra Vergara
- Centro de Biotecnología CB-DAL, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile; (M.C.); (A.V.)
| | - Estefania Butassi
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina; (E.B.); (S.Z.)
| | - Susana Zacchino
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina; (E.B.); (S.Z.)
| | - Carolina Mascayano
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile;
| | - Margarita Montoya
- Laboratorio Bioquímica Celular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (M.M.); (S.M.)
| | - Sophia Mejías
- Laboratorio Bioquímica Celular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (M.M.); (S.M.)
| | - Marcelo Cortez-San Martín
- Laboratorio de Virología Molecular y Control de Patógenos, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile;
| | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas Aplicadas, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Correspondence: (M.O.); (Y.V.-M.)
| |
Collapse
|
10
|
Muñoz MA, Joseph-Nathan P. Deuterium effects on the vibrational circular dichroism spectra of flavanone. Chirality 2021; 33:81-92. [PMID: 33242919 DOI: 10.1002/chir.23289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022]
Abstract
The minimum chemical modification that can be incorporated into an organic molecule is the replacement of a hydrogen atom for a deuterium atom. This change is not altering the pharmacological properties of a molecule, although it provides the possibility of making specific spectroscopic evaluations. Thus, in the present study, we explore how a stereogenic center is influenced by such an isotopic labeling. The studies were conducted on both enantiomers of flavanone (1 and 2) which is the parent molecule of a large group of pharmacologically active natural occurring secondary metabolites. Flavanone comprised 12 carbon atoms forming two benzene rings, a carbonyl group, an ethereal oxygen atom, a methylene group, and only one C-H stereogenic center, so it seems to be an ideal candidate for such studies. Density functional theory (DFT) calculations were used for the accurate prediction of vibrational circular dichroism (VCD) spectra of (R)-(3) and (S)-flavanone-2-d (4), of (R)-(5) and (S)-flavanone-3,3-d2 (6), and of (R)-(7) and (S)-flavanone-2',3',4',5',6'-d5 (8). To gain compounds that provide experimental VCD spectra for comparative purposes, the calculated spectra of both enantiomers of the corresponding flavanones, obtained after HPLC separation of the racemates by means of a chiral column, were contrasted, thereby revealing excellent agreements when using the CompareVOA software. In addition, the VCD spectra of both unlabeled enantiomeric flavanones (1 and 2) were also compared to the labeled molecules, revealing that the VCD spectra show significant variations induced by the deuterium incorporation.
Collapse
Affiliation(s)
- Marcelo A Muñoz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Región de los Ríos, Chile
| | - Pedro Joseph-Nathan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|