1
|
Roy R, Kumar D, Bhattacharya P, Borah A. Modulating the biosynthesis and TLR4-interaction of lipopolysaccharide as an approach to counter gut dysbiosis and Parkinson's disease: Role of phyto-compounds. Neurochem Int 2024; 178:105803. [PMID: 38992819 DOI: 10.1016/j.neuint.2024.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The prevalence of the world's second leading neurodegenerative disorder Parkinson's disease (PD) is well known while its pathogenesis is still a topical issue to explore. Clinical and experimental reports suggest the prevalence of disturbed gut microflora in PD subjects, with an abundance of especially Gram-negative bacteria. The endotoxin lipopolysaccharide (LPS) released from the outer cell layer of these bacteria interacts with the toll-like receptor 4 (TLR4) present on the macrophages and it stimulates the downstream inflammatory cascade in both the gut and brain. Recent research also suggests a positive correlation between LPS, alpha-synuclein, and TLR4 levels, which indicates the contribution of a parallel LPS-alpha-synuclein-TLR4 axis in stimulating inflammation and neurodegeneration in the gut and brain, establishing a body-first type of PD. However, owing to the novelty of this paradigm, further investigation is mandatory. Modulating LPS biosynthesis and LPS-TLR4 interaction can ameliorate gut dysbiosis and PD. Several synthetic LpxC (UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase; LPS-synthesizing enzyme) inhibitors and TLR4 antagonists are reported to show beneficial effects including neuroprotection in PD models, however, are not devoid of side effects. Plant-derived compounds have been long documented for their benefits as nutraceuticals and thus to search for effective, safer, and multitarget therapeutics, the present study focused on summarizing the evidence reporting the potential of phyto-compounds as LpxC inhibitors and TLR4 antagonists. Studies demonstrating the dual potential of phyto-compounds as the modulators of LpxC and TLR4 have not yet been reported. Also, very few preliminary studies have reported LpxC inhibition by phyto-compounds. Nevertheless, remarkable neuroprotection along with TLR4 antagonism has been shown by curcumin and juglanin in PD models. The present review thus provides a wide look at the research progressed to date in discovering phyto-compounds that can serve as LpxC inhibitors and TLR4 antagonists. The study further recommends the need for expanding the search for potential candidates that can render dual protection by inhibiting both the biosynthesis and TLR4 interaction of LPS. Such multitarget therapeutic intervention is believed to bring fruitful yields in countering gut dysbiosis, neuroinflammation, and dopaminergic neuron damage in PD patients through a single treatment paradigm.
Collapse
Affiliation(s)
- Rubina Roy
- Department of Life Science & Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, 382355, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science & Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
2
|
Mammari N, Albert Q, Devocelle M, Kenda M, Kočevar Glavač N, Sollner Dolenc M, Mercolini L, Tóth J, Milan N, Czigle S, Varbanov M. Natural Products for the Prevention and Treatment of Common Cold and Viral Respiratory Infections. Pharmaceuticals (Basel) 2023; 16:ph16050662. [PMID: 37242445 DOI: 10.3390/ph16050662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
The common cold is generally considered a usually harmless infectious disease of the upper respiratory pathway, with mostly mild symptoms. However, it should not be overlooked, as a severe cold can lead to serious complications, resulting in hospitalization or death in vulnerable patients. The treatment of the common cold remains purely symptomatic. Analgesics as well as oral antihistamines or decongestants may be advised to relieve fever, and local treatments can clear the airways and relieve nasal congestion, rhinorrhea, or sneezing. Certain medicinal plant specialties can be used as therapy or as complementary self-treatment. Recent scientific advances discussed in more detail in this review have demonstrated the plant's efficiency in the treatment of the common cold. This review presents an overview of plants used worldwide in the treatment of cold diseases.
Collapse
Affiliation(s)
- Nour Mammari
- CNRS, L2CM, Université de Lorraine, 54000 Nancy, France
| | - Quentin Albert
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologies Fongiques, 13288 Marseille, France
- INRAE, Aix Marseille Université, CIRM-CF, 13288 Marseille, France
| | - Marc Devocelle
- SSPC (Synthesis & Solid State Pharmaceutical Centre), V94 T9PX Limerick, Ireland
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, D02 YN77 Dublin, Ireland
| | - Maša Kenda
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Marija Sollner Dolenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Nagy Milan
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Mihayl Varbanov
- CNRS, L2CM, Université de Lorraine, 54000 Nancy, France
- Laboratoire de Virologie, CHRU de Nancy Brabois, 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
3
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Quinn MT. Neutrophil Immunomodulatory Activity of (−)-Borneol, a Major Component of Essential Oils Extracted from Grindelia squarrosa. Molecules 2022; 27:molecules27154897. [PMID: 35956847 PMCID: PMC9369983 DOI: 10.3390/molecules27154897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Grindelia squarrosa (Pursh) Dunal is used in traditional medicine for treating various diseases; however, little is known about the immunomodulatory activity of essential oils from this plant. Thus, we isolated essential oils from the flowers (GEOFl) and leaves (GEOLv) of G. squarrosa and evaluated the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of these essential oils revealed that the main components were α-pinene (24.7 and 23.2% in GEOFl and GEOLv, respectively), limonene (10.0 and 14.7%), borneol (23.4 and 16.6%), p-cymen-8-ol (6.1 and 5.8%), β-pinene (4.0 and 3.8%), bornyl acetate (3.0 and 5.1%), trans-pinocarveol (4.2 and 3.7%), spathulenol (3.0 and 2.0%), myrtenol (2.5 and 1.7%), and terpinolene (1.7 and 2.0%). Enantiomer analysis showed that α-pinene, β-pinene, and borneol were present primarily as (−)-enantiomers (100% enantiomeric excess (ee) for (−)-α-pinene and (−)-borneol in both GEOFl and GEOLv; 82 and 78% ee for (−)-β-pinene in GEOFl and GEOLv), while limonene was present primarily as the (+)-enantiomer (94 and 96 ee in GEOFl and GEOLv). Grindelia essential oils activated human neutrophils, resulting in increased [Ca2+]i (EC50 = 22.3 µg/mL for GEOFl and 19.4 µg/mL for GEOLv). In addition, one of the major enantiomeric components, (−)-borneol, activated human neutrophil [Ca2+]i (EC50 = 28.7 ± 2.6), whereas (+)-borneol was inactive. Since these treatments activated neutrophils, we also evaluated if they were able to down-regulate neutrophil responses to subsequent agonist activation and found that treatment with Grindelia essential oils inhibited activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, (−)-borneol inhibited FPR-agonist-induced Ca2+ influx in neutrophils. Grindelia leaf and flower essential oils, as well as (−)-borneol, also inhibited fMLF-induced chemotaxis of human neutrophils (IC50 = 4.1 ± 0.8 µg/mL, 5.0 ± 1.6 µg/mL, and 5.8 ± 1.4 µM, respectively). Thus, we identified (−)-borneol as a novel modulator of human neutrophil function.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.Ö.); (T.Ö.)
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.Ö.); (T.Ö.)
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | | | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
- Correspondence: ; Tel.: 1-406-994-4707
| |
Collapse
|
4
|
Corylin Ameliorates LPS-Induced Acute Lung Injury via Suppressing the MAPKs and IL-6/STAT3 Signaling Pathways. Pharmaceuticals (Basel) 2021; 14:ph14101046. [PMID: 34681270 PMCID: PMC8537250 DOI: 10.3390/ph14101046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is a high mortality disease with acute inflammation. Corylin is a compound isolated from the whole plant of Psoralea corylifolia L. and has been reported to have anti-inflammatory activities. Herein, we investigated the therapeutic potential of corylin on lipopolysaccharides (LPS)-induced ALI, both in vitro and in vivo. The levels of proinflammatory cytokine secretions were analyzed by ELISA; the expressions of inflammation-associated proteins were detected using Western blot; and the number of immune cell infiltrations in the bronchial alveolar lavage fluid (BALF) were detected by multicolor flow cytometry and lung tissues by hematoxylin and eosin (HE) staining, respectively. Experimental results indicated that corylin attenuated LPS-induced IL-6 production in human bronchial epithelial cells (HBEC3-KT cells). In intratracheal LPS-induced ALI mice, corylin attenuated tissue damage, suppressed inflammatory cell infiltration, and decreased IL-6 and TNF-α secretions in the BALF and serum. Moreover, it further inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including p-JNK, p-ERK, p-p38, and repressed the activation of signal transducer and activator of transcription 3 (STAT3) in lungs. Collectively, our results are the first to demonstrate the anti-inflammatory effects of corylin on LPS-induced ALI and suggest corylin has significant potential as a novel therapeutic agent for ALI.
Collapse
|
5
|
Zhang Q, Zhang W, Liu J, Yang H, Hu Y, Zhang M, Bai T, Chang F. Lysophosphatidylcholine promotes intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression in human umbilical vein endothelial cells via an orphan G protein receptor 2-mediated signaling pathway. Bioengineered 2021; 12:4520-4535. [PMID: 34346841 PMCID: PMC8806654 DOI: 10.1080/21655979.2021.1956671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The oxLDL-based bioactive lipid lysophosphatidylcholine (LPC) is a key regulator of physiological processes including endothelial cell adhesion marker expression. This study explored the relationship between LPC and the human umbilical vein endothelial cell expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) with a particular focus on the regulation of the LPC-G2A-ICAM-1/VCAM-1 pathway in this context. We explored the LPC-inducible role of orphan G protein receptor 2 (G2A) in associated regulatory processes by using human kidney epithelial (HEK293) cells that had been transfected with pET-G2A, human umbilical vein endothelial cells (HUVECs) in which an shRNA was used to knock down G2A, and western blotting and qPCR assays that were used to confirm changes in gene expression. For in vivo studies, a rabbit model of atherosclerosis was established, with serum biochemistry and histological staining approaches being used to assess pathological outcomes in these animals. The treatment of both HEK293 cells and HUVECs with LPC promoted ICAM-1 and VCAM-1 upregulation, while incubation at a pH of 6.8 suppressed such LPC-induced adhesion marker expression. Knocking down G2A by shRNA and inhibiting NF-κB activity yielded opposite outcomes. The application of a Gi protein inhibitor had no impact on LPC-induced ICAM-1/VCAM-1 expression. Atherosclerotic model exhibited high circulating LDL and LPC levels as well as high aortic wall ICAM-1/VCAM-1 expression. Overall, these results suggested that the LPC-G2A-ICAM-1/VCAM-1 pathway may contribute to the atherogenic activity of oxLDL, with NF-κB antagonists representing potentially viable therapeutic tools for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Qian Zhang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Wei Zhang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jing Liu
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Haisen Yang
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Yuxia Hu
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Mengdi Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Tuya Bai
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Fuhou Chang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|