1
|
Tang L, Liu Z, Ji Z, Zhang X, Zhao M, Peng D, Han L. Promotion of mature angiogenesis in ischemic stroke by Taohong Siwu decoction through glycolysis activation. Front Pharmacol 2024; 15:1395167. [PMID: 38962303 PMCID: PMC11221195 DOI: 10.3389/fphar.2024.1395167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
Backgrounds: Mature angiogenesis plays a critical role in improving cerebral ischemia-reperfusion injury (CIRI). Glycolysis serves as the primary energy source for brain microvascular endothelial cells (BMECs), whereas other vascular cells rely on aerobic respiration. Therefore, intercellular variations in energy metabolism could influence mature angiogenesis. Taohong Siwu Decoction (THSWD) has demonstrated efficacy in treating ischemic stroke (IS), yet its potential to promote mature angiogenesis through glycolysis activation remains unclear. Methods: In this study, we established a middle cerebral artery occlusion/reperfusion (MCAO/R) model in vivo and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in vitro. We assessed neuroprotective effects using neurobehavioral scoring, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxylin-eosin (HE) staining, and Nissl staining in MCAO/R rats. Additionally, we evaluated mature angiogenesis and glycolysis levels through immunofluorescence, immunohistochemistry, and glycolysis assays. Finally, we investigated THSWD's mechanism in linking glycolysis to mature angiogenesis in OGD/R-induced BMECs. Results: In vivo experiments demonstrated that THSWD effectively mitigated cerebral damage and restored neurological function in MCAO/R rats. THSWD significantly enhanced CD31, Ang1, PDGFB, and PDGFR-β expression levels, likely associated with improved glucose, pyruvate, and ATP levels, along with reduced lactate and lactate/pyruvate ratios. In vitro findings suggested that THSWD may boost the expression of mature angiogenesis factors (VEGFA, Ang1, and PDGFB) by activating glycolysis, increasing glucose uptake and augmenting lactate, pyruvate, and ATP content, thus accelerating mature angiogenesis. Conclusion: THSWD could alleviate CIRI by activating the glycolysis pathway to promote mature angiogenesis. Targeting the glycolysis-mediated mature angiogenesis alongside THSWD therapy holds promise for IS treatment.
Collapse
Affiliation(s)
- Linfeng Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Zhuqing Liu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Zhaojie Ji
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Xueting Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Mengdie Zhao
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Daiyin Peng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Lan Han
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
2
|
Wei C, Zhu F, Yu J, Gao F, Yuan Y, Zhang Y, Liu X, Chu S, Cui D, Fan H, Wang W. Tongqiao Huoxue Decoction ameliorates traumatic brain injury-induced gastrointestinal dysfunction by regulating CD36/15-LO/NR4A1 signaling, which fails when CD36 and CX3CR1 are deficient. CNS Neurosci Ther 2023; 29 Suppl 1:161-184. [PMID: 37157929 PMCID: PMC10314107 DOI: 10.1111/cns.14247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
AIMS Gastrointestinal (GI) dysfunction, as a common peripheral-organ complication after traumatic brain injury (TBI), is primarily characterized by gut inflammation and damage to the intestinal mucosal barrier (IMB). Previous studies have confirmed that TongQiao HuoXue Decoction (TQHXD) has strong anti-inflammatory properties and protects against gut injury. However, few have reported on the therapeutic effects of TQHXD in a TBI-induced GI dysfunction model. We aimed to explore the effects of TQHXD on TBI-induced GI dysfunction and the underlying mechanism thereof. METHODS We assessed the protective effects and possible mechanism of TQHXD in treating TBI-induced GI dysfunction via gene engineering, histological staining, immunofluorescence (IF), 16S ribosomal ribonucleic acid (rRNA) sequencing, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), Western blot (WB), and flow cytometry (FCM). RESULTS TQHXD administration ameliorated TBI-induced GI dysfunction by modulating the abundance and structure of bacteria; reconstructing the destroyed epithelial and chemical barriers of the IMB; and improving M1/M2 macrophage, T-regulatory cell (Treg)/T helper 1 cell (Th1 ), as well as Th17 /Treg ratios to preserve homeostasis of the intestinal immune barrier. Notably, Cluster of Differentiation 36 (CD36)/15-lipoxygenase (15-LO)/nuclear receptor subfamily 4 group A member 1 (NR4A1) signaling was markedly stimulated in colonic tissue of TQHXD-treated mice. However, insufficiency of both CD36 and (C-X3-C motif) chemokine receptor 1 (CX3CR1) worsened GI dysfunction induced by TBI, which could not be rescued by TQHXD. CONCLUSION TQHXD exerted therapeutic effects on TBI-induced GI dysfunction by regulating the intestinal biological, chemical, epithelial, and immune barriers of the IMB, and this effect resulted from the stimulation of CD36/NR4A1/15-LO signaling; however, it could not do so when CX3CR1 and CD36 were deficient. TQHXD might therefore be a potential drug candidate for treating TBI-induced GI dysfunction.
Collapse
Affiliation(s)
- Chunzhu Wei
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Feng Zhu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jintao Yu
- Department of Otolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fei Gao
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuyi Yuan
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanlong Zhang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xinjie Liu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Si Chu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dandan Cui
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heng Fan
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenzhu Wang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Zhang Q, Yao M, Qi J, Song R, Wang L, Li J, Zhou X, Chang D, Huang Q, Li L, Wang N. Puerarin inhibited oxidative stress and alleviated cerebral ischemia-reperfusion injury through PI3K/Akt/Nrf2 signaling pathway. Front Pharmacol 2023; 14:1134380. [PMID: 37284311 PMCID: PMC10240043 DOI: 10.3389/fphar.2023.1134380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction: Puerarin (PUE) is a natural compound isolated from Puerariae Lobatae Radix, which has a neuroprotective effect on IS. We explored the therapeutic effect and underlying mechanism of PUE on cerebral I/R injury by inhibiting oxidative stress related to the PI3K/Akt/Nrf2 pathway in vitro and in vivo. Methods: The middle cerebral artery occlusion and reperfusion (MCAO/R) rats and oxygen-glucose deprivation and reperfusion (OGD/R) were selected as the models, respectively. The therapeutic effect of PUE was observed using triphenyl tetrazolium and hematoxylin-eosin staining. Tunel-NeuN staining and Nissl staining to quantify hippocampal apoptosis. The reactive oxygen species (ROS) level was detected by flow cytometry and immunofluorescence. Biochemical method to detect oxidative stress levels. The protein expression related to PI3K/Akt/Nrf2 pathway was detected by using Western blotting. Finally, co-immunoprecipitation was used to study the molecular interaction between Keap1 and Nrf2. Results: In vivo and vitro studies showed that PUE improved neurological deficits in rats, as well as decreased oxidative stress. Immunofluorescence and flow cytometry indicated that the release of ROS can be inhibited by PUE. In addition, the Western blotting results showed that PUE promoted the phosphorylation of PI3K and Akt, and enabled Nrf2 to enter the nucleus, which further activated the expression of downstream antioxidant enzymes such as HO-1. The combination of PUE with PI3K inhibitor LY294002 reversed these results. Finally, co-immunoprecipitation results showed that PUE promoted Nrf2-Keap1 complex dissociation. Discussion: Taken together, PUE can activate Nrf2 via PI3K/Akt and promote downstream antioxidant enzyme expression, which could further ameliorate oxidative stress, against I/R-induced Neuron injury.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Min Yao
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Jiajia Qi
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Rui Song
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Jiacheng Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Xian Zhou
- National Institute of Complementary Medicine, Western Sydney University, Westmead, NSW, Australia
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Westmead, NSW, Australia
| | - Qi Huang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, China
| | - Lili Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| | - Ning Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Wei C, Wang J, Yu J, Tang Q, Liu X, Zhang Y, Cui D, Zhu Y, Mei Y, Wang Y, Wang W. Therapy of traumatic brain injury by modern agents and traditional Chinese medicine. Chin Med 2023; 18:25. [PMID: 36906602 PMCID: PMC10008617 DOI: 10.1186/s13020-023-00731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and death, and the social burden of mortality and morbidity caused by TBI is significant. Under the influence of comprehensive factors, such as social environment, lifestyle, and employment type, the incidence of TBI continues to increase annually. Current pharmacotherapy of TBI mainly focuses on symptomatic supportive treatment, aiming to reduce intracranial pressure, ease pain, alleviate irritability, and fight infection. In this study, we summarized numerous studies covering the use of neuroprotective agents in different animal models and clinical trials after TBI. However, we found that no drug has been approved as specifically effective for the treatment of TBI. Effective therapeutic strategies for TBI remain an urgent need, and attention is turning toward traditional Chinese medicine. We analyzed the reasons why existing high-profile drugs had failed to show clinical benefits and offered our views on the research of traditional herbal medicine for treating TBI.
Collapse
Affiliation(s)
- Chunzhu Wei
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingbo Wang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jintao Yu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjie Liu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanlong Zhang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Cui
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiong Zhu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanli Mei
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Wang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhu Wang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Wang C, Luo Q, Que H, Luo X, Zhang B, Ding Y, Tan R, Gu J, Gong P. Integrating network pharmacology and pharmacological evaluation to explore the protective mechanism of Ershiwuwei Zhenzhu pill in ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115847. [PMID: 36272491 DOI: 10.1016/j.jep.2022.115847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ershiwuwei Zhenzhu Pill (EZP), a representative and classic formula in Tibetan medicine, is commonly used in the treatment of various cerebrovascular diseases, including ischemic stroke (IS). Nevertheless, their efficacy and potential mechanism in treating IS have yet to be investigated. AIM OF THE STUDY This study aimed to investigate the potential mechanisms of EZP in the treatment of IS based on network pharmacology and experimental verification. MATERIALS AND METHODS The chemical profile of EZP was characterized using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The targets related to the compounds in EZP were predicted by the Swiss Target Prediction and Target Net platform, and targets of IS were collected from the Gene Cards and OMIM databases. Subsequently, a protein-protein interaction (PPI) network of targets was constructed and analyzed by the STRING database and Cytoscape software, version 3.7.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed, and an ingredient-target-pathway network was constructed. Ultimately, the middle cerebral artery occlusion (MCAO) model was established to evaluate the anti-IS effects of EZP by detecting the neurological deficit score, HE, Nissl and TCC staining, and inflammatory factors, and the expression of key protein targets was detected by western blotting. RESULTS A total of 129 components were identified in EZP. Network pharmacology revealed 3136 compound targets and 2826 disease-related targets, and 412 overlapping proteins were obtained as potential therapeutic targets. The PPI network results showed that 6 key targets (AKT1, SRC, VEGFA, TP53, TNF and EGFR) were core targets of EZP in the treatment of IS. Western blotting demonstrated that the expression levels of AKT1, VEGFA, TP53, SRC, TNF and EGFR in the brain tissue of MCAO rats were significantly changed after treatment with EZP compared to the model group. CONCLUSIONS EZP ameliorated IS in MCAO rats. The underlying mechanism might be associated with inhibiting inflammation and apoptosis, promoting angiogenesis and protecting neurons by regulating multiple targets and pathways.
Collapse
Affiliation(s)
- Cunping Wang
- College of Pharmacy, Southwest Minzu University, 610041, Chengdu, China.
| | - Qiulin Luo
- College of Pharmacy, Southwest Minzu University, 610041, Chengdu, China.
| | - Hanyun Que
- College of Pharmacy, Southwest Minzu University, 610041, Chengdu, China.
| | - Xiaomin Luo
- College of Pharmacy, Southwest Minzu University, 610041, Chengdu, China.
| | - Boyu Zhang
- College of Pharmacy, Southwest Minzu University, 610041, Chengdu, China.
| | - Yi Ding
- College of Pharmacy, Southwest Minzu University, 610041, Chengdu, China.
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, 610041, Chengdu, China.
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, 610041, Chengdu, China.
| |
Collapse
|
6
|
Yuan M, Zhang Y, Wang L, Hua Y, Wang Y, Cheng H, Wang N, Wang G, Seto S. Study on the mechanism of Tong-Qiao-Huo-Xue decoction regulating apoptosis via ASK1/MKK4/JNK pathway in MCAO/R rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154437. [PMID: 36099654 DOI: 10.1016/j.phymed.2022.154437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Activation of blood stasis is a crucial aspect of stroke treatment, and the Tong-Qiao-Huo-Xue-Decoction (TQHXD) formula is commonly utilized for this purpose. However, the mechanism underlying the protective effects of TQHXD against cerebral ischemia-reperfusion (I/R) injury is unclear. PURPOSE Identification of the TQHXD components responsible for its protective effects and determination of their mode of action against cerebral I/R injury. METHODS Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were carried out to determine the active aspects of TQHXD. The active components and targets of TQHXD were looked up in the TCMSP and HERB databases; the Genecards, OMIM, TTD, and DrugBank databases were used to identify targets related to cerebral infarction; and the intersecting targets were obtained. The drug-ingredient-target-disease network and PPI network were subsequently built using Cytoscape 3.7.1 and STRING websites. Autodock VINA was used to perform molecular docking between the core target ASK1 and the active components of TQHXD detected by HPLC and GC. After successfully creating a rat model of middle cerebral artery occlusion (MCAO), the therapeutic effect of TQHXD was observed using triphenyltetrazolium and hematoxylin-eosin staining. We used Tunel-NeuN staining and transmission electron microscopy (TEM) to quantify hippocampal apoptosis. RT-qPCR and western blotting were used to detect protein and mRNA expression, respectively. RESULTS HPLC and GC identified six active ingredients. Network pharmacology analyses were performed to test 66 intersection targets, including ASK1, MKK4, and JNK. Ferulic acid, HSYA, ligustilide, paeoniflorin, and muscone all displayed high binding affinity with ASK1 in molecular docking studies. The neuroprotective effects of TQHXD in I/R rats were demonstrated in the experimental models. In comparison with the model group, TQHXD decreased the apoptosis rate and reduced the protein levels of p-ASK1, caspase 3, p-MKK4, CytC, p-c-Jun, Bax/Bcl-2, and p-JNK, while considerably increasing the mRNA levels of Bcl-2 and decreasing those of Bax. CONCLUSION By controlling the ASK1/MKK4/JNK pathway, TQHXD protects neurons from I/R damage and prevents apoptosis. Thus, TQHXD may be effective for the treatment of ischemic stroke. And the mechanism behind these therapeutic actions of TQHXD is supported by this research.
Collapse
Affiliation(s)
- Meiling Yuan
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, PR China
| | - Yun Zhang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, PR China
| | - Lei Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, PR China
| | - Yaping Hua
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, PR China
| | - Yan Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, PR China.
| | - Hui Cheng
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, PR China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, PR China.
| | - Guangyun Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, PR China
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Hu T, Li D, Fan T, Zhao X, Chen Z. Circular RNA PUM1 performs as a competing endogenous RNA of microRNA-340-5p to mediate DEAD-box helicase 5 to mitigate cerebral ischemia-reperfusion injury. Bioengineered 2022; 13:11564-11578. [PMID: 35510394 PMCID: PMC9276027 DOI: 10.1080/21655979.2022.2068923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cerebral ischemia-reperfusion damages local brain tissue and impairs brain function, but its specific pathogenesis is still uncertain. Recent studies have clarified circPUM1 is aberrantly elevated in cerebral ischemia-reperfusion injury; however, circPUM1ʹs function in cerebral ischemia-reperfusion-induced neuronal injury remains ambiguous. The results illustrated circPUM1 and DEAD-box helicase 5 were decreased, but microRNA-340-5p was elevated in transient middle cerebral artery occlusion mice and oxygen glucose deprivation/reoxygenation-treated SH-SY5Y cells. Knockdown of circPUM1 aggravated the neuronal injury in transient middle cerebral artery occlusion mice and motivated glial cell activation, neuronal apoptosis and inflammation. Enhancing circPUM1 restrained oxygen glucose deprivation/reoxygenation-induced SH-SY5Y cell apoptosis, the release of lactate dehydrogenase and inflammatory factors, and activation of nuclear factor-kappaB pathway, while elevating microRNA-340-5p aggravated oxygen glucose deprivation/reoxygenation-induced cell damage. Functional rescue experiments exhibited that the impacts of knockdown or enhancement of circPUM1 were turned around by microRNA-340-5p downregulation and DEAD-box helicase 5 silencing, respectively. Moreover, it was demonstrated that circPUM1 competitively adsorbed microRNA-340-5p to mediate DEAD-box helicase 5. All in all, this study clarifies that circPUM1 mitigates cerebral ischemia-reperfusion-induced neuronal injury by targeting the microRNA-340-5p/DEAD-box helicase 5 axis.
Collapse
Affiliation(s)
- Teng Hu
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| | - Di Li
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| | - TiePing Fan
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| | - XuSheng Zhao
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| | - ZhongJun Chen
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| |
Collapse
|
8
|
Effect of prior exposure to enriched environment on cellular apoptosis after experimental stroke. Mol Biol Rep 2022; 49:6541-6551. [PMID: 35507114 DOI: 10.1007/s11033-022-07494-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Growing evidence, including our previous studies, has demonstrated that an enriched environment (EE) after cerebral ischemia/reperfusion (I/R) injury improves neurofunctional recovery in rats. However, whether EE exposure prior to injury could play a neuroprotective role in stroke has seldom been investigated. In this study, we examined the neuroprotective effects of prior exposure to EE and investigated the potential anti-apoptotic effect in rats after cerebral I/R injury. METHODS AND RESULTS Rats were housed in EE or standard conditions (SC) for four weeks and then randomly assigned to receive 120 min of right middle cerebral occlusion (MCAO) or sham operation. Based on the housing environment and the procedure they underwent, the rats were divided into the following three groups: preischemic EE + MCAO (PIEE), preischemic SC + MCAO (PISC) and preischemic SC + sham-operated (sham). Forty-eight hours after the operation, the rats were subjected to a series of assessments. We found that prior exposure to EE improved functional outcomes, reduced infarct volume and attenuated histological damage. The apoptotic cell numbers in the ischemic penumbra cortex decreased in PIEE group, as did the p53, PUMA, Bax and AIF expression levels. The protein expression of Bcl-2 and HSP70 was increased in the PIEE group compared with the PISC group. PIEE treatment also significantly increased the BDNF level in the ischemic penumbra. In addition, inhibition of cell apoptosis and upregulation of BDNF expression levels were correlated with the improved functional recovery of MCAO rats. CONCLUSIONS These findings suggest that EE preconditioning inhibited cell apoptosis and upregulated BDNF expression in the penumbra of MCAO rats, which may contribute to neurofunctional recovery after stroke.
Collapse
|
9
|
Saposhnikoviae Radix Enhanced the Angiogenic and Anti-Inflammatory Effects of Huangqi Chifeng Tang in a Rat Model of Cerebral Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4232708. [PMID: 34594389 PMCID: PMC8478555 DOI: 10.1155/2021/4232708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 11/30/2022]
Abstract
Huangqi Chifeng Tang (HQCFT), a traditional Chinese formula of three herbs, has been used to treat cerebral infarction (CI). Saposhnikoviae Radix (SR) was designed as a guiding drug for HQCFT to improve its angiogenic and anti-inflammatory effects. In this study, TTC staining was used to detect the area of CI. H&E staining was used to detect the histopathologic changes in the cerebral tissue. Western blotting was performed to detect the protein expression of NLRP3, caspase 1, IL-1β, IL-6, TNF-α, MMP-9, VEGF, and VEGFR2 in cerebral tissue. Immunohistochemistry was used to detect the protein expression of MMP-9, VEGF, and VEGFR2. The contents of HIF-1α, NLRP3, caspase 1, IL-1β, IL-6, and TNF-α in the serum were determined by ELISA. Our study showed that HQCFT and HQCFT-SR could improve the pathological condition and reduce the infarcted area of the brain tissue in a rat model. In addition, HQCFT and HQCFT-SR significantly decreased the expression levels and serum contents of NLRP3, caspase 1, IL-1β, IL-6, and TNF-α; increased the expression levels of the VEGF and VEGFR2 proteins; and obviously reduced the serum content of HIF-1α. Importantly, the cytokines in brain tissue and serum from the HQCFT group exhibited better efficacy than those from the HQCFT-SR group. HQCFT exerted significant angiogenic and anti-inflammatory effects in rats subjected to middle cerebral artery occlusion (MCAO); these effects can be attributed to the guiding and enhancing effect of SR.
Collapse
|