1
|
Lee JH, Kim SG, Jang KM, Shin K, Jin H, Kim DW, Jeong BC, Lee SH. Elucidation of critical chemical moieties of metallo-β-lactamase inhibitors and prioritisation of target metallo-β-lactamases. J Enzyme Inhib Med Chem 2024; 39:2318830. [PMID: 38488135 PMCID: PMC10946278 DOI: 10.1080/14756366.2024.2318830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
The urgent demand for effective countermeasures against metallo-β-lactamases (MBLs) necessitates development of novel metallo-β-lactamase inhibitors (MBLIs). This study is dedicated to identifying critical chemical moieties within previously developed MBLIs, and critical MBLs should serve as the target in MBLI evaluations. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), a systematic literature analysis was conducted, and the NCBI RefSeq genome database was exploited to access the abundance profile and taxonomic distribution of MBLs and their variant types. Through the implementation of two distinct systematic approaches, we elucidated critical chemical moieties of MBLIs, providing pivotal information for rational drug design. We also prioritised MBLs and their variant types, highlighting the imperative need for comprehensive testing to ensure the potency and efficacy of the newly developed MBLIs. This approach contributes valuable information to advance the field of antimicrobial drug discovery.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Sang-Gyu Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Kyoungmin Shin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Hyeonku Jin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Dae-Wi Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| |
Collapse
|
2
|
Dalbanjan NP, Praveen Kumar SK. A Chronicle Review of In-Silico Approaches for Discovering Novel Antimicrobial Agents to Combat Antimicrobial Resistance. Indian J Microbiol 2024; 64:879-893. [PMID: 39282180 PMCID: PMC11399514 DOI: 10.1007/s12088-024-01355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/11/2024] [Indexed: 09/18/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a foremost threat to global health, necessitating innovative strategies for discovering antimicrobial agents. This review explores the role and recent advances of in-silico techniques in identifying novel antimicrobial agents and combating AMR giving few briefings of recent case studies of AMR. In-silico techniques, such as homology modeling, virtual screening, molecular docking, pharmacophore modeling, molecular dynamics simulation, density functional theory, integrated machine learning, and artificial intelligence, are systematically reviewed for their utility in discovering antimicrobial agents. These computational methods enable the rapid screening of large compound libraries, prediction of drug-target interactions, and optimization of drug candidates. The review discusses integrating in-silico approaches with traditional experimental methods and highlights their potential to accelerate the discovery of new antimicrobial agents. Furthermore, it emphasizes the significance of interdisciplinary collaboration and data-sharing initiatives in advancing antimicrobial research. Through a comprehensive discussion of the latest developments in in-silico techniques, this review provides valuable insights into the future of antimicrobial research and the fight against AMR. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01355-x.
Collapse
Affiliation(s)
| | - S K Praveen Kumar
- Protein Biology Lab, Department of Biochemistry, Karnatak University, Dharwad, Karnataka 580003 India
| |
Collapse
|
3
|
Al-Madboly LA, El-Salam MAA, Bastos JK, Aboukhatwa S, El-Morsi RM. Characterization of GQA as a novel β-lactamase inhibitor of CTX-M-15 and KPC-2 enzymes. Microb Cell Fact 2024; 23:221. [PMID: 39118086 PMCID: PMC11308155 DOI: 10.1186/s12934-024-02421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/11/2024] [Indexed: 08/10/2024] Open
Abstract
β-lactam resistance is a significant global public health issue. Outbreaks of bacteria resistant to extended-spectrum β-lactams and carbapenems are serious health concerns that not only complicate medical care but also impact patient outcomes. The primary objective of this work was to express and purify two soluble recombinant representative serine β‑lactamases using Escherichia coli strain as an expression host and pET101/D as a cloning vector. Furthermore, a second objective was to evaluate the potential, innovative, and safe use of galloylquinic acid (GQA) from Copaifera lucens as a potential β-lactamase inhibitor.In the present study, blaCTX-M-15 and blaKPC-2 represented genes encoding for serine β-lactamases that were cloned from parent isolates of E. coli and K. pneumoniae, respectively, and expression as well as purification were performed. Moreover, susceptibility results demonstrated that recombinant cells became resistant to all test carbapenems (MICs; 64-128 µg/mL) and cephalosporins (MICs; 128-512 µg/mL). The MICs of the tested β-lactam antibiotics were determined in combination with 4 µg/mL of GQA, clavulanic acid, or tazobactam against E. coli strains expressing CTX-M-15 or KPC-2-β-lactamases. Interestingly, the combination with GQA resulted in an important reduction in the MIC values by 64-512-fold to the susceptible range with comparable results for other reference inhibitors. Additionally, the half-maximal inhibitory concentration of GQA was determined using nitrocefin as a β-lactamase substrate. Data showed that the test agent was similar to tazobactam as an efficient inhibitors of the test enzymes, recording smaller IC50 values (CTX-M-15; 17.51 for tazobactam, 28.16 µg/mL for GQA however, KPC-2; 20.91 for tazobactam, 24.76 µg/mL for GQA) compared to clavulanic acid. Our work introduces GQA as a novel non-β-lactam inhibitor, which interacts with the crucial residues involved in β-lactam recognition and hydrolysis by non-covalent interactions, complementing the enzyme's active site. GQA markedly enhanced the potency of β-lactams against carbapenemase and extended-spectrum β-lactamase-producing strains, reducing the MICs of β-lactams to the susceptible range. The β-lactamase inhibitory activity of GQA makes it a promising lead molecule for the development of more potent β-lactamase inhibitors.
Collapse
Affiliation(s)
- Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Mohamed A Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland.
| | - Jairo K Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, SP, 14040-903, Brazil
| | - Shaimaa Aboukhatwa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rasha M El-Morsi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
| |
Collapse
|
4
|
Wang H, Wang C, Wang Z, Niu X. Active Discovery of the Allosteric Inhibitor Targeting Botrytis cinerea Chitinase Based on Neural Relational Inference for Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16128-16139. [PMID: 39003764 DOI: 10.1021/acs.jafc.4c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Currently, allosteric inhibitors have emerged as an effective strategy in the development of preservatives against the drug-resistant Botrytis cinerea (B. cinerea). However, their passively driven development efficiency has proven challenging to meet the practical demands. Here, leveraging the deep learning Neural Relational Inference (NRI) framework, we actively identified an allosteric inhibitor targeting B. cinerea Chitinase, namely, 2-acetonaphthone. 2-Acetonaphthone binds to the crucial domain of Chitinase, forming the strong interaction with the allosteric sites. Throughout the interaction process, 2-acetonaphthone diminished the overall connectivity of the protein, inducing conformational changes. These findings align with the results obtained from Chitinase activity experiments, revealing an IC50 value of 67.6 μg/mL. Moreover, 2-acetonaphthone exhibited outstanding anti-B. cinerea activity by inhibiting Chitinase. In the gray mold infection model, 2-acetonaphthone significantly extended the preservation time of cherry tomatoes, positioning it as a promising preservative for fruit storage.
Collapse
Affiliation(s)
- Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Chenyang Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Ziyou Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
5
|
Nahar L, Hagiya H, Gotoh K, Asaduzzaman M, Otsuka F. New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review. J Clin Med 2024; 13:4199. [PMID: 39064239 PMCID: PMC11277577 DOI: 10.3390/jcm13144199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Among various carbapenemases, New Delhi metallo-beta-lactamases (NDMs) are recognized as the most powerful type capable of hydrolyzing all beta-lactam antibiotics, often conferring multi-drug resistance to the microorganism. The objective of this review is to synthesize current scientific data on NDM inhibitors to facilitate the development of future therapeutics for challenging-to-treat pathogens. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews, we conducted a MEDLINE search for articles with relevant keywords from the beginning of 2009 to December 2022. We employed various generic terms to encompass all the literature ever published on potential NDM inhibitors. Results: Out of the 1760 articles identified through the database search, 91 met the eligibility criteria and were included in our analysis. The fractional inhibitory concentration index was assessed using the checkerboard assay for 47 compounds in 37 articles, which included 8 compounds already approved by the Food and Drug Administration (FDA) of the United States. Time-killing curve assays (14 studies, 25%), kinetic assays (15 studies, 40.5%), molecular investigations (25 studies, 67.6%), in vivo studies (14 studies, 37.8%), and toxicity assays (13 studies, 35.1%) were also conducted to strengthen the laboratory-level evidence of the potential inhibitors. None of them appeared to have been applied to human infections. Conclusions: Ongoing research efforts have identified several potential NDM inhibitors; however, there are currently no clinically applicable drugs. To address this, we must foster interdisciplinary and multifaceted collaborations by broadening our own horizons.
Collapse
Affiliation(s)
- Lutfun Nahar
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hideharu Hagiya
- Department of Infectious Diseases, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazuyoshi Gotoh
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (M.A.)
| | - Md Asaduzzaman
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (M.A.)
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
6
|
Zhang S, Liao X, Ding T, Ahn J. Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:260. [PMID: 38534695 DOI: 10.3390/antibiotics13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Since the discovery of penicillin, β-lactam antibiotics have commonly been used to treat bacterial infections. Unfortunately, at the same time, pathogens can develop resistance to β-lactam antibiotics such as penicillins, cephalosporins, monobactams, and carbapenems by producing β-lactamases. Therefore, a combination of β-lactam antibiotics with β-lactamase inhibitors has been a promising approach to controlling β-lactam-resistant bacteria. The discovery of novel β-lactamase inhibitors (BLIs) is essential for effectively treating antibiotic-resistant bacterial infections. Therefore, this review discusses the development of innovative inhibitors meant to enhance the activity of β-lactam antibiotics. Specifically, this review describes the classification and characteristics of different classes of β-lactamases and the synergistic mechanisms of β-lactams and BLIs. In addition, we introduce potential sources of compounds for use as novel BLIs. This provides insights into overcoming current challenges in β-lactamase-producing bacteria and designing effective treatment options in combination with BLIs.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| |
Collapse
|
7
|
Diaz A, G S, Balaji S, Ramakrishnan J, Thamotharan S, Ramakrishnan V. Comprehensive screening of marine metabolites against class B1 metallo-β-lactamases of Klebsiella pneumoniae using two-pronged in silico approach. J Biomol Struct Dyn 2023; 41:10930-10943. [PMID: 36541935 DOI: 10.1080/07391102.2022.2159532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The emergence of antibiotic resistance is one of the major global threats in healthcare. Metallo-β-Lactamases (MBL) are a class of enzymes in bacteria that cleave β-lactam antibiotics and confer resistance. MBLs are further divided into subclasses B1, B2 and B3. Of these, subclasses B1-MBLs (including NDM-1, VIM-2 and IMP-1) constitute the clinically prevalent lactamases conferring resistance. To date, no effective drugs are available clinically against MBLs. In this work, we aim to identify potent inhibitors for the B1 subclass of MBL from available marine metabolites in Comprehensive Marine Natural Product database through integrated in silico approaches. We have used two methods, namely, the high-throughput strategy and the pharmacophore-based strategy to identify potential inhibitors from marine metabolites. High-throughput virtual screening identified N-methyl mycosporine-Ser, which had the highest binding affinity to NDM-1. The pharmacophore-based approach based on co-crystallized ligands identified makaluvic acid and didymellamide with higher binding affinity across B1-MBLs. Taking into account of the advantage of a pharmacophore model-based approach with higher binding affinity, we conclude that both makaluvic acid and didymellamide show potential broad-spectrum effects by binding to all three B1-MBL receptors. The study also indicates the need to take multiple in silico approaches to screen and identify novel inhibitors. Together, our study reveals promising inhibitors that can be identified from marine systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aathithya Diaz
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Shripushkar G
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Shruti Balaji
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | | | - Subbiah Thamotharan
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Vigneshwar Ramakrishnan
- School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
8
|
Papastergiou T, Azé J, Bringay S, Louet M, Poncelet P, Rosales-Hurtado M, Vo-Hoang Y, Licznar-Fajardo P, Docquier JD, Gavara L. Discovering NDM-1 inhibitors using molecular substructure embeddings representations. J Integr Bioinform 2023; 0:jib-2022-0050. [PMID: 37498676 PMCID: PMC10389050 DOI: 10.1515/jib-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
NDM-1 (New-Delhi-Metallo-β-lactamase-1) is an enzyme developed by bacteria that is implicated in bacteria resistance to almost all known antibiotics. In this study, we deliver a new, curated NDM-1 bioactivities database, along with a set of unifying rules for managing different activity properties and inconsistencies. We define the activity classification problem in terms of Multiple Instance Learning, employing embeddings corresponding to molecular substructures and present an ensemble ranking and classification framework, relaying on a k-fold Cross Validation method employing a per fold hyper-parameter optimization procedure, showing promising generalization ability. The MIL paradigm displayed an improvement up to 45.7 %, in terms of Balanced Accuracy, in comparison to the classical Machine Learning paradigm. Moreover, we investigate different compact molecular representations, based on atomic or bi-atomic substructures. Finally, we scanned the Drugbank for strongly active compounds and we present the top-15 ranked compounds.
Collapse
Affiliation(s)
- Thomas Papastergiou
- LIRMM, University of Montpellier, CNRS, 34095 Montpellier, France
- IBMM, CNRS, University of Montpellier, ENSCM, 34293 Montpellier, France
| | - Jérôme Azé
- LIRMM, University of Montpellier, CNRS, 34095 Montpellier, France
| | - Sandra Bringay
- LIRMM, University of Montpellier, CNRS, 34095 Montpellier, France
- AMIS, Paul Valery University, 34199 Montpellier, France
| | - Maxime Louet
- IBMM, CNRS, University of Montpellier, ENSCM, 34293 Montpellier, France
| | - Pascal Poncelet
- LIRMM, University of Montpellier, CNRS, 34095 Montpellier, France
| | | | - Yen Vo-Hoang
- IBMM, CNRS, University of Montpellier, ENSCM, 34293 Montpellier, France
| | | | - Jean-Denis Docquier
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| | - Laurent Gavara
- IBMM, CNRS, University of Montpellier, ENSCM, 34293 Montpellier, France
| |
Collapse
|
9
|
Ayipo YO, Chong CF, Mordi MN. Small-molecule inhibitors of bacterial-producing metallo-β-lactamases: insights into their resistance mechanisms and biochemical analyses of their activities. RSC Med Chem 2023; 14:1012-1048. [PMID: 37360393 PMCID: PMC10285742 DOI: 10.1039/d3md00036b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/31/2023] [Indexed: 09/20/2023] Open
Abstract
Antibiotic resistance (AR) remains one of the major threats to the global healthcare system, which is associated with alarming morbidity and mortality rates. The defence mechanisms of Enterobacteriaceae to antibiotics occur through several pathways including the production of metallo-β-lactamases (MBLs). The carbapenemases, notably, New Delhi MBL (NDM), imipenemase (IMP), and Verona integron-encoded MBL (VIM), represent the critical MBLs implicated in AR pathogenesis and are responsible for the worst AR-related clinical conditions, but there are no approved inhibitors to date, which needs to be urgently addressed. Presently, the available antibiotics including the most active β-lactam-types are subjected to deactivation and degradation by the notorious superbug-produced enzymes. Progressively, scientists have devoted their efforts to curbing this global menace, and consequently a systematic overview on this topic can aid the timely development of effective therapeutics. In this review, diagnostic strategies for MBL strains and biochemical analyses of potent small-molecule inhibitors from experimental reports (2020-date) are overviewed. Notably, N1 and N2 from natural sources, S3-S7, S9 and S10 and S13-S16 from synthetic routes displayed the most potent broad-spectrum inhibition with ideal safety profiles. Their mechanisms of action include metal sequestration from and multi-dimensional binding to the MBL active pockets. Presently, some β-lactamase (BL)/MBL inhibitors have reached the clinical trial stage. This synopsis represents a model for future translational studies towards the discovery of effective therapeutics to overcome the challenges of AR.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia USM 11800 Pulau Pinang Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University P. M. B., 1530, Malete Ilorin Nigeria
| | - Chien Fung Chong
- Department of Allied Health Sciences, Universiti Tunku Abdul Rahman 31900 Kampar Perak Malaysia
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia USM 11800 Pulau Pinang Malaysia
| |
Collapse
|
10
|
Narendrakumar L, Chakraborty M, Kumari S, Paul D, Das B. β-Lactam potentiators to re-sensitize resistant pathogens: Discovery, development, clinical use and the way forward. Front Microbiol 2023; 13:1092556. [PMID: 36970185 PMCID: PMC10036598 DOI: 10.3389/fmicb.2022.1092556] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 03/12/2023] Open
Abstract
β-lactam antibiotics are one of the most widely used and diverse classes of antimicrobial agents for treating both Gram-negative and Gram-positive bacterial infections. The β-lactam antibiotics, which include penicillins, cephalosporins, monobactams and carbapenems, exert their antibacterial activity by inhibiting the bacterial cell wall synthesis and have a global positive impact in treating serious bacterial infections. Today, β-lactam antibiotics are the most frequently prescribed antimicrobial across the globe. However, due to the widespread use and misapplication of β-lactam antibiotics in fields such as human medicine and animal agriculture, resistance to this superlative drug class has emerged in the majority of clinically important bacterial pathogens. This heightened antibiotic resistance prompted researchers to explore novel strategies to restore the activity of β-lactam antibiotics, which led to the discovery of β-lactamase inhibitors (BLIs) and other β-lactam potentiators. Although there are several successful β-lactam-β-lactamase inhibitor combinations in use, the emergence of novel resistance mechanisms and variants of β-lactamases have put the quest of new β-lactam potentiators beyond precedence. This review summarizes the success stories of β-lactamase inhibitors in use, prospective β-lactam potentiators in various phases of clinical trials and the different strategies used to identify novel β-lactam potentiators. Furthermore, this review discusses the various challenges in taking these β-lactam potentiators from bench to bedside and expounds other mechanisms that could be investigated to reduce the global antimicrobial resistance (AMR) burden.
Collapse
Affiliation(s)
- Lekshmi Narendrakumar
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | | | | | | | | |
Collapse
|
11
|
Shoeib NA, Al-Madboly LA, Ragab AE. In vitro and in silico β-lactamase inhibitory properties and phytochemical profile of Ocimum basilicum cultivated in central delta of Egypt. PHARMACEUTICAL BIOLOGY 2022; 60:1969-1980. [PMID: 36226757 PMCID: PMC9578474 DOI: 10.1080/13880209.2022.2127791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Some studies reported the chemical content and antimicrobial properties of Ocimum basilicum L. (Lamiaceae), relevant to the ecological variations in some areas of Egypt and other countries, yet no research was conducted on the plant cultivated in the central delta region of Egypt. Also, no previous data reported on inhibition of β-lactamases by O. basilicum. OBJECTIVE To assess β-lactamases inhibition by O. basilicum extracts and the individual constituents. MATERIALS AND METHODS Dried aerial parts of O. basilicum were extracted by hydrodistillation for preparation of essential oil and by methanol for non-volatile constituents. Essential oil content and the methanol extract were analysed by GC-MS and UPLC-PDA-MS/MS, respectively. Methyl cinnamate was isolated and analysed by NMR. Broth microdilution method was used to investigate the antimicrobial against resistant clinical isolates of Escherichia coli identified by double disc synergy, combination disc tests and PCR. The most active oil content was further tested with a nitrocefin kit for β-lactamase inhibition and investigated by docking. RESULTS O. basilicum was found to contain methyl cinnamate as the major content of the essential oil. More interestingly, methyl cinnamate inhibited ESBL β-lactamases of the type CTX-M. The in vitro IC50 using nitrocefin kit was 11.6 µg/mL vs. 8.1 µg/mL for clavulanic acid as a standard β-lactamase inhibitor. DISCUSSION AND CONCLUSIONS This is the first study to report the inhibitory activity of O. basilicum oil and methyl cinnamate against β-lactamase-producing bacteria. The results indicate that methyl cinnamate could be a potential alternative for β-lactamase inhibition.
Collapse
Affiliation(s)
| | | | - Amany E. Ragab
- Department of Pharmacognosy, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Yu T, Ahmad Malik A, Anuwongcharoen N, Eiamphungporn W, Nantasenamat C, Piacham T. Towards combating antibiotic resistance by exploring the quantitative structure-activity relationship of NDM-1 inhibitors. EXCLI JOURNAL 2022; 21:1331-1351. [PMID: 36540675 PMCID: PMC9755517 DOI: 10.17179/excli2022-5380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The emergence of New Delhi metallo-beta-lactamase-1 (NDM-1) has conferred enteric bacteria resistance to almost all beta-lactam antibiotics. Its capability of horizontal transfer through plasmids, amongst humans, animal reservoirs and the environment, has added up to the totality of antimicrobial resistance control, animal husbandry and food safety. Thus far, there have been no effective drugs for neutralizing NDM-1. This study explores the structure-activity relationship of NDM-1 inhibitors. IC50 values of NDM-1 inhibitors were compiled from both the ChEMBL database and literature. After curation, a final set of 686 inhibitors were used for machine learning model building using the random forest algorithm against 12 sets of molecular fingerprints. Benchmark results indicated that the KlekotaRothCount fingerprint provided the best overall performance with an accuracy of 0.978 and 0.778 for the training and testing set, respectively. Model interpretation revealed that nitrogen-containing features (KRFPC 4080, KRFPC 3882, KRFPC 677, KRFPC 3608, KRFPC 3750, KRFPC 4287 and KRFPC 3943), sulfur-containing substructures (KRFPC 2855 and KRFPC 4843), aromatic features (KRFPC 1566, KRFPC 1564, KRFPC 1642, KRFPC 3608, KRFPC 4287 and KRFPC 3943), carbonyl features (KRFPC 1193 and KRFPC 3025), aliphatic features (KRFPC 2975, KRFPC 297, KRFPC 3224 and KRFPC 669) are features contributing to NDM-1 inhibitory activity. It is anticipated that findings from this study would help facilitate the drug discovery of NDM-1 inhibitors by providing guidelines for further lead optimization.
Collapse
Affiliation(s)
- Tianshi Yu
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Aijaz Ahmad Malik
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nuttapat Anuwongcharoen
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | | | - Theeraphon Piacham
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
13
|
The Synthesis of Triazolium Salts as Antifungal Agents: A Biological and In Silico Evaluation. Antibiotics (Basel) 2022; 11:antibiotics11050588. [PMID: 35625232 PMCID: PMC9137982 DOI: 10.3390/antibiotics11050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
The control of fungal pathogens is increasingly difficult due to the limited number of effective drugs available for antifungal therapy. In addition, both humans and fungi are eukaryotic organisms; antifungal drugs may have significant toxicity due to the inhibition of related human targets. Furthermore, another problem is increased incidents of fungal resistance to azoles, such as fluconazole, ketoconazole, voriconazole, etc. Thus, the interest in developing new azoles with an extended spectrum of activity still attracts the interest of the scientific community. Herein, we report the synthesis of a series of triazolium salts, an evaluation of their antifungal activity, and docking studies. Ketoconazole and bifonazole were used as reference drugs. All compounds showed good antifungal activity with MIC/MFC in the range of 0.0003 to 0.2/0.0006–0.4 mg/mL. Compound 19 exhibited the best activity among all tested with MIC/MFC in the range of 0.009 to 0.037 mg/mL and 0.0125–0.05 mg/mL, respectively. All compounds appeared to be more potent than both reference drugs. The docking studies are in accordance with experimental results.
Collapse
|
14
|
Thomas PW, Cho EJ, Bethel CR, Smisek T, Ahn YC, Schroeder JM, Thomas CA, Dalby KN, Beckham JT, Crowder MW, Bonomo RA, Fast W. Discovery of an Effective Small-Molecule Allosteric Inhibitor of New Delhi Metallo-β-lactamase (NDM). ACS Infect Dis 2022; 8:811-824. [PMID: 35353502 DOI: 10.1021/acsinfecdis.1c00577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To identify novel inhibitors of the carbapenemase New Delhi metallo-β-lactamase (NDM) as possible therapeutic compounds, we conducted a high-throughput screen of a 43,358-compound library. One of these compounds, a 2-quinazolinone linked through a diacylhydrazine to a phenyl ring (QDP-1) (IC50 = 7.9 ± 0.5 μM), was characterized as a slow-binding reversible inhibitor (Kiapp = 4 ± 2 μM) with a noncompetitive mode of inhibition in which substrate and inhibitor enhance each other's binding affinity. These studies, along with differential scanning fluorimetry, zinc quantitation, and selectivity studies, support an allosteric mechanism of inhibition. Cotreatment with QDP-1 effectively lowers minimum inhibitory concentrations of carbapenems for a panel of resistant Escherichia coli and Klebsiella pneumoniae clinical isolates expressing NDM-1 but not for those expressing only serine carbapenemases. QDP-1 represents a novel allosteric approach for NDM drug development for potential use alone or with other NDM inhibitors to counter carbapenem resistance in enterobacterales.
Collapse
Affiliation(s)
- Pei W. Thomas
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Eun Jeong Cho
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Thomas Smisek
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Yeong-Chan Ahn
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - John M. Schroeder
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Caitlyn A. Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Josh T. Beckham
- Texas Institute for Discovery Education in Science, University of Texas, Austin, Texas 78712, United States
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Departments of Pharmacology, Molecular Biology & Microbiology, and Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio 44106, United States
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
- LaMontagne Center for Infectious Disease, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Liu L, Wang H, Lin L, Gao Y, Niu X. Mulberrin inhibits Botrytis cinerea for strawberry storage by interfering with the bioactivity of 14α-demethylase (CYP51). Food Funct 2022; 13:4032-4046. [PMID: 35315482 DOI: 10.1039/d2fo00295g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Currently, chemical agents hold great promise in preventing and combating Botrytis cinerea. However, the antifungal mechanism of some agents for B. cinerea remains rather vague, imposing restrictions on the research and development of novel antifungal inhibitors. In this work, we discovered that mulberrin (MBN), a natural compound from the root bark of Ramulus Mori, with an IC50 of 1.38 μM together, demonstrated marked anti-14α-demethylase (CYP51) activity through high throughput virtual screening and in vitro bioactivity assay. The computational biology results demonstrated that MBN and its derivatives were bound to the catalytic activity region of CYP51, but only MBN could form a strong π-cation interaction with the Fe ion of heme in CYP51 via the 2-methylpent-2-ene moiety at atom C9. MBN had a stronger binding free energy than the other three compounds with CYP51, implying that the 2-methylpent-2-ene moiety at atom C9 is a critical pharmacophore for CYP51 inhibitors. Subsequently, through an antifungal test, MBN demonstrated excellent anti-B. cinerea activity by inhibiting CYP51 activity. The EC50 values of MBN toward hyphal growth and spore germination in B. cinerea were 17.27 and 9.56 μg mL-1, respectively. The bioactivity loss of CYP51 by direct interaction with MBN induced the increase of cell membrane permeability, membrane destruction, and cell death. Meanwhile, in the B. cinerea infection model, MBN significantly prolonged the preservation of strawberries by preventing B. cinerea from infecting strawberries and could be used as a potential natural preserving agent for storing fruits.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Li Lin
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|