1
|
Wu YL, Zhu AQ, Zhou XT, Zhang KW, Yuan XJ, Yuan M, He J, Pineda MA, Li KP. A Novel Ultrafiltrate Extract of Propolis Exerts Anti-inflammatory Activity through Metabolic Rewiring. Chem Biodivers 2024; 21:e202301315. [PMID: 38189169 DOI: 10.1002/cbdv.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
Thousands of years ago, humans started to use propolis because of its medicinal properties, and modern science has successfully identified several bioactive molecules within this resinous bee product. However, a natural propolis extract which has been removed the adhesive glue and preserved propolis bioactive compounds is urgently needed to maximise the therapeutic opportunities. In this study, a novel ultrafiltrate fraction from Brazilian green propolis, termed P30K, was demonstrated with anti-inflammatory properties, both in vitro and in vivo. Total flavonoids and total phenolic acids content in P30K were 244.6 mg/g and 275.8 mg/g respectively, while the IC50 value of inhibition of cyclooxygenase-2 (COX-2) was 8.30 μg/mL. The anti-inflammatory activity of P30K was furtherly corroborated in experimental models of lipopolysaccharides (LPS)-induced acute liver and lung injury. Mechanistically, integrated GC-MS and LC-MS based serum metabolomics analysis revealed that P30K modulated citrate cycle (TCA), pyruvate, glyoxylate and dicarboxylate metabolism pathways to inhibit secretion of pro-inflammatory cytokines. Results of network pharmacology and molecular docking suggested that P30K targeted catechol-O-methyltransferases (COMT), 11β-hydroxysteroid dehydrogenases (HSD11B1), and monoamine oxidases (MAOA and MAOB) to promote cellular metabolomic rewiring. Collectively, our work reveals P30K as an efficient therapeutic agent against inflammatory conditions and its efficacy is related to metabolic rewiring.
Collapse
Affiliation(s)
- Yong-Lin Wu
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - An-Qi Zhu
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Xiao-Ting Zhou
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Ke-Wei Zhang
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Xu-Jiang Yuan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Min Yuan
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Jian He
- BYHEALTH Institute of Nutrition & Health., Guangzhou, 510000, China
| | - Miguel A Pineda
- Centre for the Cellular Microenvironment, University of Glasgow, University Place, Glasgow, G12 8TA, UK
| | - Kun-Ping Li
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| |
Collapse
|
2
|
Qin Y, Cai Q, Ling Y, Chen X, Xu J, Huang G, Liang S, Yuan X, Yang XM, Lu D, Wang X, Wei Y. Arbuscular mycorrhizal fungi improve selenium uptake by modulating root transcriptome of rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1242463. [PMID: 37799552 PMCID: PMC10547891 DOI: 10.3389/fpls.2023.1242463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Abstract
Although selenium (Se) is an essential trace element in humans, the intake of Se from food is still generally inadequate throughout the world. Inoculation with arbuscular mycorrhizal fungi (AMF) improves the uptake of Se in rice (Oryza sativa L.). However, the mechanism by which AMF improves the uptake of Se in rice at the transcriptome level is unknown. Only a few studies have evaluated the effects of uptake of other elements in rice under the combined effects of Se and AMF. In this study, Se combined with the AMF Funneliformis mosseae (Fm) increased the biomass and Se concentration of rice plants, altered the pattern of ionomics of the rice roots and shoots, and reduced the antagonistic uptake of Se with nickel, molybdenum, phosphorus, and copper compared with the treatment of Se alone, indicating that Fm can enhance the effect of fertilizers rich in Se. Furthermore, a weighted gene co-expression network analysis (WGCNA) showed that the hub genes in modules significantly associated with the genes that contained Se and were related to protein phosphorylation, protein serine/threonine kinase activity, membrane translocation, and metal ion binding, suggesting that the uptake of Se by the rice roots may be associated with these genes when Fm and Se act in concert. This study provides a reference for the further exploration of genes related to Se uptake in rice under Fm treatment.
Collapse
Affiliation(s)
- Yan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Qiuliang Cai
- Industrial College of Subtropical Characteristic Agriculture, Agriculture and Food Engineering College, Baise University, Baise, China
| | - Yiting Ling
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Xue Chen
- Guangxi Eco-engineering Vocational & Technical College, Liuzhou, China
| | - Jingmao Xu
- Liuzhou Railway Vocational Technical College, Liuzhou, China
| | - Guirong Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Shanhe Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Xiu Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao Mu Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Dan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Xueli Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Yanyan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Tiwari A, Tiwari V, Sharma A, Singh D, Singh Rawat M, Virmani T, Virmani R, Kumar G, Kumar M, Alhalmi A, Noman OM, Mothana RA, Alali M. Tanshinone-I for the treatment of uterine fibroids: Molecular docking, simulation, and density functional theory investigations. Saudi Pharm J 2023; 31:1061-1076. [PMID: 37250358 PMCID: PMC10209546 DOI: 10.1016/j.jsps.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023] Open
Abstract
Uterine fibroids (UF), most prevalent gynecological disorder, require surgery when symptomatic. It is estimated that between 25 and 35 percent of women wait until the symptoms have worsened like extended heavy menstrual bleeding and severe pelvic pain. These UF may be reduced in size through various methods such as medical or surgical intervention. Progesterone (prog) is a crucial hormone that restores the endometrium and controls uterine function. In the current study, 28 plant-based molecules are identified from previous literature and docked onto the prog receptors with 1E3K and 2OVH. Tanshinone-I has shown the best docking score against both proteins. The synthetic prog inhibitor Norethindrone Acetate is used as a standard to evaluate the docking outcomes. The best compound, tanshinone-I, was analyzed using molecular modeling and DFT. The RMSD for the 1E3K protein-ligand complex ranged from 0.10 to 0.42 Å, with an average of 0.21 Å and a standard deviation (SD) of 0.06, while the RMSD for the 2OVH protein-ligand complex ranged from 0.08 to 0.42 Å, with an average of 0.20 Å and a SD of 0.06 showing stable interaction. In principal component analysis, the observed eigen values of HPR-Tanshinone-I fluctuate between -1.11 to 1.48 and -1.07 to 1.25 for PC1 and PC2, respectively (1E3K), and the prog-tanshinone-I complex shows eigen values of -38.88 to -31.32 and -31.32 to 35.87 for PC1 and PC2, respectively (2OVH), which shows Tanshinone-I forms a stable protein-ligand complex with 1E3K in comparison to 2OVH. The Free Energy Landscape (FEL) analysis shows the Gibbs free energy in the range of 0 to 8 kJ/mol for Tanshinone-I with 1E3K and 0 to 14 kJ/mol for Tanshinone-I with the 2OVH complex. The DFT calculation reveals ΔE value of 2.8070 eV shows tanshinone-I as a stable compound. 1E3K modulates the prog pathway, it may have either an agonistic or antagonistic effect on hPRs. Tanshinone-I can cause ROS, apoptosis, autophagy (p62 accumulation), up-regulation of inositol requiring protein-1, enhancer-binding protein homologous protein, p-c-Jun N-terminal kinase (p-JNK), and suppression of MMPs. Bcl-2 expression can change LC3I to LC3II and cause apoptosis through Beclin-1 expression.
Collapse
Affiliation(s)
- Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India
| | - Varsha Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India
| | - Ajay Sharma
- Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh, India
| | - Manju Singh Rawat
- University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana- 142024 Punjab, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Sciences, College of Pharmacy, Aden University, Aden, Yemen
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Alali
- Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| |
Collapse
|
4
|
Liu Y, Shi X, Tian Y, Zhai S, Liu Y, Xiong Z, Chu S. An insight into novel therapeutic potentials of taxifolin. Front Pharmacol 2023; 14:1173855. [PMID: 37261284 PMCID: PMC10227600 DOI: 10.3389/fphar.2023.1173855] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Taxifolin is a flavonoid compound, originally isolated from the bark of Douglas fir trees, which is often found in foods such as onions and olive oil, and is also used in commercial preparations, and has attracted the interest of nutritionists and medicinal chemists due to its broad range of health-promoting effects. It is a powerful antioxidant with excellent antioxidant, anti-inflammatory, anti-microbial and other pharmacological activities. This review focuses on the breakthroughs in taxifolin for the treatment of diseases from 2019 to 2022 according to various systems of the human body, such as the nervous system, immune system, and digestive system, and on the basis of this review, we summarize the problems of current research and try to suggest solutions and future research directions.
Collapse
Affiliation(s)
- Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
5
|
Alanezi AA, Almuqati AF, Alfwuaires MA, Alasmari F, Namazi NI, Althunibat OY, Mahmoud AM. Taxifolin Prevents Cisplatin Nephrotoxicity by Modulating Nrf2/HO-1 Pathway and Mitigating Oxidative Stress and Inflammation in Mice. Pharmaceuticals (Basel) 2022; 15:1310. [PMID: 36355481 PMCID: PMC9692949 DOI: 10.3390/ph15111310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 08/26/2023] Open
Abstract
Cisplatin (CIS) is an effective chemotherapeutic agent used in the treatment of several malignancies. The clinical use of CIS is associated with adverse effects, including acute kidney injury (AKI). Oxidative stress and inflammation are key events in the development of CIS-induced AKI. This study investigated the protective effect of taxifolin (TAX), a bioactive flavonoid with promising health-promoting properties, on CIS-induced nephrotoxicity in mice. TAX was orally given to mice for 10 days and a single dose of CIS was injected at day 7. Serum blood urea nitrogen (BUN) and creatinine were elevated, and multiple histopathological alterations were observed in the kidney of CIS-administered mice. CIS increased renal malondialdehyde (MDA), nitric oxide (NO), nuclear factor-kappaB (NF-κB) p65, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β, and decreased cellular antioxidants in mice. TAX remarkably prevented kidney injury, ameliorated serum BUN and creatinine, and renal MDA, NO, NF-κB p65, and pro-inflammatory cytokines, and boosted antioxidant defenses in CIS-administered mice. TAX downregulated Bax and caspase-3, and upregulated Bcl-2. These effects were associated with upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression and heme oxygenase (HO)-1 activity in CIS-administered mice. In conclusion, TAX prevented CIS-induced AKI by mitigating tissue injury, oxidative stress, inflammation, and cell death. The protective efficacy of TAX was associated with the upregulation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Abdulkareem A. Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Afaf F. Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Manal A. Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nader I. Namazi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia
| | - Osama Y. Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
6
|
Obeidat HM, Althunibat OY, Alfwuaires MA, Aladaileh SH, Algefare AI, Almuqati AF, Alasmari F, Aldal’in HK, Alanezi AA, Alsuwayt B, Abukhalil MH. Cardioprotective Effect of Taxifolin against Isoproterenol-Induced Cardiac Injury through Decreasing Oxidative Stress, Inflammation, and Cell Death, and Activating Nrf2/HO-1 in Mice. Biomolecules 2022; 12:1546. [PMID: 36358896 PMCID: PMC9687704 DOI: 10.3390/biom12111546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/02/2023] Open
Abstract
Oxidative stress and inflammation are key components in cardiovascular diseases and heart dysfunction. Herein, we evaluated the protective effects of (+)-taxifolin (TAX), a potent flavonoid with significant antioxidant and anti-inflammatory actions, on myocardial oxidative tissue injury, inflammation, and cell death, using a mouse model of isoproterenol (ISO)-induced acute myocardial injury. Mice were given TAX (25 and 50 mg/kg, orally) for 14 days before receiving two subsequent injections of ISO (100 mg/kg, s.c.) at an interval of 24 h on the 15th and 16th days. The ISO-induced cardiac tissue injury was evidenced by increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH), along with several histopathological changes. The ISO also induced increased malondialdehyde (MDA) with concomitant declined myocardial glutathione level and antioxidant enzymes activities. Moreover, ISO-induced heart injury was accompained with elevated cardiac NF-κB p65, TNF-α, IL-1β, Bax, and caspase-3, as well as decreased Bcl-2, Nrf2, and HO-1. Remarkably, TAX reduced the severity of cardiac injury, oxidative stress, inflammation, and cell death, while enhancing antioxidants, Bcl-2, and Nrf2/HO-1 signaling in ISO-injected mice. In conclusion, TAX protects against ISO-induced acute myocardial injury via activating the Nrf2/HO-1 signaling pathway and attenuating the oxidative tissue injury and key regulators of inflammatory response and apoptosis. Thus, our findings imply that TAX may constitute a new cardioprotective therapy against acute MI, which undoubtedly deserves further exploration in upcoming human trials.
Collapse
Affiliation(s)
- Heba M. Obeidat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Osama Y. Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Manal A. Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Saleem H. Aladaileh
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Abdulmohsen I. Algefare
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Afaf F. Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hammad Khalifeh Aldal’in
- Department of Medical Support, Al-Karak University College, Al-Balqa Applied University, Al-Karak 19117, Jordan
| | - Abdulkareem A. Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Mohammad H. Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
- Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| |
Collapse
|
7
|
Renoprotective and Oxidative Stress-Modulating Effects of Taxifolin against Cadmium-Induced Nephrotoxicity in Mice. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081150. [PMID: 36013329 PMCID: PMC9409698 DOI: 10.3390/life12081150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is an inessential trace metal that accumulates in the kidney and may lead to renal toxicity by mediating oxidative stress (OS), inflammatory reactions, and apoptosis. The main objective of this experiment was to inspect the protecting potential of taxifolin (TA) on Cd-induced renal toxicity. Adult male mice were allocated into equal five groups as follows: control, TA-treated (50 mg/kg, oral), CdCl2-treated (4 mg/kg body weight (BW), p.o.), pretreated with TA (25 mg/kg) 1 h before CdCl2 injection (4 mg/kg BW, p.o.), and pretreated with TA (50 mg/kg) 1 h before CdCl2 injection (4 mg/kg BW, p.o.) for 14 days. Cd-intoxicated mice revealed higher serum urea and creatinine levels and notable histopathological alterations in the renal tissues. Malondialdehyde (MDA), nitric oxide (NO), nuclear factor-kappa B (NF-κB) p65, tumor necrosis factor-α (TNF-α), and IL-1β were increased. In contrast, glutathione levels, catalase and superoxide dismutase activities, and IL-10 levels were decreased under Cd-administered effects. Conversely, the TA pre-treatment highly protected tissues from Cd-toxicity, improved renal function, decreased MDA and NO levels, attenuated inflammation, and improved redox status in the renal tissues of Cd-intoxicated mice. The TA pre-treatment of Cd-intoxicated mice showed down-regulation of both Bax and caspase-3 protein and up-regulation of Bcl-2 protein expression in the kidney. Furthermore, TA pre-treatment induced higher upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expression in kidney cells of Cd-intoxicated mice. Therefore, TA can protect renal tissues against Cd-induced nephrotoxicity via improving redox status, modulating inflammation, diminishing cell apoptosis, and activating the Nrf2/HO-1 signaling pathway.
Collapse
|
8
|
Kabel AM, Salama SA, Borg HM, Ali DA, Abd Elmaaboud MA. Targeting p-AKT/mTOR/MAP kinase signaling, NLRP3 inflammasome and apoptosis by fluvastatin with or without taxifolin mitigates gonadal dysfunction induced by bisphenol-A in male rats. Hum Exp Toxicol 2022; 41:9603271221089919. [PMID: 35465754 DOI: 10.1177/09603271221089919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bisphenol-A (BPA) is a chemical substance that is widely used in industry for manufacturing of plastic bottles and resins. Recent reports found that BPA may mimic the effects of estrogen to a great manner that might disrupt the normal hormonal balance in the human body. Fluvastatin is an agent used for treatment of hypercholesterolemia that was proven to possess promising antioxidant ant anti-inflammatory properties. Taxifolin is a polyphenolic compound with potential antioxidant and antiestrogenic effects. The present study investigated the prospect of fluvastatin with or without taxifolin to mitigate testicular dysfunction elicited by BPA in rats. In a model of BPA-induced testicular toxicity, the hormonal profile was assessed and the testicular tissues were examined by biochemical analysis, histopathology, and immunohistochemistry. Fluvastatin with or without taxifolin improved the body weight gain, hormonal profile, testicular weight and functions, sperm characteristics, the antioxidant status, and the anti-inflammatory mechanisms together with enhancement of autophagy and suppression of the proapoptotic events induced by BPA in the testicular tissues. In addition, fluvastatin with or without taxifolin significantly mitigated the histopathological and the immunohistochemical changes induced by BPA in the testicular tissues. These desirable effects were more pronounced with fluvastatin/taxifolin combination relative to the use of each of these agents alone. In tandem, fluvastatin/taxifolin combination might counteract the pathogenic events induced by BPA in the testicular tissues which may be considered as a novel strategy for amelioration of these disorders.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, 68782Tanta University, Tanta, Egypt
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, 125895Taif University, Taif, Saudi Arabia
| | - Hany M Borg
- Physiology Department, Faculty of Medicine, 289154Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Dina A Ali
- Clinical Pathology Department, Faculty of Medicine, 68782Tanta University, Tanta, Egypt
| | - Maaly A Abd Elmaaboud
- Department of Pharmacology, Faculty of Medicine, 68782Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Wang L, Wang G, Qu H, Wang K, Jing S, Guan S, Su L, Li Q, Wang D. Taxifolin, an Inhibitor of Sortase A, Interferes With the Adhesion of Methicillin-Resistant Staphylococcal aureus. Front Microbiol 2021; 12:686864. [PMID: 34295320 PMCID: PMC8290497 DOI: 10.3389/fmicb.2021.686864] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
The evolution and spread of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant hidden risk to human public health. The majority of antibiotics used clinically have become mostly ineffective, and so the development of novel anti-infection strategies is urgently required. Since Staphylococcus aureus (S. aureus) cysteine transpeptidase sortase A (SrtA) mediates the surface-anchoring of proteins to its surface, compounds that inhibit SrtA are considered potential antivirulence treatments. Herein, we report on the efficacy of the potent SrtA inhibitor taxifolin (Tax), a flavonoid compound isolated from Chinese herbs. It was able to reversibly block the activity of SrtA with an IC50 of 24.53 ± 0.42 μM. Tax did not display toxicity toward mammalian cells or S. aureus at a concentration of 200 μM. In addition, Tax attenuated the virulence-related phenotype of SrtA in vitro by decreasing the adherence of S. aureus, reducing the formation of a biofilm, and anchoring of S. aureus protein A on its cell wall. The mechanism of the SrtA-Tax interaction was determined using a localized surface plasmon resonance assay. Subsequent mechanistic studies confirmed that Asp-170 and Gln-172 were the principal sites on SrtA with which it binds to Tax. Importantly, in vivo experiments demonstrated that Tax protects mice against pneumonia induced by lethal doses of MRSA, significantly improving their survival rate and reducing the number of viable S. aureus in the lung tissue. The present study indicates that Tax is a useful pioneer compound for the development of novel agents against S. aureus infections.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Guangming Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Han Qu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kai Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun, China
| | - Shuhan Guan
- College of Animal Science, Jilin University, Changchun, China
| | - Liyan Su
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|