1
|
Wang J, Wang X, Jiang M, Lang T, Wan L, Dai J. 5-aminosalicylic acid alleviates colitis and protects intestinal barrier function by modulating gut microbiota in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3681-3695. [PMID: 39352537 DOI: 10.1007/s00210-024-03485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/23/2024] [Indexed: 04/10/2025]
Abstract
5-aminosalicylic acid (5-ASA) is widely used in the treatment of ulcerative colitis (UC), but its anti-inflammatory mechanism is complex and has not been fully understood. DSS model was used to test the effect of 5-ASA. Tight junction and Ki-67 were detected by western blot, immunofluorescence, and immunohistochemistry or qPCR. 16S rRNA gene sequencing of gut microbiota and subsequent bioinformatics and statistical analysis were performed to identify the specific bacteria which were associated with the treatment effect of 5-ASA. GC-MS was performed to test short-chain fatty acids (SCFAs). Antibiotic-treated mice were used to demonstrate the key role of endogenous gut microbiota. Here, we found that 5-ASA alleviated dextran sulfate sodium (DSS)-induced colitis in mice. Moreover, 5-ASA significantly repaired the intestinal barrier. At the molecular level, 5-ASA markedly raised the expression of tight junction proteins including JAM-A and occludin and cell proliferation marker Ki-67 in mice. In addition, bacterial 16S rRNA gene sequencing and bioinformatics analysis showed that 5-ASA significantly modulated the DSS-induced gut bacterial dysbiosis. In detail, it stimulated the growth of protective bacteria belonging to Faecalibaculum and Dubosiella, which were negatively correlated with colitis parameters, and blocked the expansion of pro-inflammatory bacteria such as Escherichia-Shigella and Oscillibacter, which were positively correlated with colitis in mice. Meanwhile, 5-ASA increased the cecal acetate level. Most notably, 5-ASA was no longer able to treat colitis and reverse gut barrier dysfunction in antibiotic-treated mice that lacked endogenous gut microbiota. Our data suggested that the anti-inflammatory activity of 5-ASA required the inherent intestinal flora, and the gut microbiota was a potential and effective target for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxin Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjie Jiang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P.R. China
| | - Tao Lang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leilei Wan
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juanjuan Dai
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P.R. China.
| |
Collapse
|
2
|
Wang Y, Ma J, Wang H, Yi J, Bai Y, Hu M, Yan J. Mesalazine: a novel therapeutic agent for periodontitis via regulation of periodontal microbiota and inhibiting Porphyromonas gingivalis. Front Microbiol 2025; 16:1531258. [PMID: 39911249 PMCID: PMC11794529 DOI: 10.3389/fmicb.2025.1531258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Periodontitis and inflammatory bowel disease are chronic inflammatory diseases with shared epidemiological, biological, and therapeutic associations. Given the similarities in their pathogenic factors, this study hypothesized that mesalazine, a key treatment agent for inflammatory bowel disease, could also be effective in managing periodontitis. Methods The antimicrobial effect of mesalazine on Porphyromonas gingivalis was investigated in vitro, including observations of morphological changes on the surface of P. gingivalis. Additionally, the impact of mesalazine on both the formation and established plaque biofilms was examined. The antimicrobial mechanism was elucidated by assessing the expression of P. gingivalis virulence genes and by determining the disruptive effect on P. gingivalis cell membranes. An in vivo rat model of periodontitis was constructed to evaluate mesalazine's efficacy and its influence on the periodontal bacterial flora in the context of periodontitis. Results and discussion Our results demonstrated that mesalazine concentrations ranging from 0.5 to 2 mg/mL significantly inhibited P. gingivalis proliferation over 72 h. Flow cytometry revealed a marked reduction in the number of viable cells following mesalazine treatment. At the nanometer scale, mesalazine induced crumpling and rupture of the P. gingivalis surface, compromising cell membrane integrity. Mesalazine not only suppressed the formation of plaque biofilms by P. gingivalis and polymicrobial communities but also disrupted pre-existing biofilms. The data also suggested that mesalazine could disrupt the integrity of the P. gingivalis cell membrane and inhibit the expression of virulence factors. An animal model of periodontitis in rats was successfully constructed in vivo. Mesalazine treatment inhibited alveolar bone resorption, alleviated inflammation of periodontal tissues, and improved the composition of the periodontal flora to a healthier state. This study establishes that mesalazine can treat periodontitis through modulation of the periodontal flora and its anti-inflammatory properties, thus broadening its classical therapeutic applications.
Collapse
Affiliation(s)
- Yuqi Wang
- School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jun Ma
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Haoyu Wang
- School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | | | - Yuxin Bai
- School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Min Hu
- School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jiaqing Yan
- School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
3
|
Oh HN, Shin SY, Kim JH, Baek J, Kim HJ, Lee KM, Park SJ, Kim SY, Choi HK, Kim W, Sul WJ, Choi CH. Dynamic changes in the gut microbiota composition during adalimumab therapy in patients with ulcerative colitis: implications for treatment response prediction and therapeutic targets. Gut Pathog 2024; 16:44. [PMID: 39187879 PMCID: PMC11346184 DOI: 10.1186/s13099-024-00637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND While significant research exists on gut microbiota changes after anti-tumor necrosis factor-alpha (anti TNF-α) therapy for ulcerative colitis, little is known about the longitudinal changes related to the effects of anti TNF-α. This study aimed to investigate the dynamics of gut microbiome changes during anti TNF-α (adalimumab) therapy in patients with ulcerative colitis (UC). RESULTS The microbiota composition was affected by the disease severity and extent in patients with UC. Regardless of clinical remission status at each time point, patients with UC exhibited microbial community distinctions from healthy controls. Distinct amplicon sequence variants (ASVs) differences were identified throughout the course of Adalimumab (ADA) treatment at each time point. A notable reduction in gut microbiome dissimilarity was observed only in remitters. Remitters demonstrated a decrease in the relative abundances of Burkholderia-Caballeronia-Paraburkholderia and Staphylococcus as the treatment progressed. Additionally, there was an observed increase in the relative abundances of Bifidobacterium and Dorea. Given the distribution of the 48 ASVs with high or low relative abundances in the pre-treatment samples according to clinical remission at week 8, a clinical remission at week 8 with a sensitivity and specificity of 72.4% and 84.3%, respectively, was predicted on the receiver operating characteristic curve (area under the curve, 0.851). CONCLUSIONS The gut microbiota undergoes diverse changes according to the treatment response during ADA treatment. These changes provide insights into predicting treatment responses to ADA and offer new therapeutic targets for UC.
Collapse
Affiliation(s)
- Han Na Oh
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Seung Yong Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, 102 Heukseok-Ro, Dongjak-Gu, Seoul, Republic of Korea, 06973
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jihye Baek
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hyo Jong Kim
- Department of Gastroenterology, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Kang-Moon Lee
- Department of Gastroenterology, The Catholic University of Korea St. Vincent's Hospital, Suwon, Republic of Korea
| | - Soo Jung Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Young Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, 102 Heukseok-Ro, Dongjak-Gu, Seoul, Republic of Korea, 06973.
| |
Collapse
|
4
|
Wang X, Liu J, Wei J, Zhang Y, Xu Y, Yue T, Yuan Y. Protective Mechanism of Eurotium amstelodami from Fuzhuan Brick Tea against Colitis and Gut-Derived Liver Injury Induced by Dextran Sulfate Sodium in C57BL/6 Mice. Nutrients 2024; 16:1178. [PMID: 38674869 PMCID: PMC11054642 DOI: 10.3390/nu16081178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The study explored the potential protective impact of the probiotic fungus Eurotium amstelodami in Fuzhuan brick tea on ulcerative colitis, along with the underlying mechanism. A spore suspension of E. amstelodami was administered to C57BL/6 mice to alleviate DSS-induced colitis. The findings indicated that administering E. amstelodami evidently enhanced the ultrastructure of colonic epithelium, showing characteristics such as enhanced TJ length, reduced microvilli damage, and enlarged intercellular space. After HLL supplementation, the activation of the liver inflammation pathway, including TLR4/NF-kB and NLRP3 inflammasome caused by DSS, was significantly suppressed, and bile acid metabolism, linking liver and gut, was enhanced, manifested by restoration of bile acid receptor (FXR, TGR5) level. The dysbiosis of the gut microbes in colitis mice was also restored by HLL intervention, characterized by the enrichment of beneficial bacteria (Lactobacillus, Bifidobacterium, Akkermansia, and Faecalibaculum) and fungi (Aspergillus, Trichoderma, Wallemia, Eurotium, and Cladosporium), which was closely associated with lipid metabolism and amino acid metabolism, and was negatively correlated with inflammatory gene expression. Hence, the recovery of gut microbial community structure, implicated deeply in the inflammatory index and metabolites profile, might play a crucial role in the therapeutic mechanism of HLL on colitis.
Collapse
Affiliation(s)
- Xin Wang
- College of Health Management, Shangluo University, Shangluo 726000, China; (X.W.); (J.L.)
- Shaanxi Union Research Center of University and Enterprise for Healthy and Wellness Industry, Shangluo 726000, China
| | - Jinhu Liu
- College of Health Management, Shangluo University, Shangluo 726000, China; (X.W.); (J.L.)
- Shaanxi Union Research Center of University and Enterprise for Healthy and Wellness Industry, Shangluo 726000, China
| | - Jianping Wei
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (J.W.); (Y.Z.); (T.Y.)
| | - Yuxiang Zhang
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (J.W.); (Y.Z.); (T.Y.)
| | - Yunpeng Xu
- Shangluo Characteristic Industry and Leisure Agriculture Guidance Center, Shangluo 726000, China;
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (J.W.); (Y.Z.); (T.Y.)
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (J.W.); (Y.Z.); (T.Y.)
| |
Collapse
|
5
|
Liu M, Guo S, Wang L. Systematic review of metabolomic alterations in ulcerative colitis: unveiling key metabolic signatures and pathways. Therap Adv Gastroenterol 2024; 17:17562848241239580. [PMID: 38560428 PMCID: PMC10981261 DOI: 10.1177/17562848241239580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Despite numerous metabolomic studies on ulcerative colitis (UC), the results have been highly variable, making it challenging to identify key metabolic abnormalities in UC. Objectives This study aims to uncover key metabolites and metabolic pathways in UC by analyzing existing metabolomics data. Design A systematic review. Data sources and methods We conducted a comprehensive search in databases (PubMed, Cochrane Library, Embase, and Web of Science) and relevant study references for metabolomic research on UC up to 28 December 2022. Significant metabolite differences between UC patients and controls were identified, followed by an analysis of relevant metabolic pathways. Results This review incorporated 78 studies, identifying 2868 differentially expressed metabolites between UC patients and controls. The metabolites were predominantly from 'lipids and lipid-like molecules' and 'organic acids and derivatives' superclasses. We found 101 metabolites consistently altered in multiple datasets within the same sample type and 78 metabolites common across different sample types. Of these, 62 metabolites exhibited consistent regulatory trends across various datasets or sample types. Pathway analysis revealed 22 significantly altered metabolic pathways, with 6 pathways being recurrently enriched across different sample types. Conclusion This study elucidates key metabolic characteristics in UC, offering insights into molecular mechanisms and biomarker discovery for the disease. Future research could focus on validating these findings and exploring their clinical applications.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siyi Guo
- Chongqing Medical University, Chongqing, China
| | - Liang Wang
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
London RE. The aminosalicylate - folate connection. Drug Metab Rev 2024; 56:80-96. [PMID: 38230664 PMCID: PMC11305456 DOI: 10.1080/03602532.2024.2303507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Two aminosalicylate isomers have been found to possess useful pharmacological behavior: p-aminosalicylate (PAS, 4AS) is an anti-tubercular agent that targets M. tuberculosis, and 5-aminosalicylate (5AS, mesalamine, mesalazine) is used in the treatment of ulcerative colitis (UC) and other inflammatory bowel diseases (IBD). PAS, a structural analog of pABA, is biosynthetically incorporated by bacterial dihydropteroate synthase (DHPS), ultimately yielding a dihydrofolate (DHF) analog containing an additional hydroxyl group in the pABA ring: 2'-hydroxy-7,8-dihydrofolate. It has been reported to perturb folate metabolism in M. tuberculosis, and to selectively target M. tuberculosis dihydrofolate reductase (mtDHFR). Studies of PAS metabolism are reviewed, and possible mechanisms for its mtDHFR inhibition are considered. Although 5AS is a more distant structural relative of pABA, multiple lines of evidence suggest a related role as a pABA antagonist that inhibits bacterial folate biosynthesis. Structural data support the likelihood that 5AS is recognized by the DHPS pABA binding site, and its effects probably range from blocking pABA binding to formation of a dead-end dihydropterin-5AS adduct. These studies suggest that mesalamine acts as a gut bacteria-directed antifolate, that selectively targets faster growing, more folate-dependent species.
Collapse
Affiliation(s)
- Robert E. London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| |
Collapse
|
7
|
Vestergaard MV, Allin KH, Eriksen C, Zakerska-Banaszak O, Arasaradnam RP, Alam MT, Kristiansen K, Brix S, Jess T. Gut microbiota signatures in inflammatory bowel disease. United European Gastroenterol J 2024; 12:22-33. [PMID: 38041519 PMCID: PMC10859715 DOI: 10.1002/ueg2.12485] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), affect millions of people worldwide with increasing incidence. OBJECTIVES Several studies have shown a link between gut microbiota composition and IBD, but results are often limited by small sample sizes. We aimed to re-analyze publicly available fecal microbiota data from IBD patients. METHODS We extracted original fecal 16S rRNA amplicon sequencing data from 45 cohorts of IBD patients and healthy individuals using the BioProject database at the National Center for Biotechnology Information. Unlike previous meta-analyses, we merged all study cohorts into a single dataset, including sex, age, geography, and disease information, based on which microbiota signatures were analyzed, while accounting for varying technical platforms. RESULTS Among 2518 individuals in the combined dataset, we discovered a hitherto unseen number of genera associated with IBD. A total of 77 genera associated with CD, of which 38 were novel associations, and a total of 64 genera associated with UC, of which 28 represented novel associations. Signatures were robust across different technical platforms and geographic locations. Reduced alpha diversity in IBD compared to healthy individuals, in CD compared to UC, and altered microbiota composition (beta diversity) in UC and especially in CD as compared to healthy individuals were found. CONCLUSIONS Combining original microbiota data from 45 cohorts, we identified a hitherto unseen large number of genera associated with IBD. Identification of microbiota features robustly associated with CD and UC may pave the way for the identification of new treatment targets.
Collapse
Affiliation(s)
- Marie Vibeke Vestergaard
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Carsten Eriksen
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Ramesh P Arasaradnam
- Warwick Medical School & Cancer Research Centre, University of Leicester, Leicester, UK
| | - Mohammad T Alam
- Warwick Medical School & Cancer Research Centre, University of Leicester, Leicester, UK
- Department of Biology, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Karsten Kristiansen
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Brix
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
8
|
Gao L, Wang ZF, Wang LW, Tang HT, Mo ZY, He MX. Electrochemical selenium-catalyzed para-amination of N-aryloxyamides: access to polysubstituted aminophenols. Org Biomol Chem 2023; 21:7895-7899. [PMID: 37747203 DOI: 10.1039/d3ob01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Aminophenols are a class of important compounds with various pharmacological activities such as anticancer, anti-inflammatory, antimalarial, and antibacterial activities. Herein, we introduce a mild and efficient electrochemical selenium-catalyzed strategy to synthesize polysubstituted aminophenols. High atom efficiency and transition metal-free and oxidant-free conditions are the striking features of this protocol. By merging electrochemical and organoselenium-catalyzed processes, the intramolecular rearrangement of N-aryloxyamides produces para-amination products at room temperature in a simple undivided cell.
Collapse
Affiliation(s)
- Lei Gao
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
| | - Zhi-Feng Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
- Department of Burn, Wound Repair Surgery and Plastic Surgery, Department of Aesthetic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, People's Republic of China
| | - Lin-Wei Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
| | - Hai-Tao Tang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
| | - Zu-Yu Mo
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China
| | - Mu-Xue He
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China
| |
Collapse
|
9
|
Shang S, Zhu J, Liu X, Wang W, Dai T, Wang L, Li B. The Impacts of Fecal Microbiota Transplantation from Same Sex on the Symptoms of Ulcerative Colitis Patients. Pol J Microbiol 2023; 72:247-268. [PMID: 37725892 PMCID: PMC10508974 DOI: 10.33073/pjm-2023-025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/08/2023] [Indexed: 09/21/2023] Open
Abstract
We aimed to compare the clinical efficacy of fecal microbiota transplantation (FMT) from the same sex on ulcerative colitis (UC) patients. A total of 272 UC patients were selected in the prospective clinical study, which incorporated four distinct groups, each comprising male and female patients, who were either receiving FMT or placebo, respectively. FMT was performed by sending the gut microbiota of healthy female or male adolescents to the same gender patients via gastroscope three times (one time/three weeks), and a placebo was used with an equal volume of saline. Abdominal pain, diarrhea, thick bloody stool, intestinal mucosal lesion, and Mayo scores were measured. Self-rating anxiety scale (SAS) and self-rating depression scale (SDS) were evaluated. The changes of intestinal flora were detected by the 16S rRNA sequencing. FMT reduced the scores of diarrhea, abdominal pain, mucosal lesion, and Mayo, SAS, and SDS in UC patients compared to the placebo group (p < 0.05). Clostridiales and Desulfovibrionaceae were dominant in gut microbiota from male patients and were reduced after FMT. Meanwhile, the abundance of Prevotella, Lactobacillus, and Bifidobacterium was increased in the male group. Female patients had a higher abundance of Escherichia-Shigella, Desulfovibrionaceae, and Staphylococcaceae before FMT, and it was reduced after FMT. Meanwhile, the abundance of Porphyromonadaceae, Prevotella, Lactobacillus, and Bifidobacterium was increased in the female group. There were no significant changes for the species in the corresponding placebo groups. FMT improved the UC symptoms of male and female patients, which may be associated with different gut microbiota changes.
Collapse
Affiliation(s)
- Shu Shang
- Department of Endoscopic Diagnosis and Treatment Center, Shenyang Fifth People's Hospital, Shenyang, China
| | - Jian Zhu
- Department of Anorectal, Shenyang Fifth People's Hospital, Shenyang, China
| | - Xi Liu
- Department of Endoscopic Diagnosis and Treatment Center, Shenyang Fifth People's Hospital, Shenyang, China
| | - Wei Wang
- Department of Endoscopic Diagnosis and Treatment Center, Shenyang Fifth People's Hospital, Shenyang, China
| | - Tingting Dai
- Department of Endoscopic Diagnosis and Treatment Center, Shenyang Fifth People's Hospital, Shenyang, China
| | - Li Wang
- Zhuoyuan Health Human Microbiology Research Laboratory, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Baojun Li
- Department of Dean, Shenyang Fifth People's Hospital, Shenyang, China
| |
Collapse
|
10
|
Wu X, Li P, Wang W, Xu J, Ai R, Wen Q, Cui B, Zhang F. The Underlying Changes in Serum Metabolic Profiles and Efficacy Prediction in Patients with Extensive Ulcerative Colitis Undergoing Fecal Microbiota Transplantation. Nutrients 2023; 15:3340. [PMID: 37571277 PMCID: PMC10421017 DOI: 10.3390/nu15153340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
(1) Background: Fecal microbiota transplantation (FMT) is an effective treatment for ulcerative colitis (UC). Metabolomic techniques would assist physicians in clinical decision-making. (2) Methods: Patients with active UC undergoing FMT were enrolled in the study and monitored for 3 months. We explored short-term changes in the serum metabolic signatures of groups and the association between baseline serum metabolomic profiles and patient outcomes. (3) Results: Forty-four eligible patients were included in the analysis. Of them, 50.0% and 29.5% achieved clinical response and clinical remission, respectively, 3 months post-FMT. The top two significantly altered pathways in the response group were vitamin B6 metabolism and aminoacyl-tRNA biosynthesis. Both the remission and response groups exhibited an altered and enriched pathway for the biosynthesis of primary bile acid. We found a clear separation between the remission and non-remission groups at baseline, characterized by the higher levels of glycerophosphocholines, glycerophospholipids, and glycerophosphoethanolamines in the remission group. A random forest (RF) classifier was constructed with 20 metabolic markers selected by the Boruta method to predict clinical remission 3 months post-FMT, with an area under the curve of 0.963. (4) Conclusions: FMT effectively induced a response in patients with active UC, with metabolites partially improving post-FMT in the responsive group. A promising role of serum metabolites in the non-invasive prediction of FMT efficacy for UC demonstrated the value of metabolome-informed FMT in managing UC.
Collapse
Affiliation(s)
- Xia Wu
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Pan Li
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Weihong Wang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Jie Xu
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Rujun Ai
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Quan Wen
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Bota Cui
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Faming Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
11
|
Sun Q, Tang Y, Dai L, Tang Z, Zhou W, Wu T, Ji G. Serum Bile Acid Metabolites Predict the Therapeutic Effect of Mesalazine in Patients with Ulcerative Colitis. J Proteome Res 2023; 22:1287-1297. [PMID: 36921116 DOI: 10.1021/acs.jproteome.2c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Ulcerative colitis (UC) is a systematic chronic disease characterized by insufficient intestinal absorption, and mesalazine is a common medical treatment. In the present study, 20 normal healthy controls (NC group), 10 unmedicated UC patients (UC group), and 20 mesalazine-responsive and 20 mesalazine-nonresponsive UC patients were recruited. A total of 42 serum BA metabolites, including 8 primary bile acids and 34 secondary bile acids (SBAs), were quantitatively measured. Compared with the NC group, serum SBAs in the UC patients were significantly lower but increased after mesalazine therapy. Differences in the serum TDCA, DCA, GDCA-3S, 12-keto LCA, and GCDCA-3S metabolites were found between the UC and NC groups, with AUC values of 0.777, 0.800, 0.815, 0.775, and 0.740, respectively. Furthermore, we identified 12-keto LCA as a specific BA marker of UC and BA biomarkers of mesalazine responsiveness. It was concluded that serum SBAs were decreased in UC patients, and TDCA, DCA, GDCA-3S, 12-keto LCA, and GCDCA-3S might aid in the diagnosis of UC. The abundance of SBAs increased after the mesalazine therapy, and serum 12-keto LCA was identified as an alternative invasive biomarker associated with UC diagnosis and therapeutic response, thereby providing a new approach for the prediction of response to mesalazine therapy in UC patients.
Collapse
Affiliation(s)
- Qiaoli Sun
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Yingjue Tang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Liang Dai
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
- Clinical Research Institute, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhipeng Tang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| |
Collapse
|
12
|
Key Stratification of Microbiota Taxa and Metabolites in the Host Metabolic Health-Disease Balance. Int J Mol Sci 2023; 24:ijms24054519. [PMID: 36901949 PMCID: PMC10003303 DOI: 10.3390/ijms24054519] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Human gut microbiota seems to drive the interaction with host metabolism through microbial metabolites, enzymes, and bioactive compounds. These components determine the host health-disease balance. Recent metabolomics and combined metabolome-microbiome studies have helped to elucidate how these substances could differentially affect the individual host pathophysiology according to several factors and cumulative exposures, such as obesogenic xenobiotics. The present work aims to investigate and interpret newly compiled data from metabolomics and microbiota composition studies, comparing controls with patients suffering from metabolic-related diseases (diabetes, obesity, metabolic syndrome, liver and cardiovascular diseases, etc.). The results showed, first, a differential composition of the most represented genera in healthy individuals compared to patients with metabolic diseases. Second, the analysis of the metabolite counts exhibited a differential composition of bacterial genera in disease compared to health status. Third, qualitative metabolite analysis revealed relevant information about the chemical nature of metabolites related to disease and/or health status. Key microbial genera were commonly considered overrepresented in healthy individuals together with specific metabolites, e.g., Faecalibacterium and phosphatidylethanolamine; and the opposite, Escherichia and Phosphatidic Acid, which is converted into the intermediate Cytidine Diphosphate Diacylglycerol-diacylglycerol (CDP-DAG), were overrepresented in metabolic-related disease patients. However, it was not possible to associate most specific microbiota taxa and metabolites according to their increased and decreased profiles analyzed with health or disease. Interestingly, positive association of essential amino acids with the genera Bacteroides were observed in a cluster related to health, and conversely, benzene derivatives and lipidic metabolites were related to the genera Clostridium, Roseburia, Blautia, and Oscillibacter in a disease cluster. More studies are needed to elucidate the microbiota species and their corresponding metabolites that are key in promoting health or disease status. Moreover, we propose that greater attention should be paid to biliary acids and to microbiota-liver cometabolites and its detoxification enzymes and pathways.
Collapse
|
13
|
Phuong-Nguyen K, McNeill BA, Aston-Mourney K, Rivera LR. Advanced Glycation End-Products and Their Effects on Gut Health. Nutrients 2023; 15:nu15020405. [PMID: 36678276 PMCID: PMC9867518 DOI: 10.3390/nu15020405] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Dietary advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed when reducing sugars are heated with proteins, amino acids, or lipids at high temperatures for a prolonged period. The presence and accumulation of AGEs in numerous cell types and tissues are known to be prevalent in the pathology of many diseases. Modern diets, which contain a high proportion of processed foods and therefore a high level of AGE, cause deleterious effects leading to a multitude of unregulated intracellular and extracellular signalling and inflammatory pathways. Currently, many studies focus on investigating the chemical and structural aspects of AGEs and how they affect the metabolism and the cardiovascular and renal systems. Studies have also shown that AGEs affect the digestive system. However, there is no complete picture of the implication of AGEs in this area. The gastrointestinal tract is not only the first and principal site for the digestion and absorption of dietary AGEs but also one of the most susceptible organs to AGEs, which may exert many local and systemic effects. In this review, we summarise the current evidence of the association between a high-AGE diet and poor health outcomes, with a special focus on the relationship between dietary AGEs and alterations in the gastrointestinal structure, modifications in enteric neurons, and microbiota reshaping.
Collapse
|
14
|
Wang XS, Li PX, Wang BS, Zhang WD, Wang WH. Integrated omics analysis reveals the immunologic characteristics of cystic Peyer's patches in the cecum of Bactrian camels. PeerJ 2023; 11:e14647. [PMID: 36643630 PMCID: PMC9835693 DOI: 10.7717/peerj.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/06/2022] [Indexed: 01/10/2023] Open
Abstract
Bactrian camels have specific mucosa-associated lymphoid tissue (MALT) throughout the large intestine, with species-unique cystic Peyer's patches (PPS) as the main type of tissue. However, detailed information about the molecular characteristics of PPS remains unclear. This study applied a transcriptomic analysis, untargeted metabolomics, and 16S rDNA sequencing to compare the significant differences between PPS and the adjacent normal intestine tissues (NPPS) during the healthy stage of three young Bactrian camels. The results showed that samples from PPS could be easily differentiated from the NPPS samples based on gene expression profile, metabolites, and microbial composition, separately indicated using dimension reduction methods. A total of 7,568 up-regulated and 1,266 down-regulated differentially expressed genes (DEGs) were detected, and an enrichment analysis found 994 DEGs that participated in immune-related functions, and a co-occurance network analysis identified nine hub genes (BTK, P2RX7, Pax5, DSG1, PTPN2, DOCK11, TBX21, IL10, and HLA-DOB) during multiple immunologic processes. Further, PPS and NPPS both had a similar pattern of most compounds among all profiles of metabolites, and only 113 differentially expressed metabolites (DEMs) were identified, with 101 of these being down-regulated. Deoxycholic acid (DCA; VIP = 37.96, log2FC = -2.97, P = 0), cholic acid (CA; VIP = 13.10, log2FC = -2.10, P = 0.01), and lithocholic acid (LCA; VIP = 12.94, log2FC = -1.63, P = 0.01) were the highest contributors to the significant dissimilarities between groups. PPS had significantly lower species richness (Chao1), while Firmicutes (35.92% ± 19.39%), Bacteroidetes (31.73% ± 6.24%), and Proteobacteria (13.96% ± 16.21%) were the main phyla across all samples. The LEfSe analysis showed that Lysinibacillus, Rikenellaceae_RC9_gut_group, Candidatus_Stoquefichus, Mailhella, Alistipes, and Ruminococcaceae_UCG_005 were biomarkers of the NPPS group, while Escherichia_Shigella, Synergistes, Pyramidobacter, Odoribacter, Methanobrevibacter, Cloacibacillus, Fusobacterium, and Parabacteroides were significantly higher in the PPS group. In the Procrustes analysis, the transcriptome changes between groups showed no significant correlations with metabolites or microbial communities, whereas the alteration of metabolites significantly correlated with the alteration of the microbial community. In the co-occurrence network, seven DEMs (M403T65-neg, M329T119-neg, M309T38-neg, M277T42-2-neg, M473T27-neg, M747T38-1-pos, and M482t187-pos) and 14 genera (e.g., Akkermansia, Candidatus-Stoquefichus, Caproiciproducens, and Erysipelatoclostridium) clustered much more tightly, suggesting dense interactions. The results of this study provide new insights into the understanding of the immune microenvironment of the cystic PPS in the cecum of Bactrian camels.
Collapse
Affiliation(s)
- Xiao shan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pei xuan Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bao shan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wang dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wen hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Lopez LR, Ahn JH, Alves T, Arthur JC. Microenvironmental Factors that Shape Bacterial Metabolites in Inflammatory Bowel Disease. Front Cell Infect Microbiol 2022; 12:934619. [PMID: 35959366 PMCID: PMC9362432 DOI: 10.3389/fcimb.2022.934619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a significant global health problem that involves chronic intestinal inflammation and can involve severe comorbidities, including intestinal fibrosis and inflammation-associated colorectal cancer (CRC). Disease-associated alterations to the intestinal microbiota often include fecal enrichment of Enterobacteriaceae, which are strongly implicated in IBD development. This dysbiosis of intestinal flora accompanies changes in microbial metabolites, shaping host:microbe interactions and disease risk. While there have been numerous studies linking specific bacterial taxa with IBD development, our understanding of microbial function in the context of IBD is limited. Several classes of microbial metabolites have been directly implicated in IBD disease progression, including bacterial siderophores and genotoxins. Yet, our microbiota still harbors thousands of uncharacterized microbial products. In-depth discovery and characterization of disease-associated microbial metabolites is necessary to target these products in IBD treatment strategies. Towards improving our understanding of microbiota metabolites in IBD, it is important to recognize how host relevant factors influence microbiota function. For example, changes in host inflammation status, metal availability, interbacterial community structure, and xenobiotics all play an important role in shaping gut microbial ecology. In this minireview, we outline how each of these factors influences gut microbial function, with a specific focus on IBD-associated Enterobacteriaceae metabolites. Importantly, we discuss how altering the intestinal microenvironment could improve the treatment of intestinal inflammation and associated disorders, like intestinal fibrosis and CRC.
Collapse
Affiliation(s)
- Lacey R. Lopez
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ju-Hyun Ahn
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tomaz Alves
- Division of Comprehensive Oral Health, Adams School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Gastrointestinal Biology and Disease, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Janelle C. Arthur,
| |
Collapse
|
16
|
Wang S, Huang G, Wang JX, Tian L, Zuo XL, Li YQ, Yu YB. Altered Gut Microbiota in Patients With Peutz-Jeghers Syndrome. Front Microbiol 2022; 13:881508. [PMID: 35910641 PMCID: PMC9326469 DOI: 10.3389/fmicb.2022.881508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Peutz-Jeghers syndrome (PJS) is a rare genetic disorder characterized by the development of pigmented spots and gastrointestinal polyps and increased susceptibility to cancers. It remains unknown whether gut microbiota dysbiosis is linked to PJS. AIM This study aimed to assess the structure and composition of the gut microbiota, including both bacteria and fungi, in patients with PJS and investigate the relationship between gut microbiota dysbiosis and PJS pathogenesis. METHODS The bacterial and fungal composition of the fecal microbiota was analyzed in 23 patients with PJS (cases), 17 first-degree asymptomatic relatives (ARs), and 24 healthy controls (HCs) using 16S (MiSeq) and ITS2 (pyrosequencing) sequencing for bacteria and fungi, respectively. Differential analyses of the intestinal flora were performed from the phylum to species level. RESULTS Alpha-diversity distributions of bacteria and fungi indicated that the abundance of both taxa differed between PJS cases and controls. However, while the diversity and composition of fecal bacteria in PJS cases were significantly different from those in ARs and HCs, fungal flora was more stable. High-throughput sequencing confirmed the special characteristics and biodiversity of the fecal bacterial and fungal microflora in patients with PJS. They had lower bacterial biodiversity than controls, with a higher frequency of the Proteobacteria phylum, Enterobacteriaceae family, and Escherichia-Shigella genus, and a lower frequency of the Firmicutes phylum and the Lachnospiraceae and Ruminococcaceae families. Of fungi, Candida was significantly higher in PJS cases than in controls. CONCLUSION The findings reported here confirm gut microbiota dysbiosis in patients with PJS. This is the first report on the bacterial and fungal microbiota profile of subjects with PJS, which may be meaningful to provide a structural basis for further research on intestinal microecology in PJS.
Collapse
Affiliation(s)
- Sui Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Jue-Xin Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Tian
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
17
|
Gubatan J, Boye TL, Temby M, Sojwal RS, Holman DR, Sinha SR, Rogalla SR, Nielsen OH. Gut Microbiome in Inflammatory Bowel Disease: Role in Pathogenesis, Dietary Modulation, and Colitis-Associated Colon Cancer. Microorganisms 2022; 10:1371. [PMID: 35889090 PMCID: PMC9316834 DOI: 10.3390/microorganisms10071371] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/11/2022] Open
Abstract
The gut microbiome has increasingly been recognized as a critical and central factor in inflammatory bowel disease (IBD). Here, we review specific microorganisms that have been suggested to play a role in the pathogenesis of IBD and the current state of fecal microbial transplants as a therapeutic strategy in IBD. We discuss specific nutritional and dietary interventions in IBD and their effects on gut microbiota composition. Finally, we examine the role and mechanisms of the gut microbiome in mediating colitis-associated colon cancer.
Collapse
Affiliation(s)
- John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Theresa Louise Boye
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Copenhagen, Denmark; (T.L.B.); or (O.H.N.)
| | - Michelle Temby
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Raoul S. Sojwal
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Derek R. Holman
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Sidhartha R. Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Stephan R. Rogalla
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Copenhagen, Denmark; (T.L.B.); or (O.H.N.)
| |
Collapse
|
18
|
A 4-Week Diet Low or High in Advanced Glycation Endproducts Has Limited Impact on Gut Microbial Composition in Abdominally Obese Individuals: The deAGEing Trial. Int J Mol Sci 2022; 23:ijms23105328. [PMID: 35628138 PMCID: PMC9141283 DOI: 10.3390/ijms23105328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Dietary advanced glycation endproducts (AGEs), abundantly present in Westernized diets, are linked to negative health outcomes, but their impact on the gut microbiota has not yet been well investigated in humans. We investigated the effects of a 4-week isocaloric and macronutrient-matched diet low or high in AGEs on the gut microbial composition of 70 abdominally obese individuals in a double-blind parallel-design randomized controlled trial (NCT03866343). Additionally, we investigated the cross-sectional associations between the habitual intake of dietary dicarbonyls, reactive precursors to AGEs, and the gut microbial composition, as assessed by 16S rRNA amplicon-based sequencing. Despite a marked percentage difference in AGE intake, we observed no differences in microbial richness and the general community structure. Only the Anaerostipes spp. had a relative abundance >0.5% and showed differential abundance (0.5 versus 1.11%; p = 0.028, after low- or high-AGE diet, respectively). While the habitual intake of dicarbonyls was not associated with microbial richness or a general community structure, the intake of 3-deoxyglucosone was especially associated with an abundance of several genera. Thus, a 4-week diet low or high in AGEs has a limited impact on the gut microbial composition of abdominally obese humans, paralleling its previously observed limited biological consequences. The effects of dietary dicarbonyls on the gut microbiota composition deserve further investigation.
Collapse
|
19
|
Cai Y, Li S, Zhang X, Cao X, Liu D, Zhu Y, Ye S, Xu Z, Liao Q, Hong Y, Xie Z. Integrated microbiome-metabolomics analysis reveals the potential therapeutic mechanism of Zuo-Jin-Wan in ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153914. [PMID: 35104755 DOI: 10.1016/j.phymed.2021.153914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/02/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Dysregulation in gut microbiota and host cometabolome contributes to the complicated pathology of ulcerative colitis (UC), while Zuo-Jin-Wan (ZJW), a traditional Chinese medicine has shown therapeutic effects against UC with its underlying mechanism remains elusive. PURPOSE This study utilized an integrated analysis combining gut microbiome and host cometabolism to disclose the potential therapeutic mechanism of ZJW on dextran sulfate sodium (DSS)-induced UC in rats. METHODS We first evaluated the therapeutic effects of ZJW treatment in DSS-induced rat model. 16S rRNA sequencing, 1H NMR spectroscopy-based metabolomics and Spearman correlation analysis were conducted to explore the potential therapeutic mechanism during the treatment. RESULTS Our results showed that UC symptoms in ZJW rats were significantly attenuated. Marked decline in microbial diversity in ZJW group was accompanied by its correspondent function adjustment. Specific enrichment of genus Bacteroides, Sutterella, Akkermansia and Roseburia along with the major varying amino acid metabolism and lipid metabolism were observed meantime. Metabolic data further corroborated that ZJW-related metabolic changes were basically gathered in amino acid metabolism, carbohydrate/energy metabolism and lipid metabolism. Of note, some biochemical parameters were deeply implicated with the discriminative microbial genera and metabolites involved in tricarboxylic acid (TCA) cycle and amino acid metabolism, indicating the microbiome-metabolome association in gut microbiota-metabolite-phenotype axis during UC treatment of ZJW. CONCLUSION For the first time, integrated microbiome-metabolome analysis depicted that ZJW could alleviate DSS-induced UC in rats via a crosstalk between gut microbiota and host cometabolites.
Collapse
Affiliation(s)
- Ying Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Siju Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaojun Zhang
- Department of Pharmacy, Maternal and Child Health Hospital of Yingde City, Qingyuan, 513000, China
| | - Xueqin Cao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Deliang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Yanglu Zhu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Simin Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Zengmei Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Qiongfeng Liao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Shi X, Zhang Y, Zhu T, Li N, Sun S, Zhu M, Pan J, Shen Z, Hu X, Zhang X, Gong C. Response to Bombyx mori nucleopolyhedrovirus infection in silkworm: Gut metabolites and microbiota. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104227. [PMID: 34363835 DOI: 10.1016/j.dci.2021.104227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The diversity of microbiota and metabolites in the digestive tract gut is important in physiology and homeostasis, nutrient uptake and virus infection. In lepidopteran insect model silkworms, little is known about how microbiota and metabolites are altered after oral infection with BmNPV. Herein, we used 16S rDNA sequencing and metabolomics to show that the gut microbiota and metabolites of silkworm midgut are significantly altered after BmNPV infection. Kyoto Encyclopedia of Genes and Genomes analysis revealed enrichment of flavone and flavonol biosynthesis, glycosyltransferases, and electron transfer carriers signaling pathways, suggesting potential roles in viral infection. Infection also changed the abundance of metabolites in the digestive tract gut, where most pathways were related to metabolism of amino acids, fatty acids and other pathways (e.g., citrate cycle). In addition, a correlation was observed between digestive tract gut microbiota and metabolites. These results shed light on the interaction between digestive tract gut microbiota, metabolites and host-virus interaction, and enhance our understanding of viral infection links to midgut microbiota and metabolic activity in the silkworm.
Collapse
Affiliation(s)
- Xiu Shi
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Yaxin Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Tianchen Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Nan Li
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Sufei Sun
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zeen Shen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China.
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
21
|
Yao H, Shi Y, Yuan J, Sa R, Chen W, Wan X. Matrine protects against DSS-induced murine colitis by improving gut barrier integrity, inhibiting the PPAR-α signaling pathway, and modulating gut microbiota. Int Immunopharmacol 2021; 100:108091. [PMID: 34474274 DOI: 10.1016/j.intimp.2021.108091] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 12/30/2022]
Abstract
Matrine is a naturally occurring quinolizidine alkaloid with various bioactivities. However, little is known of its function on ulcerative colitis (UC). Here, we investigated the effect and underlying mechanisms of matrine on dextran sulfate sodium (DSS)-induced UC mice. In this study, different concentrations of matrine were given to mice with DSS-induced colitis for a week. The symptoms of colitis, colonic pathology, inflammation-related indicators, and intestinal mucosal barrier function were detected and analyzed. Moreover, RNA-seq analysis in colon tissues was conducted, and 16S rDNA sequencing was carried out to evaluate the gut microbiota of colon contents. The results showed that matrine significantly alleviated clinical activity and histological changes of UC mice, inhibited the production of the pro-inflammatory cytokines, and improved gut barrier integrity. Moreover, RNA-seq analysis and experimental verification showed that matrine significantly inhibited the peroxisome proliferator-activated receptor-α (PPAR-α) signaling pathway. 16S rDNA sequencing revealed that matrine altered the composition and functions of gut microbiota, increased the abundance of Barnesiella intestinihominis and decreased the abundance of Helicobacter ganmani at the species level. In conclusion, matrine ameliorated DSS-induced colitis by improving gut barrier integrity, inhibiting the PPAR-α signaling pathway, and modulating gut microbiota. These suggested that matrine may be a therapeutic agent for UC treatment.
Collapse
Affiliation(s)
- Huixiang Yao
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yan Shi
- Department of GI Endoscopy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junqing Yuan
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ri Sa
- Department of Nuclear Medicine, the First Hospital of Jilin University, Changchun, China.
| | - Wei Chen
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xinjian Wan
- Department of GI Endoscopy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
22
|
Sultan S, El-Mowafy M, Elgaml A, Ahmed TAE, Hassan H, Mottawea W. Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Front Physiol 2021; 12:715506. [PMID: 34646151 PMCID: PMC8502967 DOI: 10.3389/fphys.2021.715506] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic medical disorders characterized by recurrent gastrointestinal inflammation. While the etiology of IBD is still unknown, the pathogenesis of the disease results from perturbations in both gut microbiota and the host immune system. Gut microbiota dysbiosis in IBD is characterized by depleted diversity, reduced abundance of short chain fatty acids (SCFAs) producers and enriched proinflammatory microbes such as adherent/invasive E. coli and H2S producers. This dysbiosis may contribute to the inflammation through affecting either the immune system or a metabolic pathway. The immune responses to gut microbiota in IBD are extensively discussed. In this review, we highlight the main metabolic pathways that regulate the host-microbiota interaction. We also discuss the reported findings indicating that the microbial dysbiosis during IBD has a potential metabolic impact on colonocytes and this may underlie the disease progression. Moreover, we present the host metabolic defectiveness that adds to the impact of symbiont dysbiosis on the disease progression. This will raise the possibility that gut microbiota dysbiosis associated with IBD results in functional perturbations of host-microbiota interactions, and consequently modulates the disease development. Finally, we shed light on the possible therapeutic approaches of IBD through targeting gut microbiome.
Collapse
Affiliation(s)
- Salma Sultan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Tamer A E Ahmed
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hebatoallah Hassan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|