1
|
Abdulsatar DM, Fahad HM, Hatif ST, Awad Al-Nuaimi ZJ. Role of anti-inflammatory cytokine (IL10) in patients with chronic kidney disease. Hum Antibodies 2025:10932607251317417. [PMID: 39973810 DOI: 10.1177/10932607251317417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Anti-inflammatory cytokines is thought to influence the onset and course of chronic kidney disease (CKD). Particular cytokines include Interleukin-10 (IL-10), which is usually considered anti-inflammatory. OBJECTIVES The current study designed to determine the activity of the IL10 and their roles in chronic kidney disease. METHODS This research is done, forty- five blood samples were collected from patients with chronic kidney disease and 42 volunteers. A sandwich ELISA was used to estimate the serum levels of human Interleukin-10. RESULTS The mean age among patient groups (males, females) it was 47.40 ± 2.96 and 62.64 ± 14.46 years, respectively. While the control groups (males, females) were 40.97 ± 1.67 and 45.25 ± 7.13 years (p > 0.05). Of the 45 patients, 20 (44.4%) were males, 25 (55.6%) females. The resulted data showed that there are no significant (p > 0.05) for the total of the mean of human IL-10 between patients and control, respectively, where the mean level of IL10 in males was 190.10 ± 15.07& 154.18 ± 8.77 (p < 0.05) respectively and 142.22 ± 12.43 & 117.04 ± 14.66 in females, but not significantly (p > 0.05), and revealed an highly increased significant in this marker during the course of the chronic kidney disease in males more than females in patients (p < 0.05). CONCLUSION Can conclude from this study that decreased anti-inflammatory cytokine IL10 likely affects CKD progression and prognosis in females specifically.
Collapse
Affiliation(s)
| | - Hayfaa Mahmood Fahad
- Department of Microbiology, College of Medicine, AL-Iraqia University, Baghdad, Iraq
| | - Sahar Taha Hatif
- Department of Microbiology, College of Medicine, AL-Iraqia University, Baghdad, Iraq
| | | |
Collapse
|
2
|
Legrand M, Khanna AK, Ostermann M, Kotani Y, Ferrer R, Girardis M, Leone M, DePascale G, Pickkers P, Tissieres P, Annoni F, Kotfis K, Landoni G, Zarbock A, Wieruszewski PM, De Backer D, Vincent JL, Bellomo R. The renin-angiotensin-aldosterone-system in sepsis and its clinical modulation with exogenous angiotensin II. Crit Care 2024; 28:389. [PMID: 39593182 PMCID: PMC11590289 DOI: 10.1186/s13054-024-05123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/05/2024] [Indexed: 11/28/2024] Open
Abstract
Dysregulation of the renin-angiotensin-aldosterone-system (RAAS) in sepsis is a complex and early phenomenon with a likely significant contribution to organ failure and patient outcomes. A better understanding of the pathophysiology and intricacies of the RAAS in septic shock has led to the use of exogenous angiotensin II as a new therapeutic agent. In this review, we report a multinational and multi-disciplinary expert panel discussion on the role and implications of RAAS modulation in sepsis and the use of exogenous angiotensin II. The panel proposed guidance regarding patient selection and treatment options with exogenous angiotensin II which should trigger further research.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California San Francisco, 521 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Ashish K Khanna
- Department of Anesthesiology, Section on Critical Care Medicine, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, USA.
| | - Marlies Ostermann
- Department of Critical Care, Guy's and St Thomas' Hospital, London, UK
| | - Yuki Kotani
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Ricard Ferrer
- Department of Intensive Care, Department of Medicine, SODIR Research Group, VHIR, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Massimo Girardis
- Anesthesia and Intensive Care Department, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Marc Leone
- Department of Anesthesiology and Intensive Care Unit, Nord Hospital, Aix Marseille University, Assistance Publique Hôpitaux Universitaires de Marseille, Marseille, France
| | - Gennaro DePascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A, Gemelli IRCCS, Rome, Italy
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud UMC Nijmegen, Nijmegen, The Netherlands
| | - Pierre Tissieres
- Pediatric Intensive Care and Neonatal Medicine, Bicêtre Hospital, AP-HP Paris Saclay University, Le Kremlin-Bicêtre, Paris, France
| | - Filippo Annoni
- Department of Intensive Care, Erasme University Hospital, Université Libre de Buxelles, Brussels, Belgium
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Pain Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Münster, Albert-Schweitzer Campus 1, Building A1, 48149, Münster, Germany
| | - Patrick M Wieruszewski
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Buxelles, Brussels, Belgium
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Lv L, Liu Y, Xiong J, Wang S, Li Y, Zhang B, Huang Y, Zhao J. Role of G protein coupled receptors in acute kidney injury. Cell Commun Signal 2024; 22:423. [PMID: 39223553 PMCID: PMC11367933 DOI: 10.1186/s12964-024-01802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical condition characterized by a rapid decline in kidney function, which is associated with local inflammation and programmed cell death in the kidney. The G protein-coupled receptors (GPCRs) represent the largest family of signaling transduction proteins in the body, and approximately 40% of drugs on the market target GPCRs. The expressions of various GPCRs, prostaglandin receptors and purinergic receptors, to name a few, are significantly altered in AKI models. And the role of GPCRs in AKI is catching the eyes of researchers due to their distinctive biological functions, such as regulation of hemodynamics, metabolic reprogramming, and inflammation. Therefore, in this review, we aim to discuss the role of GPCRs in the pathogenesis of AKI and summarize the relevant clinical trials involving GPCRs to assess the potential of GPCRs and their ligands as therapeutic targets in AKI and the transition to AKI-CKD.
Collapse
Affiliation(s)
- Liangjing Lv
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Yong Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Jiachuan Xiong
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Shaobo Wang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Yan Li
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Bo Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Yinghui Huang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
4
|
Roy D, Chatterjee A, Mishra L, Chakraborty N. Progression of retinal choroidal neovascularization by latent human cytomegalovirus infection and immunological signaling among neonatal patients admitted to tertiary care hospital. J Med Virol 2024; 96:e29478. [PMID: 38377063 DOI: 10.1002/jmv.29478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Choroidal neovascularization (CNV) is a serious condition that affects the retina, causing partial or complete blindness in people of different ages. While CNV is a common occurrence in various chorioretinopathies, research on its occurrence in neonates is limited. Human cytomegalovirus (HCMV) is a significant health threat to neonates, with a strong association with retinal angiogenesis. However, there has been limited investigation into HCMV-associated CNV progression. In this article, we extensively studied the expression of different inflammatory cytokines and chemokines during latent HCMV-associated retinal neovascularization. Our research found that HCMV-induced CNV progression was significantly prominent in the presence of AT2R-dependent angiogenesis (p < 0.001), whereas in the absence of HCMV, AT1R-dependent CCL-5-mediated angiogenesis was documented. We also observed significant increases in CCL-19, CCL-21 chemokine responses, followed by CCR-7 chemokine receptor activation (p < 0.001) in HCMV-induced CNV patients compared to HCMV non-induced CNV groups. Furthermore, significant changes in predictive chemokine markers of HCMV-induced CNV were positively correlated with HCMV viremia. These immunological alterations ultimately lead to the switching of NFκB canonical and noncanonical pathways, respectively, in HCMV-induced neonatal CNV and HCMV non-induced CNV. This clinical observation presents a novel hypothesis that ocular HCMV latency poses a noteworthy risk factor for the progression of retinal neovascularization through a distinctive immunological signaling pathway. The current study represents the first of its kind to report on this association, which may have significant implications for the clinical management of patients with ocular HCMV.
Collapse
Affiliation(s)
- Debsopan Roy
- Virus Research Laboratory, ICMR-NICED, Kolkata, West Bengal, India
| | - Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Bioscience, Brainware University, Kolkata, West Bengal, India
| | - Lopamudra Mishra
- Department of Pediatrics, IPGME&R, SSKM Hospital, Kolkata, West Bengal, India
| | | |
Collapse
|
5
|
Chen L, Gong P, Su Y, Meng L, Wang M, Gao W, Liu Q. Angiotensin II type 2 receptor agonist attenuates LPS-induced acute lung injury through modulating THP-1-derived macrophage reprogramming. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:99-108. [PMID: 37368029 DOI: 10.1007/s00210-023-02589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating respiratory disorder, characterized by overwhelming inflammation in the alveoli without effective pharmacological treatment. We aimed to investigate the effect and mechanism of angiotensin II type 2 receptor (AT2R) agonist, Compound 21 (C21), on the lipopolysaccharide (LPS)-induced acute lung injury (ALI) model. The protective effect of C21 was evaluated via enzyme-linked immunosorbent assay (ELISA), Western blot (WB), real-time PCR, and fluorescence microscopy in LPS-challenged THP1-derived macrophages. Besides, the in vivo efficacy of C21 was assessed using cell counting, ELISA, protein quantification, hematoxylin-eosin (H&E) staining, and WB in an LPS-induced ALI mouse model. The results showed that C21 significantly inhibited the secretion of pro-inflammatory cytokines (CCL-2, IL-6), overproduction of intracellular ROS, and activation of inflammatory pathways (NF-κB/NLRP3, p38/MAPK) in THP-1 cell-derived macrophages stimulated by LPS. In in vivo study, intraperitoneal injection of C21 could reduce airway leukocytes accumulation and chemokine/cytokine (keratinocyte chemoattractant (KC), IL-6) generation, as well as alleviate diffuse alveolar damage induced by LPS. Conclusively, the AT2R agonist C21 significantly inhibited LPS-stimulated excess inflammatory responses and oxidative stress in macrophages. Meanwhile, C21 could effectively alleviate acute inflammation and tissue damage in the lungs of ALI mice challenged by LPS. The results of this study bring new hope for the early treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Shandong, 250002, People's Republic of China
| | - Ping Gong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine Shandong University, Shandong, 250033, People's Republic of China
| | - Yue Su
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Linlin Meng
- Shandong University of Traditional Chinese Medicine, Shandong, 250002, People's Republic of China
| | - Muyun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
| | - Qinghua Liu
- Shandong University of Traditional Chinese Medicine, Shandong, 250002, People's Republic of China.
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
6
|
Garcia B, Zarbock A, Bellomo R, Legrand M. The role of renin-angiotensin system in sepsis-associated acute kidney injury: mechanisms and therapeutic implications. Curr Opin Crit Care 2023; 29:607-613. [PMID: 37861190 DOI: 10.1097/mcc.0000000000001092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the relationship between the renin angiotensin system (RAS) and sepsis-associated acute kidney injury (SA-AKI), a common complication in critically ill patients associated with mortality, morbidity, and long-term cardiovascular complications. Additionally, this review aims to identify potential therapeutic approaches to intervene with the RAS and prevent the development of AKI. RECENT FINDINGS Recent studies have provided increasing evidence of RAS alteration during sepsis, with systemic and local RAS disturbance, which can contribute to SA-AKI. Angiotensin II was recently approved for catecholamine resistant vasodilatory shock and has been associated with improved outcomes in selected patients. SUMMARY SA-AKI is a common condition that can involve disturbances in the RAS, particularly the canonical angiotensin-converting enzyme (ACE) angiotensin-II (Ang II)/angiotensin II receptor 1 (AT-1R) axis. Increased renin levels, a key enzyme in the RAS, have been shown to be associated with AKI and may also guide vasopressor therapy in shock. In patients with high renin levels, angiotensin II administration may reduce renin concentration, improve intra-renal hemodynamics, and enhance signaling through the angiotensin II receptor 1. Further studies are needed to explore the role of the RAS in SA-AKI and the potential for targeted therapies.
Collapse
Affiliation(s)
- Bruno Garcia
- Department of Anesthesia & Peri-operative Care, Division of Critical Care Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Münster, Münster, Germany
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital
- Australian and New Zealand Intensive Care Research Centre, Monash University
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Matthieu Legrand
- Department of Anesthesia & Peri-operative Care, Division of Critical Care Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| |
Collapse
|
7
|
Garcia B, Zarbock A, Bellomo R, Legrand M. The alternative renin-angiotensin system in critically ill patients: pathophysiology and therapeutic implications. Crit Care 2023; 27:453. [PMID: 37986086 PMCID: PMC10662652 DOI: 10.1186/s13054-023-04739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023] Open
Abstract
The renin-angiotensin system (RAS) plays a crucial role in regulating blood pressure and the cardio-renal system. The classical RAS, mainly mediated by angiotensin I, angiotensin-converting enzyme, and angiotensin II, has been reported to be altered in critically ill patients, such as those in vasodilatory shock. However, recent research has highlighted the role of some components of the counterregulatory axis of the classical RAS, termed the alternative RAS, such as angiotensin-converting Enzyme 2 (ACE2) and angiotensin-(1-7), or peptidases which can modulate the RAS like dipeptidyl-peptidase 3, in many critical situations. In cases of shock, dipeptidyl-peptidase 3, an enzyme involved in the degradation of angiotensin and opioid peptides, has been associated with acute kidney injury and mortality and preclinical studies have tested its neutralization. Angiotensin-(1-7) has been shown to prevent septic shock development and improve outcomes in experimental models of sepsis. In the context of experimental acute lung injury, ACE2 activity has demonstrated a protective role, and its inactivation has been associated with worsened lung function, leading to the use of active recombinant human ACE2, in preclinical and human studies. Angiotensin-(1-7) has been tested in experimental models of acute lung injury and in a recent randomized controlled trial for patients with COVID-19 related hypoxemia. Overall, the alternative RAS appears to have a role in the pathogenesis of disease in critically ill patients, and modulation of the alternative RAS may improve outcomes. Here, we review the available evidence regarding the methods of analysis of the RAS, pathophysiological disturbances of this system, and discuss how therapeutic manipulation may improve outcomes in the critically ill.
Collapse
Affiliation(s)
- Bruno Garcia
- Department of Anesthesia and Peri-Operative Care, Division of Critical Care Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France
- Experimental Laboratory of the Department of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Münster, Münster, Germany
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, 3084, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Matthieu Legrand
- Department of Anesthesia and Peri-Operative Care, Division of Critical Care Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
8
|
Fatima N, Ali R, Faisal T, Kulkarni K, Patel S, Hussain T. Macrophage angiotensin AT 2 receptor activation is protective against early phases of LPS-induced acute kidney injury. Am J Physiol Renal Physiol 2023; 325:F552-F563. [PMID: 37615049 PMCID: PMC10878726 DOI: 10.1152/ajprenal.00177.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Lipopolysaccharide (LPS)-induced acute kidney injury (AKI) is characterized by inflammation and infiltration of immune cells, mainly neutrophils and macrophages, and results in sudden renal dysfunction. Previously, we have reported the anti-inflammatory and renoprotective role of the angiotensin II type 2 receptor (AT2R), expressed on kidney tubular cells and immune cells, in LPS-induced AKI. Moreover, in vitro studies revealed macrophage AT2R activation shifts the cells to the anti-inflammatory M2 subtype. However, the protective role of the macrophage AT2R in a model of AKI is unknown. The present study addressed this question by adoptive transfer of bone marrow-derived macrophages (BMDMs) in systemic macrophage-depleted mice. We acquired significant systemic macrophage depletion by two doses of liposomal clodronate (CLD), and the mice were repopulated with BMDMs (CD11b+F4/80+, double positive) primed with AT2R agonist C21 (CLD + MacC21 + LPS) or vehicle (CLD + Mac + LPS) in vitro for 60 min, followed by LPS (5 mg/kg body wt ip) challenge. We observed a gradual increase in the CD11b+ cells at 2 and 24 h after the LPS challenge. However, kidney CD11b+ cells in the CLD + Mac + LPS group were elevated compared with the CLD + MacC21 + LPS group at 2 h after the LPS challenge. The level of inflammatory cytokine (tumor necrosis factor-α) was elevated at 2 h, which was reduced significantly in CLD + MacC21 + LPS-treated animals. Also, CLD + MacC21 + LPS-treated animals had elevated plasma and renal IL-10, indicating an anti-inflammatory role of C21-treated BMDMs. Renal functional injury in CLD + MacC21 + LPS-treated animals was partially improved. Collectively, the data demonstrate that BMDM AT2R stimulation results in anti-inflammation and partial renoprotection against early stages of LPS-induced AKI.NEW & NOTEWORTHY Endotoxin such as lipopolysaccharide (LPS) induces acute kidney injury (AKI), which is a risk factor for and often leads to chronic kidney diseases. The present study revealed that bone marrow-derived macrophage activation of the angiotensin II type 2 receptor (AT2R) contributes to the anti-inflammation and partial renoprotection against early stages of LPS-induced AKI. Since AT2R is an emerging anti-inflammatory and organ-protective target, this study advances our understanding of AT2R's anti-inflammatory mechanisms associated with renoprotection.
Collapse
Affiliation(s)
- Naureen Fatima
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, United States
| | - Riyasat Ali
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, United States
| | - Tahmid Faisal
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, United States
| | - Kalyani Kulkarni
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, United States
| | - Sanket Patel
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, United States
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, United States
| |
Collapse
|
9
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
10
|
Zhang T, Li Y, Wise AF, Kulkarni K, Aguilar MI, Samuel CS, Del Borgo M, Widdop RE, Ricardo SD. The protective effects of a novel AT 2 receptor agonist, β-Pro 7Ang III in ischemia-reperfusion kidney injury. Biomed Pharmacother 2023; 161:114556. [PMID: 36948137 DOI: 10.1016/j.biopha.2023.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND AND PURPOSE This study investigated the reno-protective effects of a highly selective AT2R agonist peptide, β-Pro7Ang III in a mouse model of acute kidney injury (AKI). METHODS C57BL/6 J mice underwent either sham surgery or unilateral kidney ischemia-reperfusion injury (IRI) for 40 min. IRI mice were treated with either β-Pro7Ang III or perindopril and at 7 days post-surgery the kidneys analysed for histopathology and the development of fibrosis and matrix metalloproteinase (MMP)-2 and -9 activity. The association of the therapeutic effects of β-Pro7Ang III with macrophage number and phenotype was determined in vivo and in vitro. KEY RESULTS Decreased kidney tubular injury, interstitial matrix expansion and reduced interstitial immune cell infiltration in IRI mice receiving β-Pro7Ang III treatment was observed at day 7, compared to IRI mice without treatment. This correlated to reduced collagen accumulation and MMP-2 activity in IRI mice following β-Pro7Ang III treatment. FACS analysis showed a reduced number and proportion of CD45+CD11b+F4/80+ macrophages in IRI kidneys in response to β-Pro7Ang III, correlating with a significant increase in M2 macrophage markers and decreased M1 markers at day 3 and 7 post-IR injury, respectively. In vitro analysis of cultured THP-1 cells showed that β-Pro7Ang III attenuated lipopolysaccharide (LPS)-induced tumour necrosis factor-α (TNF-α) and interleukin (IL)- 6 production but increased IL-10 secretion, compared to LPS alone. CONCLUSION Administration of β-Pro7Ang III via mini-pump improved kidney structure and reduced interstitial collagen accumulation, in parallel with an alteration of macrophage phenotype and anti-inflammatory cytokine release, therefore mitigating the downstream progression of ischemic AKI.
Collapse
Affiliation(s)
- Tingfang Zhang
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Yifang Li
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea F Wise
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mark Del Borgo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
11
|
Kulkarni K, Patel S, Ali R, Hussain T. Angiotensin II type 2 receptor activation preserves megalin in the kidney and prevents proteinuria in high salt diet fed rats. Sci Rep 2023; 13:4277. [PMID: 36922642 PMCID: PMC10017765 DOI: 10.1038/s41598-023-31454-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Proteinuria is a risk factor for and consequence of kidney injury. Angiotensin II type 2 receptor (AT2R) is an emerging reno-protective target and is anti-proteinuric under pathological conditions, including high salt-fed obese animals. However, the mechanisms remain unknown, particularly whether the anti-proteinuric activity of AT2R is independent of its anti-hypertensive and anti-inflammatory effects. In the present study, obese Zucker rats were fed high sodium (4%) diet (HSD) for 48 h, a time in which blood pressure does not change. HSD caused proteinuria without affecting glomerular slit diaphragm proteins (nephrin and podocin), glomerular filtration rate, inflammatory and fibrotic markers (TNFα, IL-6, and TGF-β), ruling out glomerular injury, inflammation and fibrosis but indicating tubular mechanisms of proteinuria. At cellular and molecular levels, we observed a glycogen synthase kinase (GSK)-3β-mediated megalin phosphorylation, and its subsequent endocytosis and lysosomal degradation in HSD-fed rat kidneys. Megalin is a major proximal tubular endocytic protein transporter. The AT2R agonist C21 (0.3 mg/kg/day, i.p.) administration prevented proteinuria and rescued megalin surface expression potentially by activating Akt-mediated phosphorylation and inactivation of GSK-3β in HSD-fed rat kidneys. Overall, AT2R has a direct anti-proteinuric activity, potentially via megalin regulation, and is suggested as a novel target to limit kidney injury.
Collapse
Affiliation(s)
- Kalyani Kulkarni
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA
| | - Sanket Patel
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA
| | - Riyasat Ali
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, 4349 Martin Luther King Boulevard, Houston, TX, 77204-5037, USA.
| |
Collapse
|
12
|
Jabber H, Mohammed B, Hadi NR. Investigating the renoprotective effect of C21 in male mice with sepsis via modulation of p-AKT/PI3K expression. J Med Life 2023; 16:203-209. [PMID: 36937479 PMCID: PMC10015579 DOI: 10.25122/jml-2022-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 03/21/2023] Open
Abstract
This study aimed to investigate if C21 could prevent acute renal injury induced by sepsis by regulating the expression of p-AKT/PI3K. Five equal groups of 25 adult male Swiss-albino mice were randomly divided (n=5): sham (laparotomy without CLP), CLP, vehicle (equivalent amount of DMSO one hour before CLP), and C21 (0.03 mg/kg, one hour before CLP). ELISA was used to measure serum inflammatory mediators, and the expression of PI3K and P-AKT was determined using PCR and immunohistochemistry (IHC), respectively. TNF, TNF receptor, F8-isoprostane, urea, creatinine, and IL-6 blood levels were considerably lower in the CLP group (p<0.05) compared to the sham group, whereas the C21 treated group had significantly (p<0.05) greater levels of these inflammatory mediators. The IHC analysis revealed that P-AKT expression was significantly lower (p<0.05) in the CLP group compared to the sham group, while the C21 pretreatment group had significantly higher levels of P-AKT expression compared to the CLP group (p<0.05). The PI3K expression in the CLP group was significantly lower than in the sham group (p<0.05), according to PCR results, whereas the PI3K expression in the C21 pretreatment group was significantly greater than in the CLP group (p<0.05). This study showed that C21 might reduce levels of pro-inflammatory cytokines, including TNF-, IL-6, and TNF receptor, by modulating the PI3K/AKT signaling pathways, which can, in turn, reduce renal dysfunction during CLP-induced sepsis in male mice.
Collapse
Affiliation(s)
- Huda Jabber
- Department of Pharmacology and Therapeutics, College of Medicine, University of Al-Qadisiyah, Iraq
| | - Bassim Mohammed
- Department of Pharmacology and Therapeutics, College of Medicine, University of Al-Qadisiyah, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
- Corresponding Author: Najah Rayish Hadi, Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq. E-mail:
| |
Collapse
|
13
|
Wang Y, Yodgee J, Del Borgo M, Spizzo I, Nguyen L, Aguilar MI, Denton KM, Samuel CS, Widdop RE. The Novel AT2 Receptor Agonist β-Pro7-AngIII Exerts Cardiac and Renal Anti-Fibrotic and Anti-Inflammatory Effects in High Salt-Fed Mice. Int J Mol Sci 2022; 23:ijms232214039. [PMID: 36430518 PMCID: PMC9696912 DOI: 10.3390/ijms232214039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
A high salt (HS) diet is associated with an increased risk for cardiovascular diseases (CVDs) and fibrosis is a key contributor to the organ dysfunction involved in CVDs. The activation of the renin angiotensin type 2 receptor (AT2R) has been considered as organ protective in many CVDs. However, there are limited AT2R-selective agonists available. Our first reported β-substituted angiotensin III peptide, β-Pro7-AngIII, showed high selectivity for the AT2R. In the current study, we examine the potential anti-fibrotic and anti-inflammatory effects of this novel AT2R-selective peptide on HS-induced organ damage. FVB/N mice fed with a 5% HS diet for 8 weeks developed cardiac and renal fibrosis and inflammation, which were associated with increased TGF-β1 levels in heart, kidney and plasma. Four weeks' treatment (from weeks 5-8) with β-Pro7-AngIII inhibited the HS-induced cardiac and renal fibrosis and inflammation. These protective effects were accompanied by reduced local and systemic TGF-β1 as well as reduced cardiac myofibroblast differentiation. Importantly, the anti-fibrotic and anti-inflammatory effects caused by β-Pro7-AngIII were attenuated by the AT2R antagonist PD123319. These results demonstrate, for the first time, the cardio- and reno-protective roles of the AT2R-selective β-Pro7-AngIII, highlighting it as an important therapeutic that can target the AT2R to treat end-organ damage.
Collapse
Affiliation(s)
- Yan Wang
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Jonathan Yodgee
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Mark Del Borgo
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Iresha Spizzo
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Levi Nguyen
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kate M. Denton
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Robert E. Widdop
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
14
|
Wei W, Zhao Y, Zhang Y, Jin H, Shou S. The role of IL-10 in kidney disease. Int Immunopharmacol 2022; 108:108917. [DOI: 10.1016/j.intimp.2022.108917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/07/2023]
|
15
|
Which ones, when and why should renin-angiotensin system inhibitors work against COVID-19? Adv Biol Regul 2021; 81:100820. [PMID: 34419773 PMCID: PMC8359569 DOI: 10.1016/j.jbior.2021.100820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
The article describes the possible pathophysiological origin of COVID-19 and the crucial role of renin-angiotensin system (RAS), providing several “converging” evidence in support of this hypothesis. SARS-CoV-2 has been shown to initially upregulate ACE2 systemic activity (early phase), which can subsequently induce compensatory responses leading to upregulation of both arms of the RAS (late phase) and consequently to critical, advanced and untreatable stages of COVID-19 disease. The main and initial actors of the process are ACE2 and ADAM17 zinc-metalloproteases, which, initially triggered by SARS-CoV-2 spike proteins, work together in increasing circulating Ang 1–7 and Ang 1–9 peptides and downstream (Mas and Angiotensin type 2 receptors) pathways with anti-inflammatory, hypotensive and antithrombotic activities. During the late phase of severe COVID-19, compensatory secretion of renin and ACE enzymes are subsequently upregulated, leading to inflammation, hypertension and thrombosis, which further sustain ACE2 and ADAM17 upregulation. Based on this hypothesis, COVID-19-phase-specific inhibition of different RAS enzymes is proposed as a pharmacological strategy against COVID-19 and vaccine-induced adverse effects. The aim is to prevent the establishment of positive feedback-loops, which can sustain hyperactivity of both arms of the RAS independently of viral trigger and, in some cases, may lead to Long-COVID syndrome.
Collapse
|