1
|
Zhang M, Chen T, Hu J, Zhang W, Shen M, Yu Q, Chen Y, Xie J. Collagen (peptide) extracted from sturgeon swim bladder: Physicochemical characterization and protective effects on cyclophosphamide-induced premature ovarian failure in mice. Food Chem 2025; 466:142217. [PMID: 39615355 DOI: 10.1016/j.foodchem.2024.142217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/05/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Premature ovarian failure (POF) is a common female reproductive disorder, with oxidative damage playing a significant role in its development. Studies had demonstrated the beneficial antioxidant, anti-aging, and other biological properties of swim bladder collagen (peptide). In this study, acid extraction, water extraction, and enzymatic hydrolysis methods were used to extract collagen (peptide) from sturgeon (Acipenser sinensis) swim bladder, all of which exhibited significant antioxidant activity. Moreover, the effects observed in POF mice were enhanced, including an increasing in the number of growing ovarian follicles, regulation of serum hormone levels, and alterations in signaling pathways, as evidenced by the up-regulation of Phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt) and B cell lymphoma-2/ Bcl-associated x protein (Bcl-2/Bax) pathways, alongside the down-regulation of the mitogen-activated protein kinases (MAPK) signaling pathway. Sturgeon swim bladder collagen (peptide) could protect against cyclophosphamide-induced POF in mice, which could be very beneficial in the future advancement of health products.
Collapse
Affiliation(s)
- Mingyi Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jiaruo Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Weidong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Sun Y, Wu Z, Lan J, Liu Y, Du Y, Ye H, Du D. Effect of sulfate-reducing bacteria (SRB) and dissimilatory iron-reducing bacteria (DIRB) coexistence on the transport and transformation of arsenic in sediments. WATER RESEARCH 2024; 270:122834. [PMID: 39608159 DOI: 10.1016/j.watres.2024.122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Sulfate-reducing bacteria (SRBs) and dissimilatory iron-reducing bacteria (DIRBs) are recognized as significant contributors to the occurrence of elevated arsenic (As) levels in groundwater. However, the precise effects and underlying mechanisms of their interactions on As behavior within sediments remain poorly understood. In this investigation, we compared the impacts and mechanisms of DIRBs, SRBs, and mixed bacterial consortia on the migration behavior of As and Fe/S species. Our findings revealed that during the initial phase of the reaction (0-8 days, Stage 1), the mixed bacterial consortium facilitated As release by intensifying the reduction of Fe (III) and sulfate, resulting in a maximum As concentration 1.5 times higher than that observed with either DIRBs or SRBs in isolation. Subsequently, in the intermediate phase (8-20 days, Stage 2), the mixed consortium suppressed the synthesis of sulfate reductase and the secretion of toxic substances (e.g., o-Methyltoluene) associated with steroid degradation pathways. This inhibition consequently reduced the formation of secondary Fe minerals and the fixation of As. Finally, in the latter stage (20-30 days, Stage 3), the system responded to the threat of toxic substances by secreting significant amounts of organic acids to facilitate their decomposition. However, this process also led to the re-decomposition of iron oxides, resulting in the release of As. These observations shed light on the intricate interplay between DIRBs and SRBs within bacterial consortia, elucidating their coordinated actions in inducing the migration and transformation of arsenic.
Collapse
Affiliation(s)
- Yan Sun
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaoyuan Wu
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jirong Lan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Ying Liu
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yaguang Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Hengpeng Ye
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Dongyun Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
3
|
Yao B, Xu D, Wang Q, Liu L, Hu Z, Liu W, Zheng Q, Meng H, Xiao R, Xu Q, Hu Y, Wang J. Neuroprotective and vasoprotective effects of herb pair of Zhiqiao-Danggui in ischemic stroke uncovered by LC-MS/MS-based metabolomics approach. Metab Brain Dis 2024; 39:1131-1148. [PMID: 39002017 DOI: 10.1007/s11011-024-01387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Ischemic stroke is the most important cause of disability and death worldwide, but current treatments remain limited. Traditional Chinese medicine (TCM) including the herb pair of Zhiqiao-Danggui (ZD) offers a multifaceted treatment approach through promoting blood circulation, yet its specific anti-ischemic mechanism remains unclear. This study used the photochemically induced thrombosis (PIT) mouse model and the oxygen glucose deprivation/reoxygenation (OGD/R) cell model to explore the therapeutic effect of ZD on ischemic stroke. Mice were treated with high and low doses of ZD extract or positive control. Behavior was assessed using the grid test. The brain tissue was then subjected to infarct volume assessment, histopathology, oxidative stress marker detection, LC/MS metabolomic analysis and qRT-PCR validation. The therapeutic effect of ZD-medicated serum on OGD/R model was tested on cells. Experimental results show that ZD can improve motor function, reduce infarct size, neuronal damage and apoptosis as well as alleviate oxidative stress in mice. ZD-medicated serum promotes endothelial cell proliferation, improves cell survival against OGD/R-induced injury, reduces oxidative damage and protects mitochondrial function. Metabolomics reveals ZD regulation of metabolites in energy metabolism, amino acid metabolism, TCA cycle, and angiogenesis signaling pathways. qRT-PCR results also showed that ZD could attenuate abnormal conduction of angiogenic signals and enhance vessel stability. This study confirmed the neuroprotective and vasoprotective effects of ZD, highlighted its potential in treating ischemic stroke, and provided a scientific basis for the traditional use of ZD.
Collapse
Affiliation(s)
- Benxing Yao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Di Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qing Wang
- Department of Interventional Surgery, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, Shandong, China
| | - Lin Liu
- Department of Interventional Surgery, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, Shandong, China
| | - Ziyun Hu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wenya Liu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qi Zheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Huihui Meng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Ran Xiao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qian Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Yudie Hu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Junsong Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| |
Collapse
|
4
|
Zhang H, Sun Y, Fan M, Zhang Y, Liang Z, Zhang L, Gao X, He X, Li X, Zhao D, Sagratini G, Su H, Qi W. Prevention effect of total ginsenosides and ginseng extract from Panax ginseng on cyclophosphamide-induced immunosuppression in mice. Phytother Res 2023; 37:3583-3601. [PMID: 37070654 DOI: 10.1002/ptr.7836] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/19/2023]
Abstract
Oral decoction is widely applied in traditional Chinese medicines. The polysaccharides of decoction promote the exposure of small molecules and increase their bioavailability. This study mainly compared the component and activities of total ginsenosides (TGS) and ginseng extract (GE) on immunosuppressed mice induced by cyclophosphamide. Thirty-two mice were randomly divided into control, model, TGS, and GE groups. The mice were orally administered for 28 days and then injected with cyclophosphamide on the last four days. The results of component analysis showed the total content of 12 ginsenosides in TGS (67.21%) was higher than GE (2.04%); the total content of 17 amino acids in TGS (1.41%) was lower than GE (5.36%); the total content of 10 monosaccharides was similar in TGS (74.12%) and GE (76.36%). The animal results showed that both TGS and GE protected the hematopoietic function of bone marrow by inhibiting cell apoptosis, and recovering the normal cell cycle of BM; maintained the dynamic balance between the Th1 and Th2 cells; also protected the spleen, thymus, and liver. Meanwhile, TGS and GE protected the intestinal bacteria of immunosuppressed mice by increasing the abundance of lactobacillus and decreasing the abundance of the odoribacter and clostridia_UCG-014. The prevention effect of GE was superior to TGS in some parameters. In conclusion, TGS and GE protected the immune function of immunosuppressed mice induced by cyclophosphamide. Meanwhile, GE showed higher bioavailability and bioactivity compared with TGS, because the synergistic effect of polysaccharides and ginsenosides plays an important role in protecting the immune function.
Collapse
Affiliation(s)
- He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Yue Sun
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Meiling Fan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yuyao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Zuguo Liang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Lancao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Xiang Gao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xinzhu He
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | | | - Hang Su
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Zhang H, Sun Y, Fan M, Zhang Y, Liang Z, Zhang L, Gao X, He X, Li X, Zhao D, Sagratini G, Su H, Qi W. Prevention effect of total ginsenosides and ginseng extract from Panax ginseng on cyclophosphamide‐induced immunosuppression in mice. Phytother Res 2023; 37:3583-3601. [DOI: doi.org/10.1002/ptr.7836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/01/2023] [Indexed: 07/02/2024]
Abstract
AbstractOral decoction is widely applied in traditional Chinese medicines. The polysaccharides of decoction promote the exposure of small molecules and increase their bioavailability. This study mainly compared the component and activities of total ginsenosides (TGS) and ginseng extract (GE) on immunosuppressed mice induced by cyclophosphamide. Thirty‐two mice were randomly divided into control, model, TGS, and GE groups. The mice were orally administered for 28 days and then injected with cyclophosphamide on the last four days. The results of component analysis showed the total content of 12 ginsenosides in TGS (67.21%) was higher than GE (2.04%); the total content of 17 amino acids in TGS (1.41%) was lower than GE (5.36%); the total content of 10 monosaccharides was similar in TGS (74.12%) and GE (76.36%). The animal results showed that both TGS and GE protected the hematopoietic function of bone marrow by inhibiting cell apoptosis, and recovering the normal cell cycle of BM; maintained the dynamic balance between the Th1 and Th2 cells; also protected the spleen, thymus, and liver. Meanwhile, TGS and GE protected the intestinal bacteria of immunosuppressed mice by increasing the abundance of lactobacillus and decreasing the abundance of the odoribacter and clostridia_UCG‐014. The prevention effect of GE was superior to TGS in some parameters. In conclusion, TGS and GE protected the immune function of immunosuppressed mice induced by cyclophosphamide. Meanwhile, GE showed higher bioavailability and bioactivity compared with TGS, because the synergistic effect of polysaccharides and ginsenosides plays an important role in protecting the immune function.
Collapse
Affiliation(s)
- He Zhang
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Yue Sun
- School of Pharmacy University of Camerino Camerino Italy
| | - Meiling Fan
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun China
| | - Yuyao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Zuguo Liang
- College of Pharmacy Changchun University of Chinese Medicine Changchun China
| | - Lancao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Xiang Gao
- College of Pharmacy Changchun University of Chinese Medicine Changchun China
| | - Xinzhu He
- College of Pharmacy Changchun University of Chinese Medicine Changchun China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | | | - Hang Su
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| |
Collapse
|
6
|
Effects of Soy–Whey Protein Nutritional Supplementation on Hematopoiesis and Immune Reconstitution in an Allogeneic Transplanted Mice. Nutrients 2022; 14:nu14153014. [PMID: 35893870 PMCID: PMC9332233 DOI: 10.3390/nu14153014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/07/2022] Open
Abstract
Profound malnutrition and immunodeficiency are serious negative effects of radiotherapy and bone marrow transplantation for hematologic malignancy patients. This study aimed to evaluate the effects of nutritional supplementation with a soy–whey protein mixture on hematopoietic and immune reconstitution in an allogeneic transplant mouse model. Male BALB/c (H-2Kd) mice, 6–8 weeks-old, were divided randomly into five groups and then provided with different protein nutrition support. After 28 days, blood samples, bone marrow, spleen, and thymus were harvested to measure the effects. The results showed that soy–whey blended protein supplements promoted hematopoietic stem cell engraftment, body weight recovery, and the recovery of white blood cells, lymphocytes, and neutrophils; triggered the expansion of hematopoietic stem cells and progenitor cell pools by increasing the numbers of the c-kit+ progenitor, Lin-Sca1+c-kit+, short-term hematopoietic stem cells, and multipotent progenitors; enhanced thymus re-establishment and splenic subset recovery in both organ index and absolute number; improved overall nutritional status by increasing total serum protein, albumin, and globulin; protected the liver from radiation-induced injury, and increased antioxidant capacity as indicated by lower concentrations of alanine aminotransferase, aspartate aminotransferase, malondialdehyde, and 4-hydroxynonenal. This study indicated that soy–whey blended protein as important nutrients, from both plant and animal sources, had a greater positive effect on patients with hematological malignancies to accelerate hematopoiesis and immune reconstitution after bone marrow transplantation.
Collapse
|