1
|
Liu Y, Jin Z, Sun D, Zheng J, Xu B, Lan T, Zhao Q, He Y, Li J, Zhang Y, Cui Y. Preparation of monoclonal antibody against rhoifolin and its application in enzyme-linked immunosorbent assay of rhoifolin and diosmin. Talanta 2025; 281:126871. [PMID: 39276572 DOI: 10.1016/j.talanta.2024.126871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Both rhoifolin and diosmin belong to flavonoids, which are widely present in citrus. Diosmin is not only used in the medical field in the world, but also used as a dietary supplement in the United States. Rhoifolin has a similar structure to diosmin and also exhibits antioxidant and anti-inflammatory properties. In this study, an anti-rhoifolin monoclonal antibody was prepared and an indirect competitive enzyme-linked immunosorbent assay (icELISA) method was established. The half-maximal inhibitory concentration (IC50) of icELISA was determined to be 4.83 ng/mL, and the detection range was 0.97-33.87 ng/mL. The results of UPLC-MS/MS and icELISA generally demonstrate consistency. Moreover, by exploiting the cross-reactivity of the antibody, diosmin in tablets can be detected by icELISA. The results demonstrate that the developed method has good accuracy, reproducibility, and broad application prospects.
Collapse
Affiliation(s)
- Yifan Liu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Zihui Jin
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Di Sun
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Jiexin Zheng
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Bo Xu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Tianyu Lan
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Qiyang Zhao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Jing Li
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yaohai Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| | - Yongliang Cui
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing, 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| |
Collapse
|
2
|
Liu Z, Liang L, Lu S, Chen J, Guo H, Xiong Y. Citrus rhoifolin alleviated DSS-induced acute colitis by activating CEMIP/SLC7A11-mediated cystine uptake and inhibiting epithelial ferroptosis. Eur J Nutr 2024; 64:20. [PMID: 39570404 DOI: 10.1007/s00394-024-03519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE Pharmacological inhibition of ferroptosis, a specific form of regulated cell death, has emerged as a promising therapeutic strategy for alleviating symptoms and enhancing endoscopic outcomes in patients suffering from ulcerative colitis. Rhoifolin, a prominent bioactive constituent abundant in the widely consumed fruit Citrus grandis (grapefruit), has garnered attention for its ability to diminish the levels of reactive oxygen species (ROS), which are key inducers of ferroptosis across diverse cellular contexts. In this study, we aimed to investigate whether rhoifolin exerts its beneficial effects on colitis by modulating the process of epithelial ferroptosis. METHODS Colitis model was successfully established in C57BL/6 mice through the administration of 2.5% dextran sulfate sodium (DSS) solution for a duration of 9 days, which was freely accessible for drinking. RNA sequencing was conducted to delve into the mechanisms underlying the rhoifolin-mediated effects on colitis. To evaluate the impact of rhoifolin on ferroptosis in epithelial cells, several key indicators were measured, including mitochondrial morphology, colonic glutathione (GSH) levels, lipid peroxidation product contents, and ROS levels. RESULTS The results indicated that rhoifolin exhibited profound anti-colitis properties and effectively curbs ferroptosis in epithelial cells of mice subjected to DSS treatment. The RNA sequencing analysis further revealed that rhoifolin stimulated a remarkable upregulation of colonic cell migration-inducing protein (CEMIP) expression by approximately 2.4-fold in colitis-affected mice. Notably, depletion of CEMIP significantly blocked the rhoifolin-induced increase in the cystine transporter solute carrier family 7 member 11 (SLC7A11, from 1.9-fold to approximately 1.1-fold), as well as the elevation of cystine uptake (from 1.72-fold to 1.2-fold) and glutathione (GSH) biosynthesis (from 2.1-fold to 1.2-fold), and the suppression of epithelial ferroptosis (from 0.51-fold to 0.94-fold) in mice with colitis. Molecular docking investigations have pinpointed crucial amino acid residues within CEMIP, specifically His267, His289, and Phe265, as the primary interaction sites (docking score: -7.8 kcal/mol), facilitating the engagement of rhoifolin via hydrogen bonding interactions. CONCLUSION Rhoifolin significantly mitigated DSS-induced colitis primarily through inhibiting epithelial ferroptosis. The activation of CEMIP by citrus-derived rhoifolin led to a notable upregulation of SLC7A11 expression, thereby enhanced cystine uptake and facilitated GSH biosynthesis, ultimately suppressed the occurrence of ferroptosis in epithelial cells.
Collapse
Affiliation(s)
- Zhijie Liu
- First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Lina Liang
- First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Shuming Lu
- First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Jiayu Chen
- First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Huishu Guo
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Yongjian Xiong
- First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China.
| |
Collapse
|
3
|
Chang X, Fang X, Yao Y, Xu Z, Wu C, Lu L. Identification and Characterization of Glycosyltransferases Involved in the Biosynthesis of Neodiosmin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4348-4357. [PMID: 38354268 DOI: 10.1021/acs.jafc.3c09308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Glycosylation plays a very important role in plant secondary metabolic modifications. Neodiosmin, identified as diosmetin-7-O-neohesperidoside, not only acts to mitigate bitterness and enhance the flavor of food but also serves as a pivotal metabolite that reinforces plant immunity. Investigating its biosynthetic pathway in plants is crucial for optimizing fruit quality and fortifying plant immune responses. In this study, through analysis of transcriptomic data from Astilbe chinensis, we identified two novel uridine diphosphate (UDP)-glycosyltransferases (UGTs): Ach14791 (AcUGT73C18), responsible for flavonoid 7-O-glycosylation and Ach15849 (AcUGT79B37), involved in flavonoid-7-O-glucoside-2″-O-rhamnosylation. By delving into enzymatic properties and catalytic promiscuity, we developed a biosynthesis route of neodiosmin by establishing a one-pot enzyme-catalyzed cascade reaction. Simultaneously, lonicerin and rhoifolin were also successfully synthesized using the same one-pot dual-enzyme catalytic reaction. Taken together, our findings not only identified two novel UGTs involved in neodiosmin biosynthesis but also provided important biocatalytic components for the microorganism-based biosynthesis of flavonoid-7-O-disaccharide compounds.
Collapse
Affiliation(s)
- Xiaosa Chang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xueting Fang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yan Yao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhenni Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Chaoyan Wu
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Li Lu
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Hongshan Laboratory, Wuhan 430071, China
| |
Collapse
|
4
|
Hu X, Wang M, Cai F, Liu L, Cheng Z, Zhao J, Zhang Q, Long C. A comprehensive review of medicinal Toxicodendron (Anacardiaceae): Botany, traditional uses, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116829. [PMID: 37429501 DOI: 10.1016/j.jep.2023.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Comprising of about 30 species, the genus Toxicodendron (Anacardiaceae) are mainly distributed in East Asia and North America. Among them, 13 species have been traditionally used as folk medicines in Asia and other parts of the world to treat blood diseases, abnormal bleeding, skin diseases, gastrointestinal diseases, liver diseases, bone injury, lung diseases, neurological diseases, cardiovascular diseases, tonic, cancer, eye diseases, menstrual irregularities, inflammation, rheumatism, diabetes mellitus, rattlesnake bite, internal parasites, contraceptive, vomiting and diarrhea. AIM OF THE STUDY To date, no comprehensive review on Toxicodendron has been published and the scientific basis of the traditional medicinal benefits of Toxicodendron have been less reported. Therefore, this review aims to provide a reference for further research and development on medicinal purpose of Toxicodendron by summarizing the works (from 1980 to 2023), and focusing on its botany, traditional uses, phytochemistry and pharmacology. MATERIALS AND METHODS The names of the species were from The Plant List Database (http://www.theplantlist.org), World Flora Online (http://www.worldfloraonline.org), Catalogue of Life Database (https://www.catalogueoflife.org/) and Plants for A Future Database (https://pfaf.org/user/Default.aspx). And the search terms "Toxicodendron" and "the names of 31 species and their synonyms" were used to search for information from electronic databases such as Web of Science, Scopus, Google Scholar, Science Direct, PubMed, Baidu Scholar, Springer, and Wiley Online Library. Moreover, PhD and MSc dissertations were also used to support this work. RESULTS These species on Toxicodendron are widely used in folkloric medicine and modern pharmacological activities. So far, approximately 238 compounds, mainly phenolic acids and their derivatives, urushiols, flavonoids and terpenoids, are extracted and isolated from Toxicodendron plants, commonly, T. trichocarpum, T. vernicifluum, T. succedaneum, and T. radicans. Among them, phenolic acids and flavonoids are the main compound classes that show pharmacological activities in Toxicodendron plants both in vitro and in vivo. Furthermore, the extracts and single compounds of these species show a wide range of activities, such as antioxidant, antibacterial, anti-inflammatory, anti-tumor, liver protection, fat reduction, nerve protection, and treatment of blood diseases. CONCLUSIONS Selected species of Toxicodendron have been used as herbal medicines in the Southeast Asian for a long time. Furthermore, some bioactive constituents have been identified from them, so plants in this genus may be potential new drugs. The existing research on Toxicodendron has been reviewed, and the phytochemistry and pharmacology provide theoretical basis for some of the traditional medicinal uses. Therefore, in this review, the traditional medicinal, phytochemical and modern pharmacology of Toxicodendron plants are summarized to help future researchers to find new drug leads or to get a better understanding of structure-activity relationships.
Collapse
Affiliation(s)
- Xian Hu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Miaomiao Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Fei Cai
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Liya Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Jiaqi Zhao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Qing Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
5
|
Zhao C, Li M, Yang Y, Qin M, Wang R, Zhu Q, Chen G, Wang A. A new flavonoid glycoside from Toxicodendron vernicifluum (Stokes) F.A. Barkley. Nat Prod Res 2023; 37:3478-3483. [PMID: 35687836 DOI: 10.1080/14786419.2022.2086546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Toxicodendron vernicifluum (Stokes) F.A. Barkley, also called 'Qishu', is a shrub belonging to the Anacardiaceae family and producing lacquer. In this work, a new flavonoid glycoside (1), was isolated from the heartwood of T. vernicifluum, together with four known compounds (2-5). The structure of the new compound was determined as 4',7-dihydroxy-3'-methoxy-3-O-β-D-glucopyranosyl-flavonoid (1), on the basis of acidic hydrolysis, and spectroscopic analyses. Compound 1 showed significantly cytotoxic against A549 cell lines with the values of IC50 at 1.5 μM.
Collapse
Affiliation(s)
- Chengye Zhao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, P. R. China
| | - Meichen Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yuqian Yang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, P. R. China
| | - Minni Qin
- School of Pharmacy, Nantong University, Nantong, Jiangsu, P. R. China
| | - Ruojia Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, P. R. China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, P. R. China
| | - Guangtong Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu, P. R. China
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, P. R. China
| |
Collapse
|
6
|
Su B, Tian J, Wang K, Yang W, Ning J, Liang Y, Liu Y, Li Y, Zheng G. Qualitative and Quantitative Analyses of the Chemical Components of Peels from Different Pomelo Cultivars ( Citrus grandis [L.] Osbeck) Based on Gas Chromatography-Mass Spectrometry, Ultraperformance Liquid Chromatography-Q-Exactive Orbitrap-MS, and High-Performance Liquid Chromatography-Photodiode Array Detection. ACS OMEGA 2023; 8:6253-6267. [PMID: 36844509 PMCID: PMC9948162 DOI: 10.1021/acsomega.2c05514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The volatile and nonvolatile phytochemicals in peels of 5 major pomelo cultivars (including Citrus grandis cv. Yuhuanyou, C. grandis cv. Liangpingyou, C. grandis cv. Guanximiyou, C. grandis cv. Duweiwendanyou, and C. grandis cv. Shatianyou) from 11 places in China were characterized. First, 194 volatile compounds in pomelo peels were identified by gas chromatography-mass spectrometry (GC-MS). Of these, 20 major volatile compounds were subjected to cluster analysis. The heatmap indicated that the volatile compounds in peels of C. grandis cv. Shatianyou and C. grandis cv. Liangpingyou were different from those in other varieties, while there was no difference among C. grandis cv. Guanximiyou, C. grandis cv. Yuhuanyou, and C. grandis cv. Duweiwendanyou from different origins. Second, 53 nonvolatile compounds were identified in pomelo peels by ultraperformance liquid chromatography-Q-exactive orbitrap tandem MS (UPLC-Q-exactive orbitrap-MS), of which 11 components were detected for the first time. Third, six major nonvolatile compounds were quantitatively analyzed with high-performance LC-photodiode array detection (HPLC-PDA). Combining the results of HPLC-PDA and the heatmap, 6 nonvolatile compounds in 12 batches of pomelo peel were well separated among varieties. Comprehensive analysis and identification of chemical components in pomelo peels are of great significance for their further development and utilization.
Collapse
|
7
|
Gong Y, Li S, Wu J, Zhang T, Fang S, Feng D, Luo X, Yuan J, Wu Y, Yan X, Zhang Y, Zhu J, Wu J, Lian J, Xiang W, Ni Z. Autophagy in the pathogenesis and therapeutic potential of post-traumatic osteoarthritis. BURNS & TRAUMA 2023; 11:tkac060. [PMID: 36733467 PMCID: PMC9887948 DOI: 10.1093/burnst/tkac060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Indexed: 02/04/2023]
Abstract
Autophagy, as a fundamental mechanism for cellular homeostasis, is generally involved in the occurrence and progression of various diseases. Osteoarthritis (OA) is the most common musculoskeletal disease that often leads to pain, disability and economic loss in patients. Post-traumatic OA (PTOA) is a subtype of OA, accounting for >12% of the overall burden of OA. PTOA is often caused by joint injuries including anterior cruciate ligament rupture, meniscus tear and intra-articular fracture. Although a variety of methods have been developed to treat acute joint injury, the current measures have limited success in effectively reducing the incidence and delaying the progression of PTOA. Therefore, the pathogenesis and intervention strategy of PTOA need further study. In the past decade, the roles and mechanisms of autophagy in PTOA have aroused great interest in the field. It was revealed that autophagy could maintain the homeostasis of chondrocytes, reduce joint inflammatory level, prevent chondrocyte death and matrix degradation, which accordingly improved joint symptoms and delayed the progression of PTOA. Moreover, many strategies that target PTOA have been revealed to promote autophagy. In this review, we summarize the roles and mechanisms of autophagy in PTOA and the current strategies for PTOA treatment that depend on autophagy regulation, which may be beneficial for PTOA patients in the future.
Collapse
Affiliation(s)
| | | | | | - Tongyi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China,Department of General practice, Chinese PLA General Hospital of the Central Theater Command, Wuluo Street, Wuchang District, Wuhan 430000, China
| | - Shunzheng Fang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China
| | - Daibo Feng
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China
| | - Xiaoqing Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China
| | - Jing Yuan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing 400038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing 400038, China
| | - Xiaojing Yan
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing 400038, China
| | - Yan Zhang
- Department of Pediatrics, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Guoben Street, Wanzhou district, Chongqing 404000, China
| | - Jun Zhu
- Department of Cardiology, Shanghai Hospital, Shanghai Street, Wanzhou District, Chongqing 404000, China
| | - Jiangyi Wu
- Department of Sports Medicine and Rehabilitation, Shenzhen Hospital, Peking University, Lianhua Street, Futian District, Shenzhen 518034, China
| | - Jiqin Lian
- Correspondence. Zhenghong Ni, ; Wei Xiang, ; Jiqin Lian,
| | - Wei Xiang
- Correspondence. Zhenghong Ni, ; Wei Xiang, ; Jiqin Lian,
| | - Zhenhong Ni
- Correspondence. Zhenghong Ni, ; Wei Xiang, ; Jiqin Lian,
| |
Collapse
|
8
|
Li Z, Li D, Su H, Xue H, Tan G, Xu Z. Autophagy: An important target for natural products in the treatment of bone metabolic diseases. Front Pharmacol 2022; 13:999017. [PMID: 36467069 PMCID: PMC9716086 DOI: 10.3389/fphar.2022.999017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 12/28/2024] Open
Abstract
Bone homeostasis depends on a precise dynamic balance between bone resorption and bone formation, involving a series of complex and highly regulated steps. Any imbalance in this process can cause disturbances in bone metabolism and lead to the development of many associated bone diseases. Autophagy, one of the fundamental pathways for the degradation and recycling of proteins and organelles, is a fundamental process that regulates cellular and organismal homeostasis. Importantly, basic levels of autophagy are present in all types of bone-associated cells. Due to the cyclic nature of autophagy and the ongoing bone metabolism processes, autophagy is considered a new participant in bone maintenance. Novel therapeutic targets have emerged as a result of new mechanisms, and bone metabolism can be controlled by interfering with autophagy by focusing on certain regulatory molecules in autophagy. In parallel, several studies have reported that various natural products exhibit a good potential to mediate autophagy for the treatment of metabolic bone diseases. Therefore, we briefly described the process of autophagy, emphasizing its function in different cell types involved in bone development and metabolism (including bone marrow mesenchymal stem cells, osteoblasts, osteocytes, chondrocytes, and osteoclasts), and also summarized research advances in natural product-mediated autophagy for the treatment of metabolic bone disease caused by dysfunction of these cells (including osteoporosis, rheumatoid joints, osteoarthritis, fracture nonunion/delayed union). The objective of the study was to identify the function that autophagy serves in metabolic bone disease and the effects, potential, and challenges of natural products for the treatment of these diseases by targeting autophagy.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hui Su
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Chen H, Zhou J, Zhang G, Luo Z, Li L, Kang X. Emerging role and therapeutic implication of mTOR signalling in intervertebral disc degeneration. Cell Prolif 2022; 56:e13338. [PMID: 36193577 PMCID: PMC9816935 DOI: 10.1111/cpr.13338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023] Open
Abstract
Intervertebral disc degeneration (IDD), an important cause of chronic low back pain (LBP), is considered the pathological basis for various spinal degenerative diseases. A series of factors, including inflammatory response, oxidative stress, autophagy, abnormal mechanical stress, nutritional deficiency, and genetics, lead to reduced extracellular matrix (ECM) synthesis by intervertebral disc (IVD) cells and accelerate IDD progression. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays a vital role in diverse degenerative diseases. Recent studies have shown that mTOR signalling is involved in the regulation of autophagy, oxidative stress, inflammatory responses, ECM homeostasis, cellular senescence, and apoptosis in IVD cells. Accordingly, we reviewed the mechanism of mTOR signalling in the pathogenesis of IDD to provide innovative ideas for future research and IDD treatment.
Collapse
Affiliation(s)
- Hai‐Wei Chen
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Jian‐Wei Zhou
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,Key Laboratory of Orthopaedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouGansu ProvincePeople's Republic of China
| | - Guang‐Zhi Zhang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Zhang‐Bin Luo
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Lei Li
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Xue‐Wen Kang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China,Key Laboratory of Orthopaedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouGansu ProvincePeople's Republic of China
| |
Collapse
|
10
|
Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14148329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Is there any relationship between plant nutrition and human health? The overall response to this question is very positive, and a strong relationship between the nutrition of plants and humans has been reported in the literature. The nutritional status of edible plants consumed by humans can have a negative or positive impact on human health. This review was designed to assess the importance of plant bioactive compounds for human health under the umbrella of sustainable agriculture. With respect to the first research question, it was found that plant bioactives (e.g., alkaloids, carotenoids, flavonoids, phenolics, and terpenoids) have a crucial role in human health due to their therapeutic benefits, and their potentiality depends on several factors, including botanical, environmental, and clinical attributes. Plant bioactives could be produced using plant tissue culture tools (as a kind of agro-biotechnological method), especially in cases of underexploited or endangered plants. Bioactive production of plants depends on many factors, especially climate change (heat stress, drought, UV radiation, ozone, and elevated CO2), environmental pollution, and problematic soils (degraded, saline/alkaline, waterlogged, etc.). Under the previously mentioned stresses, in reviewing the literature, a positive or negative association was found depending on the kinds of stress or bioactives and their attributes. The observed correlation between plant bioactives and stress (or growth factors) might explain the importance of these bioactives for human health. Their accumulation in stressed plants can increase their tolerance to stress and their therapeutic roles. The results of this study are in keeping with previous observational studies, which confirmed that the human nutrition might start from edible plants and their bioactive contents, which are consumed by humans. This review is the first report that analyzes this previously observed relationship using pictorial presentation.
Collapse
|
11
|
Ma T, Lv L, Yu Y, Jia L, Song X, Xu X, Li T, Sheng X, Wang H, Zhang J, Gao L. Bilobalide Exerts Anti-Inflammatory Effects on Chondrocytes Through the AMPK/SIRT1/mTOR Pathway to Attenuate ACLT-Induced Post-Traumatic Osteoarthritis in Rats. Front Pharmacol 2022; 13:783506. [PMID: 35281931 PMCID: PMC8905364 DOI: 10.3389/fphar.2022.783506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
Although osteoarthritis (OA) significantly affects the quality of life of the elderly, there is still no effective treatment strategy. The standardized Ginkgo biloba L. extract preparation has been shown to have a wide range of therapeutic effects. Bilobalide, a unique ingredient of Ginkgo biloba, has anti-inflammatory and antioxidant pharmacological properties, but its mechanism of action on OA remains unknown. In this study, we investigated the effects of bilobalide on the development of OA through in vivo and in vitro experiments, as well as its potential anti-inflammatory mechanisms. The in vitro experiments demonstrated that bilobalide significantly inhibited the production of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and matrix metalloproteinase 13 (MMP13) in ATDC5 chondrocytes induced by Interleukin-1β (IL-1β). At the molecular level, bilobalide induced chondrocyte autophagy by activating the AMPK/SIRT1/mTOR signaling pathway, which increased the expression of autophagy-related Atg genes, up-regulated the expression of LC3 protein, and reduced the expression of the p62 protein. In vivo, bilobalide exerted significant anti-inflammatory and anti-extracellular matrix (ECM) degradation effects in a rat model of post-traumatic OA (PTOA) induced by anterior cruciate ligament transection (ACLT). Bilobalide could relieve joint pain in PTOA rats, inhibit the expression of iNOS and COX-2 protein in cartilage via the AMPK/SIRT1/mTOR pathway, and reduce the level of ECM degradation biomarkers in serum. In conclusion, bilobalide exhibits vigorous anti-inflammatory activity, presenting it as an interesting potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Liangyu Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Yue Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Lina Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Xiaopeng Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - XinYu Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Ting Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Xuanbo Sheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Haoran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| |
Collapse
|
12
|
Negm WA, El-Kadem AH, Elekhnawy E, Attallah NGM, Al-Hamoud GA, El-Masry TA, Zayed A. Wound-Healing Potential of Rhoifolin-Rich Fraction Isolated from Sanguisorba officinalis Roots Supported by Enhancing Re-Epithelization, Angiogenesis, Anti-Inflammatory, and Antimicrobial Effects. Pharmaceuticals (Basel) 2022; 15:178. [PMID: 35215291 PMCID: PMC8874642 DOI: 10.3390/ph15020178] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
A wound is a complicated bioprocess resulting in significant tissue damage, which is worsened by a secondary bacterial infection, commonly Pseudomonas aeruginosa and Staphylococcus aureus. The goal of our study was to investigate the metabolic profile and possible wound-healing effect of Sanguisorba officinalis roots rhoifolin rich fraction (RRF). The LC-ESI-MS/MS analysis of S. officinalis roots crude ethanol extract resulted in a tentative identification of 56 bioactive metabolites, while a major flavonoid fraction was isolated by column chromatography and identified by thin-layer chromatography coupled with electrospray ionization/mass spectrometry (TLC-ESI/MS), where rhoifolin was the major component representing 94.5% of its content. The antibiofilm activity of RRF on the mono-species and dual-species biofilm of P. aeruginosa and S. aureus was investigated. RRF exhibited inhibitory activity on P. aeruginosa and S. aureus mono-species biofilm at 2× minimum inhibitory concentration (MIC) and 4× MIC values. It also significantly inhibited the dual-species biofilm at 4× MIC values. Moreover, the wound-healing characteristics of RRF gel formulation were investigated. Rats were randomly allocated into four groups (eight rats in each): Untreated control; Blank gel; Betadine cream, and RRF gel groups. Animals were anesthetized, and full-thickness excisional skin wounds were created on the shaved area in the dorsal skin. The gels were topically applied to the wound's surface daily for 10 days. The results demonstrated that RRF had a promising wound-healing effect by up-regulating the platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), keratinocyte growth factor (KGF), and fibronectin, while metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), IL-1β, and nitric oxide (NO) levels were suppressed. It also enhanced the immune staining of transforming growth factor (TGF-β) and improved histopathological findings. Furthermore, it displayed an immunomodulatory action on lipopolysaccharide-induced peripheral blood mononuclear cells. Hence, the wound-healing effect of rhoifolin was confirmed by supporting re-epithelization, angiogenesis, antibacterial, immunomodulatory, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Aya H. El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (A.H.E.-K.); (T.A.E.-M.)
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Nashwah G. M. Attallah
- Department of Pharmaceutical Science College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (A.H.E.-K.); (T.A.E.-M.)
| | - Ahmed Zayed
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
13
|
Tian Z, Zhang X, Sun M. Phytochemicals Mediate Autophagy Against Osteoarthritis by Maintaining Cartilage Homeostasis. Front Pharmacol 2022; 12:795058. [PMID: 34987406 PMCID: PMC8722717 DOI: 10.3389/fphar.2021.795058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease and is a leading cause of disability and reduced quality of life worldwide. There are currently no clinical treatments that can stop or slow down OA. Drugs have pain-relieving effects, but they do not slow down the course of OA and their long-term use can lead to serious side effects. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Autophagy is an intracellular protective mechanism, and targeting autophagy-related pathways has been found to prevent and treat various diseases. Attenuation of the autophagic pathway has now been found to disrupt cartilage homeostasis and plays an important role in the development of OA. Therefore, modulation of autophagic signaling pathways mediating cartilage homeostasis has been considered as a potential therapeutic option for OA. Phytochemicals are active ingredients from plants that have recently been found to reduce inflammatory factor levels in cartilage as well as attenuate chondrocyte apoptosis by modulating autophagy-related signaling pathways, which are not only widely available but also have the potential to alleviate the symptoms of OA. We reviewed preclinical studies and clinical studies of phytochemicals mediating autophagy to regulate cartilage homeostasis for the treatment of OA. The results suggest that phytochemicals derived from plant extracts can target relevant autophagic pathways as complementary and alternative agents for the treatment of OA if subjected to rigorous clinical trials and pharmacological tests.
Collapse
Affiliation(s)
- Zheng Tian
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xinan Zhang
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
14
|
Lu R, He Z, Zhang W, Wang Y, Cheng P, Lv Z, Yuan X, Guo F, You H, Chen AM, Hu W. Oroxin B alleviates osteoarthritis through anti-inflammation and inhibition of PI3K/AKT/mTOR signaling pathway and enhancement of autophagy. Front Endocrinol (Lausanne) 2022; 13:1060721. [PMID: 36531454 PMCID: PMC9751055 DOI: 10.3389/fendo.2022.1060721] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common aging-related degenerative joint disease with chronic inflammation as its possible pathogenesis. Oroxin B (OB), a flavonoid isolated from traditional Chinese herbal medicine, possesses anti-inflammation properties which may be involved in regulating the pathogenesis of OA, but its mechanism has not been elucidated. Our study was the first to explore the potential chondroprotective effect and elucidate the underlying mechanism of OB in OA. METHODS In vitro, primary mice chondrocytes were stimulated with IL-1β along with or without the administration of OB or autophagy inhibitor 3-methyladenine (3-MA). Cell viability assay was measured with a cell counting kit-8 (CCK-8). The phenotypes of anabolic-related (Aggrecan and Collagen II), catabolic-related (MMP3, MMP13, and ADAMTS5), inflammation-related (iNOS, COX-2, TNF-α, IL-6, and IL-1β), and markers of related signaling pathways in chondrocytes with different treatment were detected through western blot, RT-qPCR, and immunofluorescent staining. In vivo, the destabilized medial meniscus (DMM) operation was performed to establish the OA mice model. After knee intra-articular injection with OB for 8 weeks, the mice's knee joints were obtained for subsequent histological staining and analysis. RESULTS OB reversed the expression level of anabolic-related proteins (Aggrecan and Collagen II) and catabolic-related (MMP3, MMP13, and ADAMTS5) in IL-1β-induced chondrocytes. Mechanistically, OB suppressed the inflammatory response stimulated by IL-1β, as the inflammation-related (iNOS, COX-2, TNF-α, IL-6, and IL-1β) markers were downregulated after the administration of OB in IL-1β-induced chondrocytes. Besides, the activation of PI3K/AKT/mTOR signaling pathway induced by IL-1β could be inhibited by OB. Additionally, the autophagy process impaired by IL-1β could be rescued by OB. What's more, the introduction of 3-MA to specifically inhibit the autophagic process impairs the protective effect of OB on cartilage. In vivo, histological staining revealed that intra-articular injection of OB attenuated the cartilage degradation, as well as reversed the expression level of anabolic and catabolic-related proteins such as Aggrecan, Collagen II, and MMP13 induced in DMM-induced OA models. CONCLUSIONS The study verified that OB exhibited the chondroprotective effect by anti-inflammatory, inhibiting the PI3K/AKT/mTOR signaling pathway, and enhancing the autophagy process, indicating that OB might be a promising agent for the treatment of OA.
Collapse
Affiliation(s)
- Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weikai Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingguang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengtao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yuan
- Department of Traumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An-min Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weihua Hu,
| |
Collapse
|