1
|
Tiwari P, Yadav K, Shukla RP, Bakshi AK, Panwar D, Das S, Mishra PR. Extracellular vesicles-powered immunotherapy: Unleashing the potential for safer and more effective cancer treatment. Arch Biochem Biophys 2024; 756:110022. [PMID: 38697343 DOI: 10.1016/j.abb.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Cancer treatment has seen significant advancements with the introduction of Onco-immunotherapies (OIMTs). Although some of these therapies have received approval for use, others are either undergoing testing or are still in the early stages of development. Challenges persist in making immunotherapy widely applicable to cancer treatment. To maximize the benefits of immunotherapy and minimize potential side effects, it's essential to improve response rates across different immunotherapy methods. A promising development in this area is the use of extracellular vesicles (EVs) as novel delivery systems. These small vesicles can effectively deliver immunotherapies, enhancing their effectiveness and reducing harmful side effects. This article discusses the importance of integrating nanomedicines into OIMTs, highlighting the challenges with current anti-OIMT methods. It also explores key considerations for designing nanomedicines tailored for OIMTs, aiming to improve upon existing immunotherapy techniques. Additionally, the article looks into innovative approaches like biomimicry and the use of natural biomaterial-based nanocarriers (NCs). These advancements have the potential to transform the delivery of immunotherapy. Lastly, the article addresses the challenges of moving OIMTs from theory to clinical practice, providing insights into the future of using advanced nanotechnology in cancer treatment.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Jawaharlal Nehru University, New Delhi, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Dilip Panwar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Sweety Das
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, U.P., India.
| |
Collapse
|
2
|
Crucitta S, Cucchiara F, Marconcini R, Bulleri A, Manacorda S, Capuano A, Cioni D, Nuzzo A, de Jonge E, Mathjissen RHJ, Neri E, van Schaik RHN, Fogli S, Danesi R, Del Re M. TGF-β mRNA levels in circulating extracellular vesicles are associated with response to anti-PD1 treatment in metastatic melanoma. Front Mol Biosci 2024; 11:1288677. [PMID: 38633217 PMCID: PMC11021649 DOI: 10.3389/fmolb.2024.1288677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/27/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction: Immune checkpoint inhibitors (ICIs) represent the standard therapy for metastatic melanoma. However, a few patients do not respond to ICIs and reliable predictive biomarkers are needed. Methods: This pilot study investigates the association between mRNA levels of programmed cell death-1 (PD-1) ligand 1 (PD-L1), interferon-gamma (IFN-γ), and transforming growth factor-β (TGF-β) in circulating extracellular vesicles (EVs) and survival in 30 patients with metastatic melanoma treated with first line anti-PD-1 antibodies. Blood samples were collected at baseline and RNA extracted from EVs; the RNA levels of PD-L1, IFN-γ, and TGF-β were analysed by digital droplet PCR (ddPCR). A biomarker-radiomic correlation analysis was performed in a subset of patients. Results: Patients with high TGF-β expression (cut-off fractional abundance [FA] >0.19) at baseline had longer median progression-free survival (8.4 vs. 1.8 months; p = 0.006) and overall survival (17.9 vs. 2.63 months; p = 0.0009). Moreover, radiomic analysis demonstrated that patients with high TGF-β expression at baseline had smaller lesions (2.41 ± 3.27 mL vs. 42.79 ± 101.08 mL, p < 0.001) and higher dissimilarity (12.01 ± 28.23 vs. 5.65 ± 8.4; p = 0.018). Discussion: These results provide evidence that high TGF-β expression in EVs is associated with a better response to immunotherapy. Further investigation on a larger patient population is needed to validate the predictive power of this potential biomarker of response to ICIs.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Riccardo Marconcini
- Unit of Medical Oncology 2, Department of Medicine and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Alessandra Bulleri
- Unit of Radiodiagnostics 1, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Simona Manacorda
- Unit of Medical Oncology 2, Department of Medicine and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Section of Pharmacology, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Dania Cioni
- Unit of Radiodiagnostics 1, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Amedeo Nuzzo
- Unit of Medical Oncology 2, Department of Medicine and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Evert de Jonge
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ron H. J. Mathjissen
- Department of Medical Oncology, Erasmus University Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Emanuele Neri
- Unit of Radiodiagnostics 1, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Bhattacharya B, Nag S, Mukherjee S, Kulkarni M, Chandane P, Mandal D, Mukerjee N, Mirgh D, Anand K, Adhikari MD, Gorai S, Thorat N. Role of Exosomes in Epithelial-Mesenchymal Transition. ACS APPLIED BIO MATERIALS 2024; 7:44-58. [PMID: 38108852 PMCID: PMC10792609 DOI: 10.1021/acsabm.3c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process driving cancer metastasis, transforming non-motile cells into a motile population that migrates to distant organs and forms secondary tumors. In recent years, cancer research has revealed a strong connection between exosomes and the EMT. Exosomes, a subpopulation of extracellular vesicles, facilitate cellular communication and dynamically regulate various aspects of cancer metastasis, including immune cell suppression, extracellular matrix remodeling, metastasis initiation, EMT initiation, and organ-specific metastasis. Tumor-derived exosomes (TEXs) and their molecular cargo, comprising proteins, lipids, nucleic acids, and carbohydrates, are essential components that promote EMT in cancer. TEXs miRNAs play a crucial role in reprogramming the tumor microenvironment, while TEX surface integrins contribute to organ-specific metastasis. Exosome-based cancer metastasis research offers a deeper understanding about cancer and an effective theranostic platform development. Additionally, various therapeutic sources of exosomes are paving the way for innovative cancer treatment development. In this Review, we spotlight the role of exosomes in EMT and their theranostic impact, aiming to inspire cancer researchers worldwide to explore this fascinating field in more innovative ways.
Collapse
Affiliation(s)
- Bikramjit Bhattacharya
- Department
of Applied Microbiology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sagnik Nag
- Department
of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore, Tamil Nadu 632014, India
| | - Sayantanee Mukherjee
- Amrita
School of NanoSciences and Molecular Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala 682041, India
| | - Mrunal Kulkarni
- Department
of Pharmacy, BITS Pilani, Pilani, Rajasthan 333031, India
| | - Priti Chandane
- Department
of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Debashmita Mandal
- Department
of Biotechnology, Maulana Abul Kalam Azad
University of Technology (MAKAUT), Haringhata, Nadia, West Bengal 741249, India
| | - Nobendu Mukerjee
- Center
for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
- Department
of Health Sciences, Novel Global Community
and Educational Foundation, Hebersham, New South Wales 2770, Australia
| | - Divya Mirgh
- Vaccine
and Immunotherapy Canter, Massachusetts
General Hospital, Boston, Massachusetts 02114, United States
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Manab Deb Adhikari
- Department
of Biotechnology, University of North Bengal
Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | - Sukhamoy Gorai
- Rush University Medical
Center, 1620 W. Harrison St., Chicago, Illinois 60612, United States
| | - Nanasaheb Thorat
- Limerick
Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
4
|
Burnie J, Fernandes C, Chaphekar D, Wei D, Ahmed S, Persaud AT, Khader N, Cicala C, Arthos J, Tang VA, Guzzo C. Identification of CD38, CD97, and CD278 on the HIV surface using a novel flow virometry screening assay. Sci Rep 2023; 13:23025. [PMID: 38155248 PMCID: PMC10754950 DOI: 10.1038/s41598-023-50365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
While numerous cellular proteins in the HIV envelope are known to alter virus infection, methodology to rapidly phenotype the virion surface in a high throughput, single virion manner is lacking. Thus, many human proteins may exist on the virion surface that remain undescribed. Herein, we developed a novel flow virometry screening assay to discover new proteins on the surface of HIV particles. By screening a CD4+ T cell line and its progeny virions, along with four HIV isolates produced in primary cells, we discovered 59 new candidate proteins in the HIV envelope that were consistently detected across diverse HIV isolates. Among these discoveries, CD38, CD97, and CD278 were consistently present at high levels on virions when using orthogonal techniques to corroborate flow virometry results. This study yields new discoveries about virus biology and demonstrates the utility and feasibility of a novel flow virometry assay to phenotype individual virions.
Collapse
Affiliation(s)
- Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada
| | - Claire Fernandes
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada
| | - Deepa Chaphekar
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shubeen Ahmed
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Arvin Tejnarine Persaud
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada
| | - Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vera A Tang
- Flow Cytometry and Virometry Core Facility, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada.
| |
Collapse
|
5
|
Nasu M, Khadka VS, Jijiwa M, Kobayashi K, Deng Y. Exploring Optimal Biomarker Sources: A Comparative Analysis of Exosomes and Whole Plasma in Fasting and Non-Fasting Conditions for Liquid Biopsy Applications. Int J Mol Sci 2023; 25:371. [PMID: 38203541 PMCID: PMC10779159 DOI: 10.3390/ijms25010371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The study of liquid biopsy with plasma samples is being conducted to identify biomarkers for clinical use. Exosomes, containing nucleic acids and metabolites, have emerged as possible sources for biomarkers. To evaluate the effectiveness of exosomes over plasma, we analyzed the small non-coding RNAs (sncRNAs) and metabolites extracted from exosomes in comparison to those directly extracted from whole plasma under both fasting and non-fasting conditions. We found that sncRNA profiles were not affected by fasting in either exosome or plasma samples. Our results showed that exosomal sncRNAs were found to have more consistent profiles. The plasma miRNA profiles contained high concentrations of cell-derived miRNAs that were likely due to hemolysis. We determined that certain metabolites in whole plasma exhibited noteworthy concentration shifts in relation to fasting status, while others did not. Here, we propose that (1) fasting is not required for a liquid biopsy study that involves both sncRNA and metabolomic profiling, as long as metabolites that are not influenced by fasting status are selected, and (2) the utilization of exosomal RNAs promotes robust and consistent findings in plasma samples, mitigating the impact of batch effects derived from hemolysis. These findings advance the optimization of liquid biopsy methodologies for clinical applications.
Collapse
Affiliation(s)
- Masaki Nasu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| | - Vedbar S. Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| | - Ken Kobayashi
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.J.); (K.K.)
| |
Collapse
|
6
|
Zupanc C, Franko A, Štrbac D, Kovač V, Dolžan V, Goričar K. Serum Calretinin and Genetic Variability as a Prognostic and Predictive Factor in Malignant Mesothelioma. Int J Mol Sci 2023; 25:190. [PMID: 38203360 PMCID: PMC10778798 DOI: 10.3390/ijms25010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Calretinin is a promising diagnostic biomarker for malignant mesothelioma (MM), but less is known about its prognostic role. Our aim was to evaluate the association between serum calretinin concentration or genetic factors and the survival or outcome of cisplatin-based chemotherapy in MM. Our study included 265 MM patients. Serum calretinin concentration was determined using ELISA. Patients were genotyped for seven polymorphisms in CALB2, E2F2, MIR335, NRF1, and SEPTIN7 using competitive allele-specific PCR. Nonparametric tests, logistic regression, and survival analysis were used for statistical analysis. Higher serum calretinin concentration was associated with shorter progression-free (PFS) (HR = 1.18 (1.02-1.37), p = 0.023) and overall survival (OS) (HR = 1.20 (1.03-1.41), p = 0.023), but the association was not significant after adjusting for clinical factors (HR = 1.05 (0.85-1.31), p = 0.653 and HR = 1.06 (0.84-1.34), p = 0.613, respectively). SEPTIN7 rs3801339 and MIR335 rs3807348 were associated with survival even after adjustment (HR = 1.76 (1.17-2.64), p = 0.007 and HR = 0.65 (0.45-0.95), p = 0.028, respectively). Calretinin concentration was higher in patients who progressed after treatment with cisplatin-based chemotherapy (1.68 vs. 0.45 ng/mL, p = 0.001). Calretinin concentration above 0.89 ng/mL was associated with shorter PFS and OS from the start of chemotherapy (HR = 1.88 (1.28-2.77), p = 0.001 and HR = 1.91 (1.22-2.97), p = 0.004, respectively), even after adjusting for clinical factors (p < 0.05). MIR335 rs3807348 was associated with a better response to chemotherapy (OR = 2.69 (1.17-6.18), p = 0.020). We showed that serum calretinin is associated with survival and chemotherapy treatment outcomes in MM and could serve as a predictive biomarker.
Collapse
Affiliation(s)
- Cita Zupanc
- Military Medical Unit-Slovenian Army, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
| | - Alenka Franko
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
- Clinical Institute of Occupational Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Danijela Štrbac
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Viljem Kovač
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
7
|
Klen J, Dolžan V. SGLT2 Inhibitors in the Treatment of Diabetic Kidney Disease: More than Just Glucose Regulation. Pharmaceutics 2023; 15:1995. [PMID: 37514181 PMCID: PMC10386344 DOI: 10.3390/pharmaceutics15071995] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic kidney disease (DKD) is a severe and common complication and affects a quarter of patients with type 2 diabetes mellitus (T2DM). Oxidative stress and inflammation related to hyperglycemia are interlinked and contribute to the occurrence of DKD. It was shown that sodium-glucose cotransporter-2 (SGLT2) inhibitors, a novel yet already widely used therapy, may prevent the development of DKD and alter its natural progression. SGLT2 inhibitors induce systemic and glomerular hemodynamic changes, provide metabolic advantages, and reduce inflammatory and oxidative stress pathways. In T2DM patients, regardless of cardiovascular diseases, SGLT2 inhibitors may reduce albuminuria, progression of DKD, and doubling of serum creatinine levels, thus lowering the need for kidney replacement therapy by over 40%. The molecular mechanisms behind these beneficial effects of SGLT2 inhibitors extend beyond their glucose-lowering effects. The emerging studies are trying to explain these mechanisms at the genetic, epigenetic, transcriptomic, and proteomic levels.
Collapse
Affiliation(s)
- Jasna Klen
- Division of Surgery, Department of Abdominal Surgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Ahmadzada T, Vijayan A, Vafaee F, Azimi A, Reid G, Clarke S, Kao S, Grau GE, Hosseini-Beheshti E. Small and Large Extracellular Vesicles Derived from Pleural Mesothelioma Cell Lines Offer Biomarker Potential. Cancers (Basel) 2023; 15:cancers15082364. [PMID: 37190292 DOI: 10.3390/cancers15082364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Pleural mesothelioma, previously known as malignant pleural mesothelioma, is an aggressive and fatal cancer of the pleura, with one of the poorest survival rates. Pleural mesothelioma is in urgent clinical need for biomarkers to aid early diagnosis, improve prognostication, and stratify patients for treatment. Extracellular vesicles (EVs) have great potential as biomarkers; however, there are limited studies to date on their role in pleural mesothelioma. We conducted a comprehensive proteomic analysis on different EV populations derived from five pleural mesothelioma cell lines and an immortalized control cell line. We characterized three subtypes of EVs (10 K, 18 K, and 100 K), and identified a total of 4054 unique proteins. Major differences were found in the cargo between the three EV subtypes. We show that 10 K EVs were enriched in mitochondrial components and metabolic processes, while 18 K and 100 K EVs were enriched in endoplasmic reticulum stress. We found 46 new cancer-associated proteins for pleural mesothelioma, and the presence of mesothelin and PD-L1/PD-L2 enriched in 100 K and 10 K EV, respectively. We demonstrate that different EV populations derived from pleural mesothelioma cells have unique cancer-specific proteomes and carry oncogenic cargo, which could offer a novel means to extract biomarkers of interest for pleural mesothelioma from liquid biopsies.
Collapse
Affiliation(s)
- Tamkin Ahmadzada
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Abhishek Vijayan
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Dermatology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Stephen Clarke
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Steven Kao
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW 2050, Australia
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Georges E Grau
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- The Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Elham Hosseini-Beheshti
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- The Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
9
|
Yi YW. Therapeutic Implications of the Drug Resistance Conferred by Extracellular Vesicles Derived from Triple-Negative Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24043704. [PMID: 36835116 PMCID: PMC9960576 DOI: 10.3390/ijms24043704] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Anticancer drug resistance is a significant impediment in current cancer treatment. Extracellular vesicles (EVs) derived from cancer cells were recently acknowledged as a critical mechanism of drug resistance, tumor progression, and metastasis. EVs are enveloped vesicles comprising a lipid bilayer that transfers various cargo, including proteins, nucleic acids, lipids, and metabolites, from an originating cell to a recipient cell. Investigating the mechanisms whereby EVs confer drug resistance is still in the early stages. In this review, I analyze the roles of EVs derived from triple-negative breast cancer cells (TNBC-EVs) in anticancer drug resistance and discuss strategies to overcome TNBC-EV-mediated drug resistance.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
10
|
Wang L, Du DD, Zheng ZX, Shang PF, Yang XX, Sun C, Wang XY, Tang YJ, Guo XL. Circulating galectin-3 promotes tumor-endothelium-adhesion by upregulating ICAM-1 in endothelium-derived extracellular vesicles. Front Pharmacol 2022; 13:979474. [PMID: 36386163 PMCID: PMC9642840 DOI: 10.3389/fphar.2022.979474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/13/2022] [Indexed: 08/04/2023] Open
Abstract
The adhesion of tumor cells to vascular endothelial cells is an important process of tumor metastasis. Studies have shown that tumor could educate vascular endothelial cells to promote tumor metastasis through many ways. However, the effect of tumor cells on the functions of vascular endothelial cells-derived extracellular vesicles (H-EVs) and the mechanisms underlying their effects in tumor-endothelium adhesion in metastasis remain mysterious. In this study, we found that H-EVs promoted the adhesion of triple negative breast cancer cell to endothelial cells and cirGal-3 enhanced the adhesion-promoting effects of H-EVs. The underlying mechanism was related to the upregulation of glycolysis in endothelial cells induced by cirGal-3 which led to the increase of the ICAM-1 expression and its transmission to MDA-MB-231 cells by H-EVs. Targeting of cirGal-3 or glycolysis of vascular endothelium in breast cancer therefore represents a promising therapeutic strategy to reduce metastasis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Dan-Dan Du
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zong-Xue Zheng
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Peng-Fei Shang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Xia Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Chao Sun
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Yan Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
11
|
Holcar M, Kandušer M, Lenassi M. Blood Nanoparticles - Influence on Extracellular Vesicle Isolation and Characterization. Front Pharmacol 2021; 12:773844. [PMID: 34867406 PMCID: PMC8635996 DOI: 10.3389/fphar.2021.773844] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Blood is a rich source of disease biomarkers, which include extracellular vesicles (EVs). EVs are nanometer-to micrometer-sized spherical particles that are enclosed by a phospholipid bilayer and are secreted by most cell types. EVs reflect the physiological cell of origin in terms of their molecular composition and biophysical characteristics, and they accumulate in blood even when released from remote organs or tissues, while protecting their cargo from degradation. The molecular components (e.g., proteins, miRNAs) and biophysical characteristics (e.g., size, concentration) of blood EVs have been studied as biomarkers of cancers and neurodegenerative, autoimmune, and cardiovascular diseases. However, most biomarker studies do not address the problem of contaminants in EV isolates from blood plasma, and how these might affect downstream EV analysis. Indeed, nonphysiological EVs, protein aggregates, lipoproteins and viruses share many molecular and/or biophysical characteristics with EVs, and can therefore co-isolate with EVs from blood plasma. Consequently, isolation and downstream analysis of EVs from blood plasma remain a unique challenge, with important impacts on the outcomes of biomarker studies. To help improve rigor, reproducibility, and reliability of EV biomarker studies, we describe here the major contaminants of EV isolates from blood plasma, and we report on how different EV isolation methods affect their levels, and how contaminants that remain can affect the interpretation of downstream EV analysis.
Collapse
Affiliation(s)
- Marija Holcar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maša Kandušer
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
de Boer C, Davies NH. Blood derived extracellular vesicles as regenerative medicine therapeutics. Biochimie 2021; 196:203-215. [PMID: 34688790 DOI: 10.1016/j.biochi.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/16/2021] [Indexed: 12/21/2022]
Abstract
The regenerative promise of nanosized extracellular vesicles (EVs) secreted by cells is widely explored. Recently, the capacity of EVs purified from blood to elicit regenerative effect has begun to be evaluated. Blood might be a readily available source of EVs, avoiding need for extensive cell culturing, but there are specific issues that complicate use of the biofluid in this area. We assess the evidence for blood containing regenerative material, progress made towards delivering blood derived EVs as regenerative therapeutics, difficulties that relate to the complexity of blood and the promise of hydrogel-based delivery of EVs.
Collapse
Affiliation(s)
- Candice de Boer
- Cardiovascular Research Unit, Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Neil Hamer Davies
- Cardiovascular Research Unit, Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa.
| |
Collapse
|
13
|
Sampling, Logistics, and Analytics of Urine for RT-qPCR-based Diagnostics. Cancers (Basel) 2021; 13:cancers13174381. [PMID: 34503191 PMCID: PMC8430584 DOI: 10.3390/cancers13174381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Body fluids in the context of cancer diagnosis are the primary source of liquid biopsy, i.e., biomarker detection that includes blood and serum, urine, and saliva. RNA represents a particular class of biomarkers because it is thought to monitor the current status of gene expression in humans, in organs, and if present, also in tumors. In case of bladder cancer, we developed a scheme that describes, in detail, all steps from the collection of urine samples from patients, stabilization of samples, their transportation, storage, and marker analysis by qPCR-based technology. We find that urine samples prepared according to this protocol show stability of RNA over more than 10 days at unchilled temperatures during shipping. A specific procedure of primer design and amplicon evaluation allows a specific assignment of PCR products to human genomics and transcriptomics data collections. In summary, we describe a technical option for the robust acquisition of urine samples and the quantitative detection of RNA-based tumor markers in case of bladder cancer patients. This protocol is for general use, and we describe that it works for any RNA-based tumor marker in urine of cancer patients.
Collapse
|