1
|
Ahmadpour V, Modarresi M, Eftekhari M, Saeedi M, Karimi N, Rasekhian M. Chemical composition of essential and fixed oils of Tagetes erecta fruits (Iran) and their implications in inhibition of cancer signaling. Sci Rep 2024; 14:19667. [PMID: 39181940 PMCID: PMC11344814 DOI: 10.1038/s41598-024-70582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
The current research was conducted to explore, for the first time, Tagetes erecta L. (family Asteraceae) fruits from northwest Iran in terms of the chemical composition of essential and fixed oils, their cytotoxic activities, and the inhibitory effect of essential oil on the PI3K/AKT/mTOR signaling pathway. The volatile oil was obtained through hydrodistillation (Clevenger apparatus). According to gas chromatography-mass spectrometry analysis, the essential oil was rich in cyclic monoterpenoids, 2-isopropyl-5-methyl-3-cyclohexen-1-one (19.99%), D-limonene (12.75%), terpinolene (11.64%) and also the saturated fatty acid palmitic acid (19.09%). Furthermore, the seeds of T. erecta were extracted using hexane by the maceration method. The analysis of fatty acid profile of the fixed oil by gas chromatography-flame ionization detector (GC-FID) demonstrated that the most predominant fatty acids in fixed oil were linoleic acid (59.53%), palmitic acid (13.70%), stearic acid (10.20%), and oleic acid (9.20%). The cytotoxic activity of essential oil, crude oil, and fraction A (obtained from fixed oil) were evaluated by using the MTT assay on MCF7 (human breast cancer cell line), PC3 (human prostate cancer cell line), and U87MG (human glioblastoma cell line). Finally, the effect of essential oil on inhibiting the PI3K/Akt/mTOR signaling pathway was evaluated using real-time PCR. The essential oil exhibited vigorous cytotoxic activity on the U87MG cell line, with an IC50 value of 32.65 μg/mL. Interestingly, the essential oil significantly inhibited the PI3K/AKT/mTOR cascade compared to the non-treated group. Our results suggest that the essential oil holds promise as an anticancer agent for glioblastoma cell lines. To the best of our knowledge, this study is the first to report on the profile of the essential oil of T. erecta fruits and its implications for targeting the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Vahideh Ahmadpour
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Modarresi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdieh Eftekhari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Karimi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
El-Tanani M, Rabbani SA, Aljabali AA, Matalka II, El-Tanani Y, Rizzo M, Tambuwala MM. The Complex Connection between Obesity and Cancer: Signaling Pathways and Therapeutic Implications. Nutr Cancer 2024; 76:683-706. [PMID: 38847479 DOI: 10.1080/01635581.2024.2361964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 08/02/2024]
Abstract
Obesity has emerged as an important global health challenge, significantly influencing the incidence and progression of various cancers. This comprehensive review elucidates the complex relationship between obesity and oncogenesis, focusing particularly on the role of dysregulated signaling pathways as central mediators of this association. We delve into the contributions of obesity-induced alterations in key signaling cascades, including PI3K/AKT/mTOR, JAK/STAT, NF-κB, and Wnt/β-catenin to carcinogenesis. These alterations facilitate unchecked cellular proliferation, chronic inflammation and apoptosis resistance. Epidemiological evidence links obesity with increased cancer susceptibility and adverse prognostic outcomes, with pronounced risks for specific cancers such as breast, colorectal, endometrial and hepatic malignancies. This review synthesizes data from both animal and clinical studies to underscore the pivotal role of disrupted signaling pathways in shaping innovative therapeutic strategies. We highlight the critical importance of lifestyle modifications in obesity management and cancer risk mitigation, stressing the benefits of dietary changes, physical activity, and behavioral interventions. Moreover, we examine targeted pharmacological strategies addressing aberrant pathways in obesity-related tumors and discuss the integration of cutting-edge treatments, including immunotherapy and precision medicine, into clinical practice.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Syed Arman Rabbani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Yahia El-Tanani
- Medical School, St George's University of London, Tooting, London
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, UK
| |
Collapse
|
3
|
Mohanty P, Pande B, Acharya R, Bhaskar LVKS, Verma HK. Unravelling the Triad of Lung Cancer, Drug Resistance, and Metabolic Pathways. Diseases 2024; 12:93. [PMID: 38785748 PMCID: PMC11119248 DOI: 10.3390/diseases12050093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Lung cancer, characterized by its heterogeneity, presents a significant challenge in therapeutic management, primarily due to the development of resistance to conventional drugs. This resistance is often compounded by the tumor's ability to reprogram its metabolic pathways, a survival strategy that enables cancer cells to thrive in adverse conditions. This review article explores the complex link between drug resistance and metabolic reprogramming in lung cancer, offering a detailed analysis of the molecular mechanisms and treatment strategies. It emphasizes the interplay between drug resistance and changes in metabolic pathways, crucial for developing effective lung cancer therapies. This review examines the impact of current treatments on metabolic pathways and the significance of considering metabolic factors to combat drug resistance. It highlights the different challenges and metabolic alterations in non-small-cell lung cancer and small-cell lung cancer, underlining the need for subtype-specific treatments. Key signaling pathways, including PI3K/AKT/mTOR, MAPK, and AMPK, have been discussed for their roles in promoting drug resistance and metabolic changes, alongside the complex regulatory networks involved. This review article evaluates emerging treatments targeting metabolism, such as metabolic inhibitors, dietary management, and combination therapies, assessing their potential and challenges. It concludes with insights into the role of precision medicine and metabolic biomarkers in crafting personalized lung cancer treatments, advocating for metabolic targeting as a promising approach to enhance treatment efficacy and overcome drug resistance. This review underscores ongoing advancements and hurdles in integrating metabolic considerations into lung cancer therapy strategies.
Collapse
Affiliation(s)
- Pratik Mohanty
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati 781039, India;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur 492099, India;
| | - Rakesh Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (L.V.K.S.B.)
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (L.V.K.S.B.)
| | - Henu Kumar Verma
- Lung Health and Immunity, Helmholtz Zentrum Munich, IngolstädterLandstraße 1, 85764 Oberschleißheim, 85764 Munich, Bayren, Germany
| |
Collapse
|
4
|
Handoko, Adham M, Rachmadi L, Wibowo H, Gondhowiardjo SA. Cold Tumour Phenotype Explained Through Whole Genome Sequencing in Clinical Nasopharyngeal Cancer: A Preliminary Study. Immunotargets Ther 2024; 13:173-182. [PMID: 38524775 PMCID: PMC10959245 DOI: 10.2147/itt.s452117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Nasopharyngeal cancer (NPC) is a complex cancer due to its unique genomic features and association with the Epstein-Barr virus (EBV). Despite therapeutic advancements, NPC prognosis remains poor, necessitating a deeper understanding of its genomics. Here, we present a comprehensive whole genome sequencing (WGS) view of NPC genomics and its correlation with the phenotype. Methods This study involved WGS of a clinical NPC biopsy specimen. Sequencing was carried out using a long read sequencer from Oxford Nanopore. Analysis of the variants involved correlation with the phenotype of NPC. Results A loss of genes within chromosome 6 from copy number variation (CNV) was found. The lost genes included HLA-A, HLA-B, and HLA-C, which work in the antigen presentation process. This loss of the major histocompatibility complex (MHC) apparatus resulted in the tumour's ability to evade immune recognition. The tumour exhibited an immunologically "cold" phenotype, with mild tumour-infiltrating lymphocytes, supporting the possible etiology of loss of antigen presentation capability. Furthermore, the driver mutation PIK3CA gene was identified along with various other gene variants affecting numerous signaling pathways. Discussion Comprehensive WGS was able to detect various mutations and genomic losses, which could explain tumour progression and immune evasion ability. Furthermore, the study identified the loss of other genes related to cancer and immune pathways, emphasizing the complexity of NPC genomics. In conclusion, this study underscores the significance of MHC class I gene loss and its probable correlation with the cold tumour phenotype observed in NPC.
Collapse
Affiliation(s)
- Handoko
- Department of Radiation Oncology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Marlinda Adham
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Otorhinolaryngology - Head and Neck Surgery Department, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Lisnawati Rachmadi
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Anatomical Pathology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Heri Wibowo
- Integrated Laboratory, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Soehartati A Gondhowiardjo
- Department of Radiation Oncology, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
5
|
Wang KW, Wang MD, Li ZX, Hu BS, Wu JJ, Yuan ZD, Wu XL, Yuan QF, Yuan FL. An antigen processing and presentation signature for prognostic evaluation and immunotherapy selection in advanced gastric cancer. Front Immunol 2022; 13:992060. [PMID: 36311733 PMCID: PMC9615473 DOI: 10.3389/fimmu.2022.992060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The aim of the study was to propose a signature based on genes associated with antigen processing and presentation (APscore) to predict prognosis and response to immune checkpoint inhibitors (ICIs) in advanced gastric cancer (aGC). Background How antigen presentation-related genes affected the immunotherapy response and whether they could predict the clinical outcomes of the immune checkpoint inhibitor (ICI) in aGC remain largely unknown. Methods In this study, an aGC cohort (Kim cohort, RNAseq, N=45) treated by ICIs, and 467 aGC patients from seven cohorts were conducted to investigate the value of the APscore predicting the prognosis and response to ICIs. Subsequently, the associations of the APscore with the tumor microenvironment (TME), molecular characteristics, clinical features, and somatic mutation variants in aGC were assessed. The area under the receiver operating characteristic curve (AUROC) of the APscore was analyzed to estimate response to ICIs. Cox regression or Log-rank test was used to estimate the prognosis of aGC patients. Results The APscore constructed by principal component analysis algorithms was an effective predictive biomarker of the response to ICIs in the Kim cohort and 467 aGC patients (Kim: AUC =0.85, 95% CI: 0.69–1.00; 467 aGC: AUC =0.69, 95% CI: 0.63–0.74). The APscore also was a prognostic biomarker in 467 aGC patients (HR=1.73, 95% CI: 1.21−2.46). Inhibitory immunity, decreased TMB and low stromal scores were observed in the high APscore group, while activation of immunity, increased TMB, and high stromal scores were observed in the low APscore group. Next, we evaluated the value of several central genes in predicting the prognosis and response to ICIs in aGC patients, and verified them using immunogenic, transcriptomic, genomic, and multi-omics methods. Lastly, a predictive model built successfully discriminated patients with vs. without immunotherapy response and predicted the survival of aGC patients. Conclusions The APscore was a new biomarker for identifying high-risk aGC patients and patients with responses to ICIs. Exploration of the APscore and hub genes in multi-omics GC data may guide treatment decisions.
Collapse
Affiliation(s)
- Ke-wei Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mei-dan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zi-xi Li
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ben-shun Hu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jun-jie Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zheng-dong Yuan
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-long Wu
- Department of hospital infection, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qin-fang Yuan
- Department of hospital infection, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Feng-lai Yuan
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- *Correspondence: Feng-lai Yuan,
| |
Collapse
|
6
|
Hashemi-Khah MS, Arbab-Soleimani N, Forghanifard MM, Gholami O, Taheri S, Amoueian S. An In Vivo Study of Lactobacillus rhamnosus (PTCC 1637) as a New Therapeutic Candidate in Esophageal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7607470. [PMID: 35782061 PMCID: PMC9249511 DOI: 10.1155/2022/7607470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Objective This study is aimed at investigating the effect of probiotic Lactobacillus rhamnosus on esophageal cancer in vivo and in vitro. Methods and Results In this study, the cytotoxicity effects of L. rhamnosus supernatant and whole-cell culture on a cancer cell line (Kyse30) compared to 5fu were evaluated by the MTT assay. The real-time PCR method was used to analyse the L. rhamnosus supernatant effect on the expression of Wnt signaling pathway genes. An in vivo investigation in nude mice was done to assess the anti-tumor activity of L. rhamnosus supernatant and whole-cell culture. Both supernatant and whole-cell culture of L. rhamnosus reduced cell survival (Kyse30) P < 0.001. The supernatant of this bacterium significantly reduced the expression of Wnt signaling pathway genes. Administration of supernatant and whole-cell culture of L. rhamnosus expressively reduced tumor growth compared to the control group. The effects of this bacterium on tumor necrosis were quite evident, pathologically P < 0.01. Conclusion This study is the first report that assessed the potential impact of L. rhamnosus, especially its supernatant on esophageal cancer and Wnt signaling pathway genes. Therefore, this bacterium can be a harmless candidate for esophageal cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Saba Taheri
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Sakineh Amoueian
- Pathology Department, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
D’Alvia L, Carraro S, Peruzzi B, Urciuoli E, Palla L, Del Prete Z, Rizzuto E. A Novel Microwave Resonant Sensor for Measuring Cancer Cell Line Aggressiveness. SENSORS (BASEL, SWITZERLAND) 2022; 22:4383. [PMID: 35746165 PMCID: PMC9229881 DOI: 10.3390/s22124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The measurement of biological tissues' dielectric properties plays a crucial role in determining the state of health, and recent studies have reported microwave biosensing to be an innovative method with great potential in this field. Research has been conducted from the tissue level to the cellular level but, to date, cellular adhesion has never been considered. In addition, conventional systems for diagnosing tumor aggressiveness, such as a biopsy, are rather expensive and invasive. Here, we propose a novel microwave approach for biosensing adherent cancer cells with different malignancy degrees. A circular patch resonator was designed adjusting its structure to a standard Petri dish and a network analyzer was employed. Then, the resonator was realized and used to test two groups of different cancer cell lines, based on various tumor types and aggressiveness: low- and high-aggressive osteosarcoma cell lines (SaOS-2 and 143B, respectively), and low- and high-aggressive breast cancer cell lines (MCF-7 and MDA-MB-231, respectively). The experimental results showed that the sensitivity of the sensor was high, in particular when measuring the resonant frequency. Finally, the sensor showed a good ability to distinguish low-metastatic and high-metastatic cells, paving the way to the development of more complex measurement systems for noninvasive tissue diagnosis.
Collapse
Affiliation(s)
- Livio D’Alvia
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (L.D.); (S.C.); (Z.D.P.)
| | - Serena Carraro
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (L.D.); (S.C.); (Z.D.P.)
| | - Barbara Peruzzi
- Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (B.P.); (E.U.)
| | - Enrica Urciuoli
- Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (B.P.); (E.U.)
| | - Luigi Palla
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy;
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (L.D.); (S.C.); (Z.D.P.)
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (L.D.); (S.C.); (Z.D.P.)
| |
Collapse
|
8
|
Si Z, Zhong Y, Lao S, Wu Y, Zhong G, Zeng W. The Role of miRNAs in the Resistance of Anthracyclines in Breast Cancer: A Systematic Review. Front Oncol 2022; 12:899145. [PMID: 35664800 PMCID: PMC9157424 DOI: 10.3389/fonc.2022.899145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has been reported as the most common cancer in women globally, with 2.26 million new cases in 2020. While anthracyclines are the first-line drug for breast cancer, they cause a variety of adverse reactions and drug resistance, especially for triple-negative breast cancer, which can lead to poor prognosis, high relapse, and mortality rate. MicroRNAs (miRNAs) have been shown to be important in the initiation, development and metastasis of malignancies and their abnormal transcription levels may influence the efficacy of anthracyclines by participating in the pathologic mechanisms of breast cancer. Therefore, it is essential to understand the exact role of miRNAs in the treatment of breast cancer with anthracyclines. In this review, we outline the mechanisms and signaling pathways involved in miRNAs in the treatment of breast cancer using anthracyclines. The role of miRNA in the diagnosis, prognosis and treatment of breast cancer patients is discussed, along with the involvement of miRNAs in chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Zihan Si
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Yan Zhong
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Sixian Lao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Yufeng Wu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Weiwei Zeng
- The Second People's Hospital of Longgang District, Shenzhen, China.,Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
9
|
Zacharewski N, Movahed-Ezazi M, Song X, Mehta T, Manjila S. De Novo Glioblastoma Masqueraded within a Hemispheric Dural Meningiomatosis: Rare Imaging Findings and Rationale for Two-Staged Resection. J Neurol Surg Rep 2022; 83:e44-e49. [PMID: 35693250 PMCID: PMC9179231 DOI: 10.1055/s-0042-1749215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/30/2022] [Indexed: 11/04/2022] Open
Abstract
Introduction
Collision tumors present as histologically different juxtaposed neoplasms within the same anatomical region, independent of the adjacent cell population. De novo intracranial collision tumors involving metachronous primary brain neoplasms alongside dural meningiomatosis are not well documented in the literature.
Clinical Presentation
We present staged surgical management of a 72-year-old female with known left hemispheric stable dural-based convexity mass lesions over 10 years and new-onset expressive aphasia and headaches. MRI had revealed left supratentorial dural-based enhanced masses consistent with en plaque meningiomatosis. Embolization angiography showed an unusual tumor blush from an aberrant branch of anterior cerebral artery suggesting a deeper focal intra-axial nature; a stage 1 craniotomy for dural-based tumor resection was completed with diagnosis of a meningioma (WHO grade 1). Intraoperatively, a distinct intra-axial deep discrete lesion was verified stereotactically, concordant with the location of tumor blush. The patient made a complete neurological recovery from a transient postoperative supplemental motor area syndrome in a week. Subsequent postoperative follow-up showed worsening of right hemiparesis and MRI showed an increase in residual lesion size and perilesional edema, which prompted a stage 2 radical resection of a glioblastoma, WHO grade 4. She improved neurologically after surgery with steroids and physical therapy. At 15 months following adjuvant therapy, she remains neurologically intact throughout the postoperative course, with no recurrent tumor on MRI.
Conclusion
A de novo glioblastoma presented as a masquerading lesion within hemispheric convexity meningiomatosis in an elderly patient with no prior radiation/phakomatosis, inciting a non-causal juxtapositional coexistence. The authors highlight rare pathognomonic angiographic findings and the rationale for two-staged resections of these collision lesions that led to excellent clinicoradiological outcome.
Collapse
Affiliation(s)
- Nicholas Zacharewski
- Department of Neurosurgery, Hartford Hospital, Hartford, Connecticut, United States
- Department of Trinity College, Hartford, Connecticut, United States
| | - Misha Movahed-Ezazi
- Department of Pathology and Laboratory Medicine, Hartford Hospital, Hartford, Connecticut, United States
| | - Xianyuan Song
- Department of Pathology and Laboratory Medicine, Hartford Hospital, Hartford, Connecticut, United States
| | - Tapan Mehta
- Division of Neuro Intervention, Hartford Hospital, Hartford, Connecticut, United States
| | - Sunil Manjila
- Department of Neurosurgery, Hartford Hospital, Hartford, Connecticut, United States
| |
Collapse
|
10
|
The E3 Ubiquitin Ligase TRIM11 Facilitates Gastric Cancer Progression by Activating the Wnt/β-Catenin Pathway via Destabilizing Axin1 Protein. JOURNAL OF ONCOLOGY 2022; 2022:8264059. [PMID: 35237324 PMCID: PMC8885197 DOI: 10.1155/2022/8264059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/03/2022]
Abstract
Background Aberrant expression of tripartite motif 11 (TRIM11) and the Wnt/β-catenin pathway are essential for facilitating tumorigenesis and progression in multiple types of cancer. Aim To investigate the molecular changes linking the dysregulation of TRIM11 and Wnt/β-catenin pathway activation in gastric cancer (GC) progression. Methods The expression levels of TRIM11 were detected in GC tissues and cells by immunohistochemistry and western blotting. The role of TRIM11 in the growth, proliferation, and invasion of gastric cancer cells was observed by a series of cell functional experiments and further verified in vivo. Co-immunoprecipitation (Co-IP), immunofluorescence, cycloheximide, and western blotting assays and other experiments were conducted to explore the mechanisms of TRIM11 underlying the regulation of the Wnt/β-catenin pathway. For further verification, rescue experiments were performed by cotransfection of TRIM11 and Axin1 siRNA in GC cells. Results Using Co-IP assays, we identified TRIM11 as a potent binding partner of Axin1 in GC cells. Elevated TRIM11 levels were significantly correlated with unfavorable clinical outcomes and poor survival in patients with GC. In addition, TRIM11 promoted the cell proliferation and invasion capacities of GC cells in vitro and tumor growth in vivo. Mechanistic investigations revealed that TRIM11 destabilized Axin1 protein by interacting with Axin1, thus inducing the activation of the Wnt/β-catenin pathway. Moreover, we found that the oncogenic effects of TRIM11 on GC cells were partly mediated by suppression of Axin1. Furthermore, the protein expression of TRIM11 and Axin1 was negatively correlated in GC tissues. Conclusion Collectively, our findings not only establish a pivotal TRIM11-Axin1-β-catenin axis in driving GC progression but also indicate that TRIM11 serves as a valuable therapeutic target for the treatment of GC patients.
Collapse
|
11
|
Raimondi L, Gallo A, Cuscino N, De Luca A, Costa V, Carina V, Bellavia D, Bulati M, Alessandro R, Fini M, Conaldi PG, Giavaresi G. Potential Anti-Metastatic Role of the Novel miR-CT3 in Tumor Angiogenesis and Osteosarcoma Invasion. Int J Mol Sci 2022; 23:705. [PMID: 35054891 PMCID: PMC8775549 DOI: 10.3390/ijms23020705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor mainly occurring in young adults and derived from primitive bone-forming mesenchyme. OS develops in an intricate tumor microenvironment (TME) where cellular function regulated by microRNAs (miRNAs) may affect communication between OS cells and the surrounding TME. Therefore, miRNAs are considered potential therapeutic targets in cancer and one of the goals of research is to accurately define a specific signature of a miRNAs, which could reflect the phenotype of a particular tumor, such as OS. Through NGS approach, we previously found a specific molecular profile of miRNAs in OS and discovered 8 novel miRNAs. Among these, we deepen our knowledge on the fifth candidate renamed now miR-CT3. MiR-CT3 expression was low in OS cells when compared with human primary osteoblasts and healthy bone. Through TargetScan, VEGF-A was predicted as a potential biological target of miR-CT3 and luciferase assay confirmed it. We showed that enforced expression of miR-CT3 in two OS cell lines, SAOS-2 and MG-63, reduced expression of VEGF-A mRNA and protein, inhibiting tumor angiogenesis. Enforced expression of miR-CT3 also reduced OS cell migration and invasion as confirmed by soft agar colony formation assay. Interestingly, we found that miR-CT3 behaves inducing the activation of p38 MAP kinase pathway and modulating the epithelial-mesenchymal transition (EMT) proteins, in particular reducing Vimentin expression. Overall, our study highlights the novel role of miR-CT3 in regulating tumor angiogenesis and progression in OS cells, linking also to the modulation of EMT proteins.
Collapse
Affiliation(s)
- Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Alessia Gallo
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Nicola Cuscino
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Matteo Bulati
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (B.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy;
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Pier Giulio Conaldi
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| |
Collapse
|