1
|
Lan YL, Zou S, Chen R. Update on the intriguing roles of AQP4 expression and redistribution in the progression and treatment of glioma. Ann Med 2024; 56:2401111. [PMID: 39247976 PMCID: PMC11385637 DOI: 10.1080/07853890.2024.2401111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 09/10/2024] Open
Abstract
Aquaporin 4 (AQP4) is abundant in the human brain and has an important role in brain homeostasis and diseases. AQP4 expression has been found to be associated with glioma malignancies. However, the complete understanding of the biological processes and curative importance of AQP4 in glioma remains unclear. The impact of AQP4 subcellular mislocalization on glioma progression and the precise mechanisms regarding AQP4 translocation in glioma need further investigation. In this review, we update recent findings about disturbed AQP4 expression in glioma and explore targeting AQP4 to modulate the glioma progression. Thereafter we discuss some possible mechanisms of action of AQP4 translocations in glioma. The present article offers an appropriate introduction to the potential involvement of AQP4 in the emergence and progression of glioma. Both comprehensive research into the mechanisms and systematically intervention studies focusing on AQP4 are essential. By embracing this strategy, we can obtain a new and insightful outlook on managing cancerous glioma. Although the observations summarized in this review should be confirmed with more studies, we believe that they could provide critical information for the design of more focused research that will allow for systematic and definitive evaluation of the role of AQP4 in glioma treatments.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases, Hangzhou, Zhejiang, China
| | - Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruoli Chen
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| |
Collapse
|
2
|
Abdul Hamid H, Hambali A, Okon U, Che Mohd Nassir CMN, Mehat MZ, Norazit A, Mustapha M. Is cerebral small vessel disease a central nervous system interstitial fluidopathy? IBRO Neurosci Rep 2024; 16:98-105. [PMID: 39007087 PMCID: PMC11240297 DOI: 10.1016/j.ibneur.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 07/16/2024] Open
Abstract
A typical anatomical congregate and functionally distinct multicellular cerebrovascular dynamic confer diverse blood-brain barrier (BBB) and microstructural permeabilities to conserve the health of brain parenchymal and its microenvironment. This equanimity presupposes the glymphatic system that governs the flow and clearance of metabolic waste and interstitial fluids (ISF) through venous circulation. Following the introduction of glymphatic system concept, various studies have been carried out on cerebrospinal fluid (CSF) and ISF dynamics. These studies reported that the onset of multiple diseases can be attributed to impairment in the glymphatic system, which is newly referred as central nervous system (CNS) interstitial fluidopathy. One such condition includes cerebral small vessel disease (CSVD) with poorly understood pathomechanisms. CSVD is an umbrella term to describe a chronic progressive disorder affecting the brain microvasculature (or microcirculation) involving small penetrating vessels that supply cerebral white and deep gray matter. This review article proposes CSVD as a form of "CNS interstitial fluidopathy". Linking CNS interstitial fluidopathy with CSVD will open a better insight pertaining to the perivascular space fluid dynamics in CSVD pathophysiology. This may lead to the development of treatment and therapeutic strategies to ameliorate the pathology and adverse effect of CSVD.
Collapse
Affiliation(s)
- Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Udemeobong Okon
- Department of Physiology, Faculty of Basic Medical Science, University of Calabar, Etagbor, PMB 1115 Calabar, Nigeria
| | - Che Mohd Nasril Che Mohd Nassir
- Department of Anatomy and Physiology, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
3
|
Bhattacharjee A, Jana A, Bhattacharjee S, Mitra S, De S, Alghamdi BS, Alam MZ, Mahmoud AB, Al Shareef Z, Abdel-Rahman WM, Woon-Khiong C, Alexiou A, Papadakis M, Ashraf GM. The role of Aquaporins in tumorigenesis: implications for therapeutic development. Cell Commun Signal 2024; 22:106. [PMID: 38336645 PMCID: PMC10854195 DOI: 10.1186/s12964-023-01459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Aquaporins (AQPs) are ubiquitous channel proteins that play a critical role in the homeostasis of the cellular environment by allowing the transit of water, chemicals, and ions. They can be found in many different types of cells and organs, including the lungs, eyes, brain, glands, and blood vessels. By controlling the osmotic water flux in processes like cell growth, energy metabolism, migration, adhesion, and proliferation, AQPs are capable of exerting their regulatory influence over a wide range of cellular processes. Tumour cells of varying sources express AQPs significantly, especially in malignant tumours with a high propensity for metastasis. New insights into the roles of AQPs in cell migration and proliferation reinforce the notion that AQPs are crucial players in tumour biology. AQPs have recently been shown to be a powerful tool in the fight against pathogenic antibodies and metastatic cell migration, despite the fact that the molecular processes of aquaporins in pathology are not entirely established. In this review, we shall discuss the several ways in which AQPs are expressed in the body, the unique roles they play in tumorigenesis, and the novel therapeutic approaches that could be adopted to treat carcinoma.
Collapse
Affiliation(s)
- Arkadyuti Bhattacharjee
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, USA
| | - Ankit Jana
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Swagato Bhattacharjee
- KoshKey Sciences Pvt Ltd, Canara Bank Layout, Karnataka, Bengaluru, Rajiv Gandhi Nagar, Kodigehalli, 560065, India
| | - Sankalan Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Swagata De
- Department of English, DDE Unit, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Zubair Alam
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah, Almunwarah, 71491, Saudi Arabia
| | - Zainab Al Shareef
- College of Medicine, and Research Institute for Medical and Health Sciences, Department of Basic Medical Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Wael M Abdel-Rahman
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Chan Woon-Khiong
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Ghulam Md Ashraf
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
4
|
Bonosi L, Benigno UE, Musso S, Giardina K, Gerardi RM, Brunasso L, Costanzo R, Paolini F, Buscemi F, Avallone C, Gulino V, Iacopino DG, Maugeri R. The Role of Aquaporins in Epileptogenesis-A Systematic Review. Int J Mol Sci 2023; 24:11923. [PMID: 37569297 PMCID: PMC10418736 DOI: 10.3390/ijms241511923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Aquaporins (AQPs) are a family of membrane proteins involved in the transport of water and ions across cell membranes. AQPs have been shown to be implicated in various physiological and pathological processes in the brain, including water homeostasis, cell migration, and inflammation, among others. Epileptogenesis is a complex and multifactorial process that involves alterations in the structure and function of neuronal networks. Recent evidence suggests that AQPs may also play a role in the pathogenesis of epilepsy. In animal models of epilepsy, AQPs have been shown to be upregulated in regions of the brain that are involved in seizure generation, suggesting that they may contribute to the hyperexcitability of neuronal networks. Moreover, genetic studies have identified mutations in AQP genes associated with an increased risk of developing epilepsy. Our review aims to investigate the role of AQPs in epilepsy and seizure onset from a pathophysiological point of view, pointing out the potential molecular mechanism and their clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (U.E.B.); (S.M.); (K.G.); (R.M.G.); (L.B.); (R.C.); (F.P.); (F.B.); (C.A.); (V.G.); (D.G.I.)
| |
Collapse
|
5
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
6
|
Lan YL, Nie T, Zou S. Identification of the prognostic and immunological roles of aquaporin 4: A potential target for survival and immunotherapy in glioma patients. Front Cell Neurosci 2022; 16:1061428. [PMID: 36523816 PMCID: PMC9744806 DOI: 10.3389/fncel.2022.1061428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/16/2022] [Indexed: 09/19/2023] Open
Abstract
Recent studies have revealed the critical role of AQP4 in the occurrence and development of gliomas. However, the role of AQP4 in immune regulation has not yet been reported. Many recent reports have identified the lymphatic system's occurrence within the central nervous system (CNS) and the vital role of immune regulation in treating brain tumors. Therefore, the present study aimed to explore the role of AQP4 in the immune regulation of glioma. We used bioinformatics analysis to investigate the immunoregulatory function of AQP4, including its correlation with immunity, anti-tumor immune processes, immunotherapy, immune infiltration, tumor mutational burden (TMB), stemness, mutation, and pan-cancer. The results revealed that AQP4 was significantly associated with the expression of multiple immune checkpoints, immune cells, as well as multiple immune cell effector genes, and antigen presentation and processing abilities. Although no significant correlation was found between the AQP4 gene and IDH mutation and MGMT, AQP4 demonstrated substantial expression differences in different immunophenotypes and molecular types. Using the TTD database, we discovered that EGFR, ABAT, and PDGFRA are strongly associated with AQP4 expression in the glioblastoma (GBM) classification, and these factors could be the potential AQP4-related immunotherapy targets. Afterward, we screened the differential genes in the high and low AQP4 gene expression group, the high and low immune score group, and the high and low matrix score group and took the intersection as the candidate factor. Finally, univariate Cox analysis was used to find eight prognostic variables with significant differences across the candidate genes. After lasso dimensionality reduction, three genes built the model (RARRES1, SOCS3, and TTYH1). The scoring model generated by the three genes was eventually obtained after the multi-factor screening of the three genes. Finally, combined with clinical information and cox regression analysis, it was further confirmed that the model score could be used as an independent prognostic factor.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Tian Nie
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuang Zou
- Department of Neurology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|