1
|
Liu F, Chen F, Yang L, Qiu F, Zhong G, Gao S, Xi W, Lai M, He Q, Chen Y, Chen W, Zhang J, Yang L. Melittin acupoint injection in attenuating bone erosion in collagen-induced arthritis mice via inhibition of the RANKL/NF-κB signaling pathway. Quant Imaging Med Surg 2023; 13:5996-6013. [PMID: 37711782 PMCID: PMC10498218 DOI: 10.21037/qims-23-254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/06/2023] [Indexed: 09/16/2023]
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease leading to chronic joint inflammation. Bone erosion is the most serious pathological condition of RA and the main cause of joint deformities and disability. Melittin acupoint injection (MAI) is an effective traditional Chinese medicine (TCM) method for RA treatment. This study aimed to investigate the effect of MAI on RA bone erosion and to elucidate the underlying mechanism. Methods A collagen-induced arthritis (CIA) mouse model was established as the experimental subject. MAI was administrated once every other day for 28 days to mice with CIA. The effects of MAI on joint diseases were assessed by body weight, arthritis index (AI) score, swollen joint count (SJC) score, and hind paw thickness. Ankle radiological changes were captured by micro-computed tomography (micro-CT) and histological changes were observed by pathological staining. Organ histological changes, spleen index, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and creatinine (Crea) levels of serum were tested to evaluate the toxicity of MAI. Cytokine expression levels were confirmed by enzyme-linked immunosorbent assay (ELISA) to evaluate the immunity of CIA mice. Results MAI administration markedly improved the clinical signs of CIA in mice, including hind paw thickness, AI, and the number of swollen paw joints (most of them P<0.05 or even <0.01). According to histopathological analysis, MAI ameliorated inflammatory cell infiltration, synovial hyperplasia, pannus formation, and bone erosion (all P<0.01). Micro-CT and tartrate-resistant acid phosphatase (TRAP) staining (P<0.01) also revealed that MAI could relieve bone erosion via reducing the formation of osteoclasts. Not only could MAI relieve the immunological boost [P<0.05 for the high-dose MAI (HM) group], but also it had no liver or kidney side effects (P>0.05). In addition, it decreased the serum levels of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) and increased the serum levels of IL-4 and IL-10 (the majority of P<0.05 or even <0.01). Transcriptome sequencing results indicated that MAI affected the expression of osteoclast differentiation pathway genes, which was connected with the receptor activator of the nuclear factor κB ligand/nuclear factor kappa B (RANKL/NF-κB) pathway. Conclusions Based on our findings, MAI could suppress joint inflammation and inhibit RANKL/NF-κB-mediated osteoclast differentiation to rescue bone erosion in CIA mice, suggesting that MAI can be a potentially therapeutic substance for RA.
Collapse
Affiliation(s)
- Fenfang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fen Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Le Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fucheng Qiu
- Intensive Care Unit, Foshan Hospital of TCM, Foshan, China
| | - Guangen Zhong
- Department of Acupuncture and Rehabilitation, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shan Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weizhe Xi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Meilian Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiting He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ying Chen
- Department of Acupuncture and Rehabilitation, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weiming Chen
- Department of Acupuncture and Rehabilitation, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lu Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Acupuncture and Rehabilitation, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Li W, Yu L, Li W, Ge G, Ma Y, Xiao L, Qiao Y, Huang W, Huang W, Wei M, Wang Z, Bai J, Geng D. Prevention and treatment of inflammatory arthritis with traditional Chinese medicine: Underlying mechanisms based on cell and molecular targets. Ageing Res Rev 2023; 89:101981. [PMID: 37302756 DOI: 10.1016/j.arr.2023.101981] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Inflammatory arthritis, primarily including rheumatoid arthritis, osteoarthritis and ankylosing spondylitis, is a group of chronic inflammatory diseases, whose general feature is joint dysfunction with chronic pain and eventually causes disability in older people. To date, both Western medicine and traditional Chinese medicine (TCM) have developed a variety of therapeutic methods for inflammatory arthritis and achieved excellent results. But there is still a long way to totally cure these diseases. TCM has been used to treat various joint diseases for thousands of years in Asia. In this review, we summarize clinical efficacies of TCM in inflammatory arthritis treatment after reviewing the results demonstrated in meta-analyses, systematic reviews, and clinical trials. We pioneered taking inflammatory arthritis-related cell targets of TCM as the entry point and further elaborated the molecular targets inside the cells of TCM, especially the signaling pathways. In addition, we also briefly discussed the relationship between gut microbiota and TCM and described the role of drug delivery systems for using TCM more accurately and safely. We provide updated and comprehensive insights into the clinical application of TCM for inflammatory arthritis treatment. We hope this review can guide and inspire researchers to further explore mechanisms of the anti-arthritis activity of TCM and make a great leap forward in comprehending the science of TCM.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yong Ma
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China
| | - Wenli Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230031, Anhui, China
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
3
|
Wang Z, Sang M, Zhang Y, Chen S, Li S, Chen Y, Xu E, Zhou Q, Xu W, Zhao C, Wang D, Lu W, Cao P. BmKK2, a thermostable Kv1.3 blocker from Buthus martensii Karsch (BmK) scorpion, inhibits the activation of macrophages via Kv1.3-NF-κB- NLPR3 axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116624. [PMID: 37182676 DOI: 10.1016/j.jep.2023.116624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation plays pivotal role in the development of chronic diseases. Reducing chronic inflammation is an important strategy for preventing and managing many chronic diseases. In traditional Chinese medicine, the processed Buthus martensii Karsch (BmK) scorpion(also called "Quanxie") has been used to treat chronic inflammatory arthritis and spondylitis for hundreds of years suggests that "Quanxie" could potentially be utilized as a resource for identifying new anti-inflammatory compounds. However, the molecular basis and the underline mechanism for the anti-inflammatory effect of processed BmK scorpion are still unclear. AIM OF THE STUDY The study aims to determine the potential involvement of macrophage-expressed Kv1.3 in the anti-inflammatory effect of processed BmK scorpion venom, as well as to identify new Kv1.3 blockers derived from processed BmK scorpion. MATERIALS AND METHODS In this study, the in vivo and in vitro anti-inflammatory activities were determined using carrageenan-induced paw edema, LPS-induced sepsis mouse models and LPS-induced macrophage activation model respectively. The effect of processed BmK scorpion water extract, processed BmK venom and BmKK2 on different potassium channels were detected by whole-cell voltage-clamp recordings on transfected HEK293 cells or mouse BMDMs. The cytokines were detected using RT-PCR and competitive enzyme-linked immunosorbent assay. High performance liquid chromatography, SDS-PAGE and peptide Mass Spectrometry analysis were used to isolate and identify the BmKK2. SiRNA, western blotting and flow cytometry were used to analysis the anti-inflammatory mechanism of BmKK2. RESULTS Here we demonstrate that BmKK2, a thermostable toxin targeting Kv1.3 is the critical anti-inflammatory component in the processed BmK scorpion. BmKK2 inhibits inflammation by targeting and inhibiting the activity of macrophage Kv1.3, thereby inhibiting the activation of NF-kB-NLPR3 pathway and the subsequent release of inflammatory factors. CONCLUSIONS These findings provide new insights into the molecular basis of the anti-inflammatory effects of "Quanxie" and highlight the importance of targeting Kv1.3 expressed on macrophages as an anti-inflammatory approach.
Collapse
Affiliation(s)
- Zhiheng Wang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Ming Sang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Yuxin Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | | | - Song Li
- Tianjiang Phamarceutical Co., Ltd, China
| | - Yonggen Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Erjin Xu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Qian Zhou
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Wenhao Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Chenglei Zhao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Dawei Wang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Wuguang Lu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
4
|
Liu J, Zhao N, Su SH, Gao Y, Qi B. Anti-Arthritic Effect of Edaravone Against Complete Freund Adjuvant Induced Arthritis via Osteoclast Differentiation and HIF-1α-VEGF-ANG-1 Axis. Drug Des Devel Ther 2023; 17:519-534. [PMID: 36845667 PMCID: PMC9946814 DOI: 10.2147/dddt.s391606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 02/19/2023] Open
Abstract
Background Bone dysfunction is a crucial problem that occurs during rheumatoid arthritis (RA) disease. Osteoclast plays a significant role in bone resorption and osteoclast differentiation and its enhancement of bone destruction. Edaravone remarkably exhibited free radical scavenging and anti-inflammatory effects. The objective of the current investigation is to comfort the inhibitory effect of Edaravone (ED) against complete Freund adjuvant (CFA) rat model via inhibition of angiogenesis and inflammation. Methods Subcutaneous injection of CFA (1%) was used to induce arthritis; the rats were divided into different groups and received the oral administration of ED. Paw edema, body weight, and arthritis score were regularly estimated. Biochemical parameters were estimated, respectively. We also estimate the level of hypoxia-inducible factor-1α (HIF-1α), angiopoietin 1 (ANG-1), and vascular endothelial growth factor (VEGF). We also checked into how ED affected the differentiation of osteoclasts utilising a co-culture system with monocytes and synovial fibroblasts in arthritis rats. Results ED treatment significantly (P<0.001) suppressed the arthritis score and paw edema and improved the body weight. ED treatment significantly (P<0.001) altered the antioxidant parameters and pro-inflammatory cytokines: inflammatory mediator nuclear kappa B factor (NF-κB), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2), respectively. Furthermore, ED treatment significantly (P<0.001) suppressed the level of ANG-1, HIF-1α, and VEGF, respectively. The results suggest that ED suppressed osteoclast differentiation and also decreased the level of cytokines and osteopontin (OPN), receptor activator for nuclear factor-κ B Ligand (RANKL) and macrophage colony stimulating factor (M-CSF) in the co-culture supernatant of monocytes and synovial fibroblasts. Conclusion Edaravone could mitigate CFA via inhibiting angiogenesis and inflammatory reactions, which may be linked with the HIF-1α-VEGF-ANG-1 axis and also enhance the bone destruction of murine arthritis via suppression of osteoclast differentiation and inflammatory reaction.
Collapse
Affiliation(s)
- Jichao Liu
- Department of Hand and Foot Micro Burn Plastic Surgery, 3201 Hospital, Hanzhong, People’s Republic of China
| | - Nan Zhao
- Department of Neurosurgery, The First Hospital of Kunming, Kunming, People’s Republic of China
| | - Shi-Han Su
- Department of Internal Medicine-Neurology, 920th Hospital of Joint Logistics Support Force, Kunming, People’s Republic of China
| | - Yun Gao
- Department of Neurosurgery, The First Hospital of Kunming, Kunming, People’s Republic of China
| | - Bo Qi
- Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming, People’s Republic of China,Correspondence: Bo Qi, Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming, 650000, People’s Republic of China, Email
| |
Collapse
|
5
|
Zeng W, Fang Y, Mo S, Shen C, Yang H, Luo G, Xiao L, Zhan R, Yan P. The Underling Mechanisms Exploration of Rubia cordifolia L. Extract Against Rheumatoid Arthritis by Integrating Network Pharmacology and Metabolomics. Drug Des Devel Ther 2023; 17:439-457. [PMID: 36818604 PMCID: PMC9930591 DOI: 10.2147/dddt.s388932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/02/2023] [Indexed: 02/13/2023] Open
Abstract
Purpose Rubia cordifolia L. (RC) is a classic herbal medicine for the treatment of rheumatoid arthritis (RA) and has been used since ancient times. The ethanol extract of Rubia cordifolia L. (RCE) showed obvious anti-RA effects in our previous study. However, further potential mechanisms require more exploration. We aimed to investigate the mechanism of RCE for the treatment of RA by integrating metabolomics and network pharmacology in this study. Methods An adjuvant-induced arthritis (AIA) rat model was established, and we evaluated the therapeutic effects of RCE. Metabolomics of serum and urine was used to identify the differential metabolites. Network pharmacology was applied to determine the key metabolites and potential targets. Finally, the potential targets and compounds of RCE were verified by molecular docking. Results The results indicated that RCE suppressed foot swelling and alleviated joint damage and also had anti-inflammatory properties by inhibiting the expressions of tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, prostaglandin E2 (PGE2), and P65. Ten and seven differential metabolites were found in the serum and urine, respectively, of rats. Six key targets, ie, phospholipase A2 group IIA (PLA2G2A), phospholipase A2 group X (PLA2G10), cytidine deaminase (CDA), uridine-cytidine kinase 2 (UCK2), charcot-leyden crystal galectin (CLC), and 5',3'-nucleotidase, mitochondrial (NT5M), were discovered by network pharmacology and metabolite analysis and were found to be related to glycerophospholipid metabolism and pyrimidine metabolism. Molecular docking confirmed that the favorable compounds showed affinities with the key targets, including alizarin, 6-hydroxyrubiadin, ruberythric acid, and munjistin. Conclusion This study revealed the underlying mechanisms of RCE and provided evidence that will allow researchers to further investigate the functions and components of RCE against RA.
Collapse
Affiliation(s)
- Weiya Zeng
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China,Key Laboratory of Chinese Medicinal Resources from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, People’s Republic of China,Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, People’s Republic of China
| | - Yuan Fang
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China,Key Laboratory of Chinese Medicinal Resources from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, People’s Republic of China,Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, People’s Republic of China
| | - Suifen Mo
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China,Key Laboratory of Chinese Medicinal Resources from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, People’s Republic of China,Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, People’s Republic of China
| | - Caihong Shen
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China,Key Laboratory of Chinese Medicinal Resources from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, People’s Republic of China,Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, People’s Republic of China
| | - Huiling Yang
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China,Key Laboratory of Chinese Medicinal Resources from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, People’s Republic of China,Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, People’s Republic of China
| | - Guihua Luo
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China,Key Laboratory of Chinese Medicinal Resources from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, People’s Republic of China,Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, People’s Republic of China
| | - Luhua Xiao
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China,Key Laboratory of Chinese Medicinal Resources from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, People’s Republic of China,Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, People’s Republic of China
| | - Ruoting Zhan
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China,Key Laboratory of Chinese Medicinal Resources from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, People’s Republic of China,Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, People’s Republic of China,Correspondence: Ruoting Zhan; Ping Yan, Guangzhou University of Chinese Medicine, No. 232, Outer Ring East Road, Guangzhou, Guangdong, People’s Republic of China, Tel/Fax +86 20-39358045, Email ;
| | - Ping Yan
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China,Key Laboratory of Chinese Medicinal Resources from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, People’s Republic of China,Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Yang Y, Wei Q, An R, Zhang HM, Shen JY, Qin XY, Han XL, Li J, Li XW, Gao XM, He J, Mao HP. Anti-osteoporosis effect of Semen Cuscutae in ovariectomized mice through inhibition of bone resorption by osteoclasts. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114834. [PMID: 34801609 DOI: 10.1016/j.jep.2021.114834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Semen Cuscutae, called Tu-si-zi in Chinese, is a kind of dried mature seed in the Convolvulaceae family. It mainly distributes in China, Korea, Pakistan, Vietnam, India and Thailand. It is used as a kidney-tonifying drug for treatment of aging related diseases such as osteoporosis in traditional Chinese medicine. However, the exact mechanisms on bone resorption are poorly studied. AIM OF THE STUDY The aim of this study was to investigate the potential effect of Semen Cuscutae on ovariectomy (OVX)-induced osteoporosis in mice and clarify the exact mechanisms by which Semen Cuscutae exert the anti-osteoporosis effect. MATERIALS AND METHODS Qualitative and quantitative analyses of Semen Cuscutae were performed by UPLC-Q-TOF-MS and HPLC-MS/MS, respectively. Changes in bone mineral density (BMD) induced by OVX in mice were measured by dual-energy X-ray absorptiometry and micro-computed tomography (μCT). Tartrate-resistant acid phosphatase (TRAP) staining as well as hematoxylin and eosin (HE) staining were used to observe bone microarchitectural changes. ELISA kits were used to assess the therapeutic effects of Semen Cuscutae on the serum levels of osteoprotegerin (OPG), tartrate-resistant acid phosphatase 5b (TRACP-5b), and receptor activator of nuclear factor-κB (RANKL). The effect of Semen Cuscutae on primary cell viability was assessed using CCK-8 and anti-tartrate phosphatase assays. TRAP staining and actin ring staining were used to observe the effect of Semen Cuscutae on osteoclast differentiation. Western blotting was used to measure the effects of Semen Cuscutae on expressions of NFATC1, c-Src kinase, and c-fos. RESULTS Results from UPLC-Q-TOF-MS showed that the main components of Semen Cuscutae were flavonoid compounds that included quercitrin, quercetin, hyperoside, caffeic acid, rutin, chlorogenic acid, luteolin, apigenin, kaempferol, isoquercetin, cryptochlorogenic acid, isorhamnetin-3-O-glucoside, and astragalin. After the Semen Cuscutae extract was orally administered to OVX mice, bone density increased (P < 0.01) and bone microstructure was significantly improved (P < 0.01 or 0.05). Additionally, Semen Cuscutae exhibited a significant descending effect in the levels of serum TRACP-5b and RANKL, while there was a significant increase in OPG in the Semen Cuscutae group compared with the OVX group, especially at high doses. Moreover, we found that increasing of c-fos, c-Src kinase, and NFATC1 protein expressions were reversed by Semen Cuscutae in vitro and in vivo. CONCLUSIONS Our results showed that Semen Cuscutae exhibited anti-osteoporosis effects through the c-fos/c-Src kinase/NFATC1 signaling pathway.
Collapse
Affiliation(s)
- Yun Yang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Qiu Wei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Ran An
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Hua-Mei Zhang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Jia-Yuan Shen
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Xiao-Yan Qin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Xiao-Ling Han
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Jie Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Xiao-Wei Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Xiu-Mei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Jun He
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China.
| | - Hao-Ping Mao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China.
| |
Collapse
|
7
|
Jiang Y, Zheng Y, Dong Q, Liao W, Pang L, Chen J, He Q, Zhang J, Luo Y, Li J, Fu C, Fu Q. Metabolomics combined with network pharmacology to study the mechanism of Shentong Zhuyu decoction in the treatment of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114846. [PMID: 34826542 DOI: 10.1016/j.jep.2021.114846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/16/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shentong Zhuyu decoction (STZYD) was first recorded in the classic of "Yilin Gaicuo" written by Wang Qingren, and recognized by the Chinese National Administration of Traditional Chinese Medicine as one of the 100 classic formulas. The formula has been widely used in the treatment of rheumatoid arthritis (RA) with significant clinical effects. However, its mechanism of action is not completely clear. AIM OF THE STUDY This study aimed to explore the mechanism of STZYD in the treatment of RA by network pharmacology and metabolomics. MATERIALS AND METHODS The effects of STZYD anti-RA were investigated by paw swelling, arthritis score, cytokine level, histopathological and micro-CT analysis in adjuvant-induced arthritis (AIA) rats. The chemical constituents of STZYD and absorbed constituents in AIA rat serum were analyzed by UPLC-Q-Exactive MS/MS. Based on the characterized chemical components, the network pharmacology was used to find potential targets and signaling pathways of STZYD in RA treatment. Meanwhile, the predicted pathway was determined by the Western blot (WB). Subsequently, non-targeted metabolomics of serum was performed to analyze metabolic profiles, potential biomarkers, and metabolic pathways of STZYD in the treatment of RA based on LC-MS technology. RESULTS STZYD significantly alleviated RA symptoms by improving paw redness and swelling, bone and cartilage damage, synovial hyperplasia, and infiltration of inflammatory cells, and decreased the generation of pro-inflammatory cytokines IL-1β, IL-6, IL-17A and TNF-α in AIA rats. Totally, 59 chemical components of STZYD and 24 serum migrant ingredients were identified. A total of 655 genes of potential bioactive components in STZYD and 1025 related genes of RA were obtained. TNF signaling pathway was considered to one of the main signaling pathways of STZYD anti-RA by KEGG analysis, including a wide range intracellular signaling pathways. NF-κB signaling pathway regulates inflammation and immunity in the TNF signaling pathway. STZYD markedly inhibited the expression of NF-κB signaling pathway. Ten potential biomarkers were found in metabolomics based on LC-MS technology. Alanine, aspartate and glutamate metabolism, arachidonic acid metabolism are the most related pathways of STZYD anti-RA. CONCLUSION The study based on serum pharmacochemistry, network pharmacology and metabolomics indicated that STZYD can improve RA through regulating inflammation and immunity related pathways, and provided a new possibility for treatment of RA.
Collapse
Affiliation(s)
- Yanping Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yongfeng Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qin Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Lan Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jiao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qinman He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuanhong Luo
- Chengdu Jingze Biopharmaceutical Co.,Ltd, Chengdu, 611100, China.
| | - Jiaxin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qiang Fu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|