1
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408032. [PMID: 39420757 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
- Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Wonwoo Jeong
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
2
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
3
|
Song SS, Park HJ, Kim YK, Kang SW. Revolutionizing biomedical research: The imperative need for heart-kidney-connected organoids. APL Bioeng 2024; 8:010902. [PMID: 38420624 PMCID: PMC10901547 DOI: 10.1063/5.0190840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Organoids significantly advanced our comprehension of organ development, function, and disease modeling. This Perspective underscores the potential of heart-kidney-connected organoids in understanding the intricate relationship between these vital organs, notably the cardiorenal syndrome, where dysfunction in one organ can negatively impact the other. Conventional models fall short in replicating this complexity, necessitating an integrated approach. By co-culturing heart and kidney organoids, combined with microfluidic and 3D bioprinting technologies, a more accurate representation of in vivo conditions can be achieved. Such interconnected systems could revolutionize our grasp of multi-organ diseases, drive drug discovery by evaluating therapeutic agents on both organs simultaneously, and reduce the need for animal models. In essence, heart-kidney-connected organoids present a promising avenue to delve deeper into the pathophysiology underlying cardiorenal disorders, bridging existing knowledge gaps, and advancing biomedical research.
Collapse
|
4
|
Valencia LJ, Tseng M, Chu ML, Yu L, Adedeji AO, Kiyota T. Zoledronic acid and ibandronate-induced nephrotoxicity in 2D and 3D proximal tubule cells derived from human and rat. Toxicol Sci 2024; 198:86-100. [PMID: 38059598 DOI: 10.1093/toxsci/kfad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Drug-induced proximal tubule (PT) injury remains a serious safety concern throughout drug development. Traditional in vitro 2-dimensional (2D) and preclinical in vivo models often fail to predict drug-related injuries presented in clinical trials. Various 3-dimensional (3D) microphysiological systems (MPSs) have been developed to mimic physiologically relevant properties, enabling them to be more predictive toward nephrotoxicity. To explore the capabilities of an MPS across species, we compared cytotoxicity in hRPTEC/TERT1s and rat primary proximal tubular epithelial cells (rPPTECs) following exposure to zoledronic acid and ibandronate (62.5-500 µM), and antibiotic polymyxin B (PMB) (50 and 250 µM, respectively). For comparison, we investigated cytotoxicity using 2D cultured hRPTEC/TERT1s and rPPTECs following exposure to the same drugs, including overlapping concentrations, as their 3D counterparts. Regardless of the in vitro model, bisphosphonate-exposed rPPTECs exhibited cytotoxicity quicker than hRPTEC/TERT1s. PMB was less sensitive toward nephrotoxicity in rPPTECs than hRPTEC/TERT1s, demonstrating differences in species sensitivity within both 3D and 2D models. Generally, 2D cultured cells experienced faster drug-induced cytotoxicity compared to the MPSs, suggesting that MPSs can be advantageous for longer-term drug-exposure studies, if warranted. Furthermore, ibandronate-exposed hRPTEC/TERT1s and rPPTECs produced higher levels of inflammatory and kidney injury biomarkers compared to zoledronic acid, indicating that ibandronate induces acute kidney injury, but also a potential protective response since ibandronate is less toxic than zoledronic acid. Our study suggests that the MPS model can be used for preclinical screening of compounds prior to animal studies and human clinical trials.
Collapse
Affiliation(s)
- Leslie J Valencia
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
- Pathology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Min Tseng
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Mei-Lan Chu
- Pathology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Lanlan Yu
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Adeyemi O Adedeji
- Pathology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| | - Tomomi Kiyota
- Investigative Toxicology, Department of Safety Assessment, Genentech Inc., South San Francisco, California 94080, USA
| |
Collapse
|
5
|
Kimura H, Nakamura H, Goto T, Uchida W, Uozumi T, Nishizawa D, Shinha K, Sakagami J, Doi K. Standalone cell culture microfluidic device-based microphysiological system for automated cell observation and application in nephrotoxicity tests. LAB ON A CHIP 2024; 24:408-421. [PMID: 38131210 DOI: 10.1039/d3lc00934c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Microphysiological systems (MPS) offer an alternative method for culturing cells on microfluidic platforms to model organ functions in pharmaceutical and medical sciences. Although MPS hardware has been proposed to maintain physiological organ function through perfusion culture, no existing MPS can automatically assess cell morphology and conditions online to observe cellular dynamics in detail. Thus, with this study, we aimed to establish a practical strategy for automating cell observation and improving cell evaluation functions with low temporal resolution and throughput in MPS experiments. We developed a versatile standalone cell culture microfluidic device (SCCMD) that integrates microfluidic chips and their peripherals. This device is compliant with the ANSI/SLAS standards and has been seamlessly integrated into an existing automatic cell imaging system. This integration enables automatic cell observation with high temporal resolution in MPS experiments. Perfusion culture of human kidney proximal tubule epithelial cells using the SCCMD improves cell function. By combining the proximal tubule MPS with an existing cell imaging system, nephrotoxicity studies were successfully performed to automate morphological and material permeability evaluation. We believe that the concept of building the ANSI/SLAS-compliant-sized MPS device proposed herein and integrating it into an existing automatic cell imaging system for the online measurement of detailed cell dynamics information and improvement of throughput by automating observation operations is a novel potential research direction for MPS research.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, Kanagawa, Japan 259-1292.
| | - Hiroko Nakamura
- Micro/Nano Technology Center, Tokai University, Kanagawa, Japan 259-1292.
| | - Tomomi Goto
- Micro/Nano Technology Center, Tokai University, Kanagawa, Japan 259-1292.
| | - Wakana Uchida
- Stem Cell Healthcare Business Unit, Nikon Corporation, Kanagawa, Japan
| | - Takayuki Uozumi
- Stem Cell Healthcare Business Unit, Nikon Corporation, Kanagawa, Japan
| | - Daniel Nishizawa
- Micro/Nano Technology Center, Tokai University, Kanagawa, Japan 259-1292.
| | - Kenta Shinha
- Micro/Nano Technology Center, Tokai University, Kanagawa, Japan 259-1292.
| | - Junko Sakagami
- Stem Cell Healthcare Business Unit, Nikon Corporation, Kanagawa, Japan
| | - Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan 153-8505
| |
Collapse
|
6
|
Cai L, Ke M, Wang H, Wu W, Lin R, Huang P, Lin C. Physiologically based pharmacokinetic model combined with reverse dose method to study the nephrotoxic tolerance dose of tacrolimus. Arch Toxicol 2023; 97:2659-2673. [PMID: 37572130 DOI: 10.1007/s00204-023-03576-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Nephrotoxicity is the most common side effect that severely limits the clinical application of tacrolimus (TAC), an immunosuppressive agent used in kidney transplant patients. This study aimed to explore the tolerated dose of nephrotoxicity of TAC in individuals with different CYP3A5 genotypes and liver conditions. We established a human whole-body physiological pharmacokinetic (WB-PBPK) model and validated it using data from previous clinical studies. Following the injection of 1 mg/kg TAC into the tail veins of male rats, we developed a rat PBPK model utilizing the drug concentration-time curve obtained by LC-MS/MS. Next, we converted the established rat PBPK model into the human kidney PBPK model. To establish renal concentrations, the BMCL5 of the in vitro CCK-8 toxicity response curve (drug concentration range: 2-80 mol/L) was extrapolated. To further investigate the acceptable levels of nephrotoxicity for several distinct CYP3A5 genotypes and varied hepatic function populations, oral dosing regimens were extrapolated utilizing in vitro-in vivo extrapolation (IVIVE). The PBPK model indicated the tolerated doses of nephrotoxicity were 0.14-0.185 mg/kg (CYP3A5 expressors) and 0.13-0.155 mg/kg (CYP3A5 non-expressors) in normal healthy subjects and 0.07-0.09 mg/kg (CYP3A5 expressors) and 0.06-0.08 mg/kg (CYP3A5 non-expressors) in patients with mild hepatic insufficiency. Further, patients with moderate hepatic insufficiency tolerated doses of 0.045-0.06 mg/kg (CYP3A5 expressors) and 0.04-0.05 mg/kg (CYP3A5 non-expressors), while in patients with moderate hepatic insufficiency, doses of 0.028-0.04 mg/kg (CYP3A5 expressors) and 0.022-0.03 mg/kg (CYP3A5 non-expressors) were tolerated. Overall, our study highlights the combined usage of the PBPK model and the IVIVE approach as a valuable tool for predicting toxicity tolerated doses of a drug in a specific group.
Collapse
Affiliation(s)
- Limin Cai
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Meng Ke
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Han Wang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Wanhong Wu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Rongfang Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Pinfang Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Cuihong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China.
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
7
|
Tambe S, Kumar R, Amin P, Mishra M, Gupta M, Govarthanan K, Narasimhan AK, Gupta PK. Current aspects of organoid technology for biomaterial toxicity analysis. Future Med Chem 2023; 15:579-582. [PMID: 37140141 DOI: 10.4155/fmc-2023-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Organoids provide us an opportunity to understand how diseases affect cellular physiology, human tissues or organs. They are indespensible tools for biomaterial toxicity analysis, drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Srushti Tambe
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Rohit Kumar
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Purnima Amin
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Monalisa Mishra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector-3, MB Road, New Delhi, 110017, India
| | - Kavitha Govarthanan
- Centre for Cardiovascular Biology & Disease, Institute for Stem Cell Science & Regenerative Medicine, Bengaluru, Karnataka, 560065, India
| | - Ashwin Kumar Narasimhan
- Department of Biomedical Engineering, Advanced Nano-Theranostics (ANTs), Biomaterials Lab, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, 248002, India
- Faculty of Health & Life Sciences, INTI International University, Nilai, 71800, Malaysia
| |
Collapse
|
8
|
The "3Ds" of Growing Kidney Organoids: Advances in Nephron Development, Disease Modeling, and Drug Screening. Cells 2023; 12:cells12040549. [PMID: 36831216 PMCID: PMC9954122 DOI: 10.3390/cells12040549] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
A kidney organoid is a three-dimensional (3D) cellular aggregate grown from stem cells in vitro that undergoes self-organization, recapitulating aspects of normal renal development to produce nephron structures that resemble the native kidney organ. These miniature kidney-like structures can also be derived from primary patient cells and thus provide simplified context to observe how mutations in kidney-disease-associated genes affect organogenesis and physiological function. In the past several years, advances in kidney organoid technologies have achieved the formation of renal organoids with enhanced numbers of specialized cell types, less heterogeneity, and more architectural complexity. Microfluidic bioreactor culture devices, single-cell transcriptomics, and bioinformatic analyses have accelerated the development of more sophisticated renal organoids and tailored them to become increasingly amenable to high-throughput experimentation. However, many significant challenges remain in realizing the use of kidney organoids for renal replacement therapies. This review presents an overview of the renal organoid field and selected highlights of recent cutting-edge kidney organoid research with a focus on embryonic development, modeling renal disease, and personalized drug screening.
Collapse
|
9
|
Sanagawa A, Hotta Y, Sezaki R, Tomita N, Kataoka T, Furukawa-Hibi Y, Kimura K. Effect of Replicative Senescence on the Expression and Function of Transporters in Human Proximal Renal Tubular Epithelial Cells. Biol Pharm Bull 2022; 45:1636-1643. [DOI: 10.1248/bpb.b22-00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Rara Sezaki
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Natsumi Tomita
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tomoya Kataoka
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University
| | - Yoko Furukawa-Hibi
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | | |
Collapse
|
10
|
Functional Evaluation and Nephrotoxicity Assessment of Human Renal Proximal Tubule Cells on a Chip. BIOSENSORS 2022; 12:bios12090718. [PMID: 36140103 PMCID: PMC9496563 DOI: 10.3390/bios12090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
An in vitro human renal proximal tubule model that represents the proper transporter expression and pronounced epithelial polarization is necessary for the accurate prediction of nephrotoxicity. Here, we constructed a high-throughput human renal proximal tubule model based on an integrated biomimetic array chip (iBAC). Primary human renal proximal tubule epithelial cells (hRPTECs) cultured on this microfluidic platform were able to form a tighter barrier, better transporter function and more sensitive nephrotoxicity prediction than those on the static Transwell. Compared with the human immortalized HK2 model, the hRPTECs model on the chip gained improved apical-basolateral polarization, barrier function and transporter expression. Polymyxin B could induce nephrotoxicity not only from the apical of the hRPTECs, but also from the basolateral side on the iBAC. However, other chemotherapeutic agents, such as doxorubicin and sunitinib, only induced nephrotoxicity from the apical surface of the hRPTECs on the iBAC. In summary, our renal proximal tubule model on the chip exhibits improved epithelial polarization and membrane transporter activity, and can be implemented as an effective nephrotoxicity-screening toolkit.
Collapse
|
11
|
Galateanu B, Hudita A, Biru EI, Iovu H, Zaharia C, Simsensohn E, Costache M, Petca RC, Jinga V. Applications of Polymers for Organ-on-Chip Technology in Urology. Polymers (Basel) 2022; 14:1668. [PMID: 35566836 PMCID: PMC9105302 DOI: 10.3390/polym14091668] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Organ-on-chips (OOCs) are microfluidic devices used for creating physiological organ biomimetic systems. OOC technology brings numerous advantages in the current landscape of preclinical models, capable of recapitulating the multicellular assemblage, tissue-tissue interaction, and replicating numerous human pathologies. Moreover, in cancer research, OOCs emulate the 3D hierarchical complexity of in vivo tumors and mimic the tumor microenvironment, being a practical cost-efficient solution for tumor-growth investigation and anticancer drug screening. OOCs are compact and easy-to-use microphysiological functional units that recapitulate the native function and the mechanical strain that the cells experience in the human bodies, allowing the development of a wide range of applications such as disease modeling or even the development of diagnostic devices. In this context, the current work aims to review the scientific literature in the field of microfluidic devices designed for urology applications in terms of OOC fabrication (principles of manufacture and materials used), development of kidney-on-chip models for drug-toxicity screening and kidney tumors modeling, bladder-on-chip models for urinary tract infections and bladder cancer modeling and prostate-on-chip models for prostate cancer modeling.
Collapse
Affiliation(s)
- Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Elena Iuliana Biru
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
| | - Horia Iovu
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
- Academy of Romanian Scientists, Ilfov Street, 50044 Bucharest, Romania
| | - Catalin Zaharia
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (H.I.); (C.Z.)
| | - Eliza Simsensohn
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (B.G.); (M.C.)
| | - Razvan-Cosmin Petca
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| | - Viorel Jinga
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania; (E.S.); (R.-C.P.); (V.J.)
| |
Collapse
|
12
|
Modeling oxidative injury response in human kidney organoids. Stem Cell Res Ther 2022; 13:76. [PMID: 35189973 PMCID: PMC8862571 DOI: 10.1186/s13287-022-02752-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Hemolysis occurs in many injury settings and can trigger disease processes. In the kidney, extracellular hemoglobin can induce damage via several mechanisms. These include oxidative stress, mitochondrial dysfunction, and inflammation, which promote fibrosis and chronic kidney disease. Understanding the pathophysiology of these injury pathways offers opportunities to develop new therapeutic strategies.
Methods
To model hemolysis-induced kidney injury, human kidney organoids were treated with hemin, an iron-containing porphyrin, that generates reactive oxygen species. In addition, we developed an induced pluripotent stem cell line expressing the biosensor, CytochromeC-GFP (CytoC-GFP), which provides a real-time readout of mitochondrial morphology, health, and early apoptotic events.
Results
We found that hemin-treated kidney organoids show oxidative damage, increased expression of injury markers, impaired functionality of organic anion and cation transport and undergo fibrosis. Injury could be detected in live CytoC-GFP organoids by cytoplasmic localization of fluorescence. Finally, we show that 4-(phenylthio)butanoic acid, an HDAC inhibitor with anti-fibrotic effects in vivo, reduces hemin-induced human kidney organoid fibrosis.
Conclusion
This work establishes a hemin-induced model of kidney organoid injury. This platform provides a new tool to study the injury and repair response pathways in human kidney tissue and will assist in the development of new therapeutics.
Collapse
|
13
|
Bauer B, Mally A, Liedtke D. Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing. Int J Mol Sci 2021; 22:13417. [PMID: 34948215 PMCID: PMC8707050 DOI: 10.3390/ijms222413417] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Prerequisite to any biological laboratory assay employing living animals is consideration about its necessity, feasibility, ethics and the potential harm caused during an experiment. The imperative of these thoughts has led to the formulation of the 3R-principle, which today is a pivotal scientific standard of animal experimentation worldwide. The rising amount of laboratory investigations utilizing living animals throughout the last decades, either for regulatory concerns or for basic science, demands the development of alternative methods in accordance with 3R to help reduce experiments in mammals. This demand has resulted in investigation of additional vertebrate species displaying favourable biological properties. One prominent species among these is the zebrafish (Danio rerio), as these small laboratory ray-finned fish are well established in science today and feature outstanding biological characteristics. In this review, we highlight the advantages and general prerequisites of zebrafish embryos and larvae before free-feeding stages for toxicological testing, with a particular focus on cardio-, neuro, hepato- and nephrotoxicity. Furthermore, we discuss toxicokinetics, current advances in utilizing zebrafish for organ toxicity testing and highlight how advanced laboratory methods (such as automation, advanced imaging and genetic techniques) can refine future toxicological studies in this species.
Collapse
Affiliation(s)
- Benedikt Bauer
- Institute of Pharmacology and Toxicology, Julius-Maximilians-University, 97078 Würzburg, Germany; (B.B.); (A.M.)
| | - Angela Mally
- Institute of Pharmacology and Toxicology, Julius-Maximilians-University, 97078 Würzburg, Germany; (B.B.); (A.M.)
| | - Daniel Liedtke
- Institute of Human Genetics, Julius-Maximilians-University, 97074 Würzburg, Germany
| |
Collapse
|
14
|
Gong E, Perin L, Da Sacco S, Sedrakyan S. Emerging Technologies to Study the Glomerular Filtration Barrier. Front Med (Lausanne) 2021; 8:772883. [PMID: 34901088 PMCID: PMC8655839 DOI: 10.3389/fmed.2021.772883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Kidney disease is characterized by loss of glomerular function with clinical manifestation of proteinuria. Identifying the cellular and molecular changes that lead to loss of protein in the urine is challenging due to the complexity of the filtration barrier, constituted by podocytes, glomerular endothelial cells, and glomerular basement membrane. In this review, we will discuss how technologies like single cell RNA sequencing and bioinformatics-based spatial transcriptomics, as well as in vitro systems like kidney organoids and the glomerulus-on-a-chip, have contributed to our understanding of glomerular pathophysiology. Knowledge gained from these studies will contribute toward the development of personalized therapeutic approaches for patients affected by proteinuric diseases.
Collapse
Affiliation(s)
- Emma Gong
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States
| | - Laura Perin
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Stefano Da Sacco
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sargis Sedrakyan
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|