1
|
He CH, Lv JM, Khan GJ, Duan H, Wang W, Zhai KF, Zou GA, Aisa HA. Total flavonoid extract from Dracocephalum moldavica L. improves pulmonary fibrosis by reducing inflammation and inhibiting the hedgehog signaling pathway. Phytother Res 2023. [PMID: 36794391 DOI: 10.1002/ptr.7771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/10/2022] [Accepted: 12/11/2022] [Indexed: 02/17/2023]
Abstract
Dracocephalum Moldavica L. is a traditional herb for improving pharynx and relieving cough. However, the effect on pulmonary fibrosis is not clear. In this study, we explored the impact and molecular mechanism of total flavonoid extract from Dracocephalum moldavica L. (TFDM) on bleomycin-induced pulmonary fibrosis mouse model. Lung function testing, lung inflammation and fibrosis, and the related factors were detected by the lung function analysis system, HE and Masson staining, ELISA, respectively. The expression of proteins was studied through Western Blot, immunohistochemistry, and immunofluorescence while the expression of genes was analyzed by RT-PCR. The results showed that TFDM significantly improved lung function in mice, reduced the content of inflammatory factors, thereby reducing the inflammation. It was found that expression of collagen type I, fibronectin, and α-smooth muscle actin was significantly decreased by TFDM. The results further showed that TFDM interferes with hedgehog signaling pathway by decreasing the expression of Shh, Ptch1, and SMO proteins and thereby inhibiting the generation of downstream target gene Gli1 and thus improving pulmonary fibrosis. Conclusively, these findings suggest that TFDM improve pulmonary fibrosis by reducing inflammation and inhibition of the hedgehog signaling pathway.
Collapse
Affiliation(s)
- Cheng-Hui He
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- Pharmaceutical Preparation Laboratory, Xinjiang Medicine Research Institute, Urumqi, China
- Xinjiang Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Min Lv
- Pharmaceutical Preparation Laboratory, Xinjiang Medicine Research Institute, Urumqi, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Hong Duan
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Wei Wang
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Ke-Feng Zhai
- Pharmaceutical Preparation Laboratory, Xinjiang Medicine Research Institute, Urumqi, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Guo-An Zou
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
2
|
Qi L, Han H, Han MM, Sun Y, Xing L, Jiang HL, Pandol SJ, Li L. Remodeling of imbalanced extracellular matrix homeostasis for reversal of pancreatic fibrosis. Biomaterials 2023; 292:121945. [PMID: 36508773 DOI: 10.1016/j.biomaterials.2022.121945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic fibrosis is mainly manifested by imbalance in extracellular matrix (ECM) homeostasis due to excessive deposition of collagen in pancreas by activated pancreatic stellate cells (PSCs). Recently, some drugs have exhibited therapeutic potentials for the treatment of pancreatic fibrosis; however, currently, no effective clinical strategy is available to remodel imbalanced ECM homeostasis because of inferior targeting abilities of drugs and collagen barriers that hinder the efficient delivery of drugs. Herein, we design and prepare collagen-binding peptide (CBP) and collagenase I co-decorated dual drug-loaded lipid nanoparticles (named AT-CC) for pancreatic fibrosis therapy. Specifically, AT-CC can target fibrotic pancreas via the CBP and degrade excess collagen by the grafted collagenase I, thereby effectively delivering all-trans-retinoic acid (ATRA) and ammonium tetrathiomolybdate (TM) into pancreas. The released ATRA can reduce collagen overproduction by inhibiting the activation of PSCs. Moreover, the released TM can restrain lysyloxidase activation, consequently reducing collagen cross-linking. The combination of ATRA and TM represses collagen synthesis and reduces collagen cross linkages to restore ECM homeostasis. The results of this research suggest that AT-CC is a safe and efficient collagen-targeted degradation drug-delivery system for reversing pancreatic fibrosis. Furthermore, the strategy proposed herein will offer an innovative platform for the treatment of chronic pancreatitis.
Collapse
Affiliation(s)
- Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Han Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China.
| | - Stephen J Pandol
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Basic and Translational Pancreatic Research, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China; Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, 210009, China; Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Derseh HB, Goodger JQD, Scheerlinck JPY, Samuel CS, Woodrow IE, Palombo EA, Cumming A, Snibson K. The efficacy and safety of pinocembrin in a sheep model of bleomycin-induced pulmonary fibrosis. PLoS One 2021; 16:e0260719. [PMID: 34855848 PMCID: PMC8638960 DOI: 10.1371/journal.pone.0260719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
The primary flavonoid, pinocembrin, is thought to have a variety of medical uses which relate to its reported anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer properties. Some studies have reported that this flavonoid has anti-fibrotic activities. In this study, we investigated whether pinocembrin would impede fibrosis, dampen inflammation and improve lung function in a large animal model of pulmonary fibrosis. Fibrosis was induced in two localized lung segments in each of the 10 sheep participating in the study. This was achieved via two infusions of bleomycin delivered bronchoscopically at a two-week interval. Another lung segment in the same sheep was left untreated, and was used as a healthy control. The animals were kept for a little over 5 weeks after the final infusion of bleomycin. Pinocembrin, isolated from Eucalyptus leaves, was administered to one of the two bleomycin damaged lung segments at a dose of 7 mg. This dose was given once-weekly over 4-weeks, starting one week after the final bleomycin infusion. Lung compliance (as a measure of stiffness) was significantly improved after four weekly administrations of pinocembrin to bleomycin-damaged lung segments. There were significantly lower numbers of neutrophils and inflammatory cells in the bronchoalveolar lavage of bleomycin-infused lung segments that were treated with pinocembrin. Compared to bleomycin damaged lung segments without drug treatment, pinocembrin administration was associated with significantly lower numbers of immuno-positive CD8+ and CD4+ T cells in the lung parenchyma. Histopathology scoring data showed that pinocembrin treatment was associated with significant improvement in inflammation and overall pathology scores. Hydroxy proline analysis showed that the administration of pinocembrin did not reduce the increased collagen content that was induced by bleomycin in this model. Analyses of Masson’s Trichrome stained sections showed that pinocembrin treatment significantly reduced the connective tissue content in lung segments exposed to bleomycin when compared to bleomycin-infused lungs that did not receive pinocembrin. The striking anti-inflammatory and modest anti-fibrotic remodelling effects of pinocembrin administration were likely linked to the compound’s ability to improve lung pathology and functional compliance in this animal model of pulmonary fibrosis.
Collapse
Affiliation(s)
- Habtamu B. Derseh
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (HBD); (KS)
| | - Jason Q. D. Goodger
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Jean-Pierre Y. Scheerlinck
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Ian E. Woodrow
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | | | - Ken Snibson
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (HBD); (KS)
| |
Collapse
|