1
|
Negewo NA, Gibson PG, Simpson JL, McDonald VM, Baines KJ. Severity of Lung Function Impairment Drives Transcriptional Phenotypes of COPD and Relates to Immune and Metabolic Processes. Int J Chron Obstruct Pulmon Dis 2023; 18:273-287. [PMID: 36942279 PMCID: PMC10024507 DOI: 10.2147/copd.s388297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
Purpose This study sought to characterize transcriptional phenotypes of COPD through unsupervised clustering of sputum gene expression profiles, and further investigate mechanisms underlying the characteristics of these clusters. Patients and methods Induced sputum samples were collected from patients with stable COPD (n = 72) and healthy controls (n = 15). Induced sputum was collected for inflammatory cell counts, and RNA extracted. Transcriptional profiles were generated (Illumina Humanref-8 V2) and analyzed by GeneSpring GX14.9.1. Unsupervised hierarchical clustering and differential gene expression analysis were performed, and gene alterations validated in the ECLIPSE dataset (GSE22148). Results We identified 2 main clusters (Cluster 1 [n = 35] and Cluster 2 [n = 37]), which further divided into 4 sub-clusters (Sub-clusters 1.1 [n = 14], 1.2 [n = 21], 2.1 [n = 20] and 2.2 [n = 17]). Compared with Cluster 1, Cluster 2 was associated with significantly lower lung function (p = 0.014), more severe disease (p = 0.009) and breathlessness (p = 0.035), and increased sputum neutrophils (p = 0.031). Sub-cluster 1.1 had significantly higher proportion of people with comorbid cardiovascular disease compared to the other 3 sub-clusters (92.5% vs 57.1%, 50% and 52.9%, p < 0.013). Through supervised analysis we determined that degree of airflow limitation (GOLD stage) was the predominant factor driving gene expression differences in our transcriptional clusters. There were 452 genes (adjusted p < 0.05 and ≥2 fold) altered in GOLD stage 3 and 4 versus 1 and 2, of which 281 (62%) were also found to be significantly expressed between these GOLD stages in the ECLIPSE data set (GSE22148). Differentially expressed genes were largely downregulated in GOLD stages 3 and 4 and connected in 5 networks relating to lipoprotein and cholesterol metabolism; metabolic processes in oxidation/reduction and mitochondrial function; antigen processing and presentation; regulation of complement activation and innate immune responses; and immune and metabolic processes. Conclusion Severity of lung function drives 2 distinct transcriptional phenotypes of COPD and relates to immune and metabolic processes.
Collapse
Affiliation(s)
- Netsanet A Negewo
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Peter G Gibson
- Centre of Excellence in Treatable Traits, University of Newcastle, New Lambton Heights, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
- Asthma and Breathing Research Centre, Hunter Medical Research Centre, New Lambton Heights, NSW, Australia
| | - Jodie L Simpson
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Vanessa M McDonald
- Centre of Excellence in Treatable Traits, University of Newcastle, New Lambton Heights, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
- Asthma and Breathing Research Centre, Hunter Medical Research Centre, New Lambton Heights, NSW, Australia
- School of Nursing and Midwifery, The University of Newcastle, Callaghan, NSW, Australia
| | - Katherine J Baines
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Correspondence: Katherine J Baines, Hunter Medical Research Institute, Level 2 East Wing, Locked Bag 1000, New Lambton Heights, NSW, 2305, Australia, Tel +61 2 40420090, Fax +61 2 40420046, Email
| |
Collapse
|
2
|
Li S, Huang Q, Zhou D, He B. PRKCD as a potential therapeutic target for chronic obstructive pulmonary disease. Int Immunopharmacol 2022; 113:109374. [PMID: 36279664 DOI: 10.1016/j.intimp.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
3
|
Nguyen HO, Salvi V, Tiberio L, Facchinetti F, Govoni M, Villetti G, Civelli M, Barbazza I, Gaudenzi C, Passari M, Schioppa T, Sozio F, Del Prete A, Sozzani S, Bosisio D. The PDE4 inhibitor tanimilast shows distinct immunomodulatory properties associated with a type 2 endotype and CD141 upregulation. J Transl Med 2022; 20:203. [PMID: 35538539 PMCID: PMC9092691 DOI: 10.1186/s12967-022-03402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022] Open
Abstract
Background Tanimilast is a novel and selective inhaled inhibitor of phosphodiesterase-4 in advanced clinical development for chronic obstructive pulmonary disease (COPD). Tanimilast is known to exert prominent anti-inflammatory activity when tested in preclinical experimental models as well as in human clinical studies. Recently, we have demonstrated that it also finely tunes, rather than suppressing, the cytokine network secreted by activated dendritic cells (DCs). This study was designed to characterize the effects of tanimilast on T-cell polarizing properties of DCs and to investigate additional functional and phenotypical features induced by tanimilast. Methods DCs at day 6 of culture were stimulated with LPS in the presence or absence of tanimilast or the control drug budesonide. After 24 h, DCs were analyzed for the expression of surface markers of maturation and activation by flow cytometry and cocultured with T cells to investigate cell proliferation and activation/polarization. The regulation of type 2-skewing mediators was investigated by real-time PCR in DCs and compared to results obtained in vivo in a randomized placebo-controlled trial on COPD patients treated with tanimilast. Results Our results show that both tanimilast and budesonide reduced the production of the immunostimulatory cytokine IFN-γ by CD4+ T cells. However, the two drugs acted at different levels since budesonide mainly blocked T cell proliferation, while tanimilast skewed T cells towards a Th2 phenotype without affecting cell proliferation. In addition, only DCs matured in the presence of tanimilast displayed increased CD86/CD80 ratio and CD141 expression, which correlated with Th2 T cell induction and dead cell uptake respectively. These cells also upregulated cAMP-dependent immunosuppressive molecules such as IDO1, TSP1, VEGF-A and Amphiregulin. Notably, the translational value of these data was confirmed by the finding that these same genes were upregulated also in sputum cells of COPD patients treated with tanimilast as add-on to inhaled glucocorticoids and bronchodilators. Conclusion Taken together, these findings demonstrate distinct immunomodulatory properties of tanimilast associated with a type 2 endotype and CD141 upregulation in DCs and provide a mechanistic rationale for the administration of tanimilast on top of inhaled corticosteroids.
Collapse
Affiliation(s)
- Hoang Oanh Nguyen
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Mirco Govoni
- Global Clinical Development, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Gino Villetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Maurizio Civelli
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Ilaria Barbazza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Carolina Gaudenzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mauro Passari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
4
|
Uwagboe I, Adcock IM, Lo Bello F, Caramori G, Mumby S. New drugs under development for COPD. Minerva Med 2022; 113:471-496. [PMID: 35142480 DOI: 10.23736/s0026-4806.22.08024-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The characteristic features of chronic obstructive pulmonary disease (COPD) include inflammation and remodelling of the lower airways and lung parenchyma together with activation of inflammatory and immune processes. Due to the increasing habit of cigarette smoking worldwide COPD prevalence is increasing globally. Current therapies are unable to prevent COPD progression in many patients or target many of its hallmark characteristics which may reflect the lack of adequate biomarkers to detect the heterogeneous clinical and molecular nature of COPD. In this chapter we review recent molecular data that may indicate novel pathways that underpin COPD subphenotypes and indicate potential improvements in the classes of drugs currently used to treat COPD. We also highlight the evidence for new drugs or approaches to treat COPD identified using molecular and other approaches including kinase inhibitors, cytokine- and chemokine-directed biologicals and small molecules, antioxidants and redox signalling pathway inhibitors, inhaled anti-infectious agents and senolytics. It is important to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target new therapies to particular COPD subtypes. This will require greater understanding of COPD molecular pathologies and a focus on biomarkers of predicting disease subsets and responder/non-responder populations.
Collapse
Affiliation(s)
- Isabel Uwagboe
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK -
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|