1
|
Matthews RL, Khan N, Beckman B, Sharma S, Dietz Z, Picking WD, Izmirlian G, Sanders C, Stocks SM, Difilippantonio S, Kirnbauer R, Roden RB, Pinto LA, Shoemaker RH, Ernst RK, Marshall JD. Immune profile diversity is achieved with synthetic TLR4 agonists combined with the RG1-VLP vaccine in mice. Vaccine 2025; 44:126577. [PMID: 39632208 DOI: 10.1016/j.vaccine.2024.126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The TLR4 (Toll-like receptor 4)-activating agonist MPLA (monophosphoryl lipid A) is a key component of the adjuvant systems AS01 and AS04, utilized in marketed preventive vaccines for several infectious pathogens. As MPLA is a biologically-derived product containing a mixture of several lipid A congeners with a 4' phosphoryl group and varying numbers of acyl chains with distinct activities, extensive efforts to refine its production and immunogenicity are ongoing; notably, the development of the BECC (Bacterial Enzymatic Combinatorial Chemistry) system in which bacteria express lipid A-modifying enzymes to produce a panoply of lipid A congeners. In an effort to characterize the adjuvant activity of these lipid A congeners, we compared biologically-derived and synthetic versions of BECC470 and BECC438 for adjuvant activity in BALB/c mice vaccinated with the HPV (Human papilloma virus) VLP-based vaccine, RG1-VLP. Synthetic BECC compounds compared favorably to biological versions and, in the case of synthetic BECC470, were routinely superior to their biologically-derived BECC counterpart. Synthetic BECC470-adjuvanted vaccines achieved broad spectrum immune activity characterized by elevated levels of total IgG and IgG2a subtype specific to HPV16 L1 VLPs and the HPV16 L2 peptide, as well as robust HPV16-neutralizing antibody titers. In addition, synthetic BECC470 promoted strong T cell responses to HPV16 L1, increased memory B cell frequency, and increased the T follicular helper cell (Tfh) population in draining lymph nodes. In contrast, the biologically-derived form of BECC470 induced an immune profile specific for highest levels of HPV16 L2-specific IgG2a as well as antibodies cross-neutralizing to HPV18 and HPV39. These data confirm that a synthetically-derived BECC compound can be combined with Alhydrogel to adjuvant the RG1-VLP vaccine as can biologically-derived BECC compounds and MPLA, albeit with subtly distinct immune responses. The distinctions in immune profiles triggered by these BECC compounds warrant further exploration for their capacity to activate TLR4 and modulate immune responses to vaccines.
Collapse
Affiliation(s)
- Rebecca L Matthews
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nazneen Khan
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bradley Beckman
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simran Sharma
- Department of Veterinary Pathobiology and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Zackary Dietz
- Department of Veterinary Pathobiology and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - William D Picking
- Department of Veterinary Pathobiology and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Grant Izmirlian
- Biometry Research Group, Division of Cancer Prevention, NCI, Bethesda, MD, USA
| | - Chelsea Sanders
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stacy M Stocks
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Department of Dermatology, Medical University of Vienna, Austria
| | - Richard B Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Ligia A Pinto
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Bethesda, MD, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jason D Marshall
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
2
|
Lu T, Raju M, Howlader DR, Dietz ZK, Whittier SK, Varisco DJ, Ernst RK, Coghill LM, Picking WD, Picking WL. Vaccination with a Protective Ipa Protein-Containing Nanoemulsion Differentially Alters the Transcriptomic Profiles of Young and Elderly Mice following Shigella Infection. Vaccines (Basel) 2024; 12:618. [PMID: 38932347 PMCID: PMC11209624 DOI: 10.3390/vaccines12060618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Shigella spp. are responsible for bacillary dysentery or shigellosis transmitted via the fecal-oral route, causing significant morbidity and mortality, especially among vulnerable populations. There are currently no licensed Shigella vaccines. Shigella spp. use a type III secretion system (T3SS) to invade host cells. We have shown that L-DBF, a recombinant fusion of the T3SS needle tip (IpaD) and translocator (IpaB) proteins with the LTA1 subunit of enterotoxigenic E. coli labile toxin, is broadly protective against Shigella spp. challenge in a mouse lethal pulmonary model. Here, we assessed the effect of LDBF, formulated with a unique TLR4 agonist called BECC470 in an oil-in-water emulsion (ME), on the murine immune response in a high-risk population (young and elderly) in response to Shigella challenge. Dual RNA Sequencing captured the transcriptome during Shigella infection in vaccinated and unvaccinated mice. Both age groups were protected by the L-DBF formulation, while younger vaccinated mice exhibited more adaptive immune response gene patterns. This preliminary study provides a step toward identifying the gene expression patterns and regulatory pathways responsible for a protective immune response against Shigella. Furthermore, this study provides a measure of the challenges that need to be addressed when immunizing an aging population.
Collapse
Affiliation(s)
- Ti Lu
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - Murugesan Raju
- Bioinformatics and Analytic Core, University of Missouri, Columbia, MO 65211, USA (L.M.C.)
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Debaki R. Howlader
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - Zackary K. Dietz
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - Sean K. Whittier
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - David J. Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Lyndon M. Coghill
- Bioinformatics and Analytic Core, University of Missouri, Columbia, MO 65211, USA (L.M.C.)
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - William D. Picking
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| | - Wendy L. Picking
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (D.R.H.); (W.D.P.)
| |
Collapse
|
3
|
Howlader DR, Mandal RS, Lu T, Maiti S, Dietz ZK, Das S, Whittier SK, Nagel AC, Biswas S, Varisco DJ, Gardner FM, Ernst RK, Picking WD, Picking WL. Development of a nano-emulsion based multivalent protein subunit vaccine against Pseudomonas aeruginosa. Front Immunol 2024; 15:1372349. [PMID: 38698863 PMCID: PMC11063228 DOI: 10.3389/fimmu.2024.1372349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Pseudomonas aeruginosa (Pa) is an opportunistic bacterial pathogen responsible for severe hospital acquired infections in immunocompromised and elderly individuals. Emergence of increasingly drug resistant strains and the absence of a broad-spectrum prophylactic vaccine against both T3SA+ (type III secretion apparatus) and ExlA+/T3SA- Pa strains worsen the situation in a post-pandemic world. Thus, we formulated a candidate subunit vaccine (called ExlA/L-PaF/BECC/ME) against both Pa types. This bivalent vaccine was generated by combining the C-terminal active moiety of exolysin A (ExlA) produced by non-T3SA Pa strains with our T3SA-based vaccine platform, L-PaF, in an oil-in-water emulsion. The ExlA/L-PaF in ME (MedImmune emulsion) was then mixed with BECC438b, an engineered lipid A analogue and a TLR4 agonist. This formulation was administered intranasally (IN) to young and elderly mice to determine its potency across a diverse age-range. The elderly mice were used to mimic the infection seen in elderly humans, who are more susceptible to serious Pa disease compared to their young adult counterparts. After Pa infection, mice immunized with ExlA/L-PaF/BECC/ME displayed a T cell-mediated adaptive response while PBS-vaccinated mice experienced a rapid onset inflammatory response. Important genes and pathways were observed, which give rise to an anti-Pa immune response. Thus, this vaccine has the potential to protect aged individuals in our population from serious Pa infection.
Collapse
Affiliation(s)
- Debaki R. Howlader
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Rahul Shubhra Mandal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ti Lu
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Suhrid Maiti
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
| | - Zackary K. Dietz
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
| | - Sayan Das
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Sean K. Whittier
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Satabdi Biswas
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
| | - David J. Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Francesca M. Gardner
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - William D. Picking
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Wendy L. Picking
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Hafion, Inc., Lawrence, KS, United States
| |
Collapse
|
4
|
DeJong MA, Wolf MA, Bitzer GJ, Hall JM, Fitzgerald NA, Pyles GM, Huckaby AB, Petty JE, Lee K, Barbier M, Bevere JR, Ernst RK, Damron FH. BECC438b TLR4 agonist supports unique immune response profiles from nasal and muscular DTaP pertussis vaccines in murine challenge models. Infect Immun 2024; 92:e0022323. [PMID: 38323817 PMCID: PMC10929442 DOI: 10.1128/iai.00223-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/08/2023] [Indexed: 02/08/2024] Open
Abstract
The protection afforded by acellular pertussis vaccines wanes over time, and there is a need to develop improved vaccine formulations. Options to improve the vaccines involve the utilization of different adjuvants and administration via different routes. While intramuscular (IM) vaccination provides a robust systemic immune response, intranasal (IN) vaccination theoretically induces a localized immune response within the nasal cavity. In the case of a Bordetella pertussis infection, IN vaccination results in an immune response that is similar to natural infection, which provides the longest duration of protection. Current acellular formulations utilize an alum adjuvant, and antibody levels wane over time. To overcome the current limitations with the acellular vaccine, we incorporated a novel TLR4 agonist, BECC438b, into both IM and IN acellular formulations to determine its ability to protect against infection in a murine airway challenge model. Following immunization and challenge, we observed that DTaP + BECC438b reduced bacterial burden within the lung and trachea for both administration routes when compared with mock-vaccinated and challenged (MVC) mice. Interestingly, IN administration of DTaP + BECC438b induced a Th1-polarized immune response, while IM vaccination polarized toward a Th2 immune response. RNA sequencing analysis of the lung demonstrated that DTaP + BECC438b activates biological pathways similar to natural infection. Additionally, IN administration of DTaP + BECC438b activated the expression of genes involved in a multitude of pathways associated with the immune system. Overall, these data suggest that BECC438b adjuvant and the IN vaccination route can impact efficacy and responses of pertussis vaccines in pre-clinical mouse models.
Collapse
Affiliation(s)
- Megan A. DeJong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - M. Allison Wolf
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Graham J. Bitzer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Jesse M. Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Nicholas A. Fitzgerald
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Jonathan E. Petty
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Katherine Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Justin R. Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
5
|
Lu T, Das S, Howlader DR, Jain A, Hu G, Dietz ZK, Zheng Q, Ratnakaram SSK, Whittier SK, Varisco DJ, Ernst RK, Picking WD, Picking WL. Impact of the TLR4 agonist BECC438 on a novel vaccine formulation against Shigella spp. Front Immunol 2023; 14:1194912. [PMID: 37744341 PMCID: PMC10512073 DOI: 10.3389/fimmu.2023.1194912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Shigellosis (bacillary dysentery) is a severe gastrointestinal infection with a global incidence of 90 million cases annually. Despite the severity of this disease, there is currently no licensed vaccine against shigellosis. Shigella's primary virulence factor is its type III secretion system (T3SS), which is a specialized nanomachine used to manipulate host cells. A fusion of T3SS injectisome needle tip protein IpaD and translocator protein IpaB, termed DBF, when admixed with the mucosal adjuvant double-mutant labile toxin (dmLT) from enterotoxigenic E. coli was protective using a murine pulmonary model. To facilitate the production of this platform, a recombinant protein that consisted of LTA-1, the active moiety of dmLT, and DBF were genetically fused, resulting in L-DBF, which showed improved protection against Shigella challenge. To extrapolate this protection from mice to humans, we modified the formulation to provide for a multivalent presentation with the addition of an adjuvant approved for use in human vaccines. Here, we show that L-DBF formulated (admix) with a newly developed TLR4 agonist called BECC438 (a detoxified lipid A analog identified as Bacterial Enzymatic Combinatorial Chemistry candidate #438), formulated as an oil-in-water emulsion, has a very high protective efficacy at low antigen doses against lethal Shigella challenge in our mouse model. Optimal protection was observed when this formulation was introduced at a mucosal site (intranasally). When the formulation was then evaluated for the immune response it elicits, protection appeared to correlate with high IFN-γ and IL-17 secretion from mucosal site lymphocytes.
Collapse
Affiliation(s)
- Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Sayan Das
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Debaki R. Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Akshay Jain
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Zackary K. Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Qi Zheng
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Sean K. Whittier
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - David J. Varisco
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
6
|
Hu G, Varisco DJ, Das S, Middaugh CR, Gardner F, Ernst RK, Picking WL, Picking WD. Physicochemical characterization of biological and synthetic forms of two lipid A-based TLR4 agonists. Heliyon 2023; 9:e18119. [PMID: 37483830 PMCID: PMC10362264 DOI: 10.1016/j.heliyon.2023.e18119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Toll-like receptor (TLR) agonists are recognized as potential immune-enhancing adjuvants and are included in several licensed vaccines. Monophosphoryl lipid A (MPL®, GlaxoSmithKline) is one such TLR4 agonist that has been approved for use in human vaccines, such as Cervarix and Shingrix. Due to the heterogeneous nature of biologically derived MPL and the need for safer and more potent adjuvants, our groups have developed the novel TLR4 agonist candidates, BECC438 and BECC470 using the Bacterial Enzymatic Combinatorial Chemistry (BECC) platform. BECC438 and BECC470 have been included in studies to test their adjuvant potential and found to be effective in vaccines against both viral and bacterial disease agents. Here, we report detailed biophysical characterization of BECC438 and BECC470 purified from a biological source (BECC438b and BECC470b, respectively) and synthesized chemically (BECC438s and BECC470s, respectively). Both BECC438s and BECC470s have identical acyl chain configurations, BECC438s is bis-phosphorylated and BECC470s is mono-phosphorylated with the removal of the 4' phosphate moiety. We determined the phase transition temperatures for the acyl chains of BECC438b and BECC470b and found them to be different from those exhibited by their synthetic counterparts. Furthermore, the phosphate groups of BECC438b and BECC470b are more highly hydrated than are those of BECC438s and BECC470s. In addition to exploring the BECC molecules' biophysical features in aqueous solution, we explored potential formulation of BECC438 and BECC470 with the aluminum-based adjuvant Alhydrogel and as part of an oil-in-water emulsion (Medimmune Emulsion or ME). All of the lipid A analogues could be fully absorbed to Alhydrogel or incorporated onto ME. Surprisingly, the BECC470s molecule, unlike the others, displayed a nearly baseline signal when monitored using a Limulus amebocyte lysate (LAL) endotoxin detection system. Despite this, it was shown to behave as an agonist for human and mouse TLR4 when tested using multiple cell-based systems. This work paves the way for further formulation optimization of two chemically defined TLR4 agonists that are showing great promise as vaccine adjuvants.
Collapse
Affiliation(s)
- Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - David J. Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Sayan Das
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - C. Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Francesca Gardner
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Das S, Howlader DR, Lu T, Whittier SK, Hu G, Sharma S, Dietz ZK, Ratnakaram SSK, Varisco DJ, Ernst RK, Picking WD, Picking WL. Immunogenicity and protective efficacy of nanoparticle formulations of L-SseB against Salmonella infection. Front Immunol 2023; 14:1208848. [PMID: 37457702 PMCID: PMC10347375 DOI: 10.3389/fimmu.2023.1208848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Salmonella enterica, a Gram-negative pathogen, has over 2500 serovars that infect a wide range of hosts. In humans, S. enterica causes typhoid or gastroenteritis and is a major public health concern. In this study, SseB (the tip protein of the Salmonella pathogenicity island 2 type III secretion system) was fused with the LTA1 subunit of labile-toxin from enterotoxigenic E. coli to make the self-adjuvanting antigen L-SseB. Two unique nanoparticle formulations were developed to allow multimeric presentation of L-SseB. Mice were vaccinated with these formulations and protective efficacy determined via challenging the mice with S. enterica serovars. The polysaccharide (chitosan) formulation was found to elicit better protection when compared to the squalene nanoemulsion. When the polysaccharide formulation was used to vaccinate rabbits, protection from S. enterica challenge was elicited. In summary, L-SseB in a particulate polysaccharide formulation appears to be an attractive candidate vaccine capable of broad protection against S. enterica.
Collapse
Affiliation(s)
- Sayan Das
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Debaki R. Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Sean K. Whittier
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Simran Sharma
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO, United States
| | - Zackary K. Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Siva S. K. Ratnakaram
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - David J. Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
8
|
Howlader DR, Das S, Lu T, Mandal RS, Hu G, Varisco DJ, Dietz ZK, Ratnakaram SSK, Ernst RK, Picking WD, Picking WL. A protein subunit vaccine elicits a balanced immune response that protects against Pseudomonas pulmonary infection. NPJ Vaccines 2023; 8:37. [PMID: 36918600 PMCID: PMC10012293 DOI: 10.1038/s41541-023-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/02/2023] [Indexed: 03/15/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (Pa) causes severe nosocomial infections, especially in immunocompromised individuals and the elderly. Increasing drug resistance, the absence of a licensed vaccine and increased hospitalizations due to SARS-CoV-2 have made Pa a major healthcare risk. To address this, we formulated a candidate subunit vaccine against Pa (L-PaF), by fusing the type III secretion system tip and translocator proteins with LTA1 in an oil-in-water emulsion (ME). This was mixed with the TLR4 agonist (BECC438b). Lung mRNA sequencing showed that the formulation activates genes from multiple immunological pathways eliciting a protective Th1-Th17 response following IN immunization. Following infection, however, the immunized mice showed an adaptive response while the PBS-vaccinated mice experienced rapid onset of an inflammatory response. The latter displayed a hypoxic lung environment with high bacterial burden. Finally, the importance of IL-17 and immunoglobulins were demonstrated using knockout mice. These findings suggest a need for a balanced humoral and cellular response to prevent the onset of Pa infection and that our formulation could elicit such a response.
Collapse
Affiliation(s)
- Debaki R Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Sayan Das
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, 21201, USA
| | - Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Rahul Shubhra Mandal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - David J Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, 21201, USA
| | - Zackary K Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | | | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, 21201, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA.
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
9
|
Killough M, Rodgers AM, Ingram RJ. Pseudomonas aeruginosa: Recent Advances in Vaccine Development. Vaccines (Basel) 2022; 10:vaccines10071100. [PMID: 35891262 PMCID: PMC9320790 DOI: 10.3390/vaccines10071100] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen. Using its arsenal of virulence factors and its intrinsic ability to adapt to new environments, P. aeruginosa causes a range of complicated acute and chronic infections in immunocompromised individuals. Of particular importance are burn wound infections, ventilator-associated pneumonia, and chronic infections in people with cystic fibrosis. Antibiotic resistance has rendered many of these infections challenging to treat and novel therapeutic strategies are limited. Multiple clinical studies using well-characterised virulence factors as vaccine antigens over the last 50 years have fallen short, resulting in no effective vaccination being available for clinical use. Nonetheless, progress has been made in preclinical research, namely, in the realms of antigen discovery, adjuvant use, and novel delivery systems. Herein, we briefly review the scope of P. aeruginosa clinical infections and its major important virulence factors.
Collapse
Affiliation(s)
- Matthew Killough
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK;
| | - Aoife Maria Rodgers
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, R51 A021 Maynooth, Ireland;
| | - Rebecca Jo Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK;
- Correspondence:
| |
Collapse
|
10
|
Wang C, Ye Q, Ding Y, Zhang J, Gu Q, Pang R, Zhao H, Wang J, Wu Q. Detection of Pseudomonas aeruginosa Serogroup G Using Real-Time PCR for Novel Target Genes Identified Through Comparative Genomics. Front Microbiol 2022; 13:928154. [PMID: 35814691 PMCID: PMC9263582 DOI: 10.3389/fmicb.2022.928154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Accurate serotyping is essential for effective infection control. Pseudomonas aeruginosa serogroup G is one of the most common serogroups found in water. Conventional serotyping methods are not standardized and have several shortcomings. Therefore, a robust method for rapidly identifying P. aeruginosa serotypes is required. This study established a real-time PCR method for identifying P. aeruginosa serogroup G strains using novel target gene primers based on comparative genomic analysis. A total of 343 genome sequences, including 16 P. aeruginosa serogroups and 67 other species, were analyzed. Target genes identified were amplified using real-time PCR for detecting P. aeruginosa serogroup G strains. Eight serogroup G genes, PA59_01276, PA59_01887, PA59_01888, PA59_01891, PA59_01894, PA59_04268, PA59_01892, and PA59_01896, were analyzed to determine specific targets. A real-time fluorescence quantitative PCR method, based on the novel target PA59_01276, was established to detect and identify serogroup G strains. The specificity of this method was confirmed using P. aeruginosa serogroups and non-P. aeruginosa species. The sensitivity of this real-time PCR method was 4 × 102 CFU/mL, and it could differentiate and detect P. aeruginosa serogroup G in the range of 4.0 × 103–4.0 × 108 CFU/mL in artificially contaminated drinking water samples without enrichment. The sensitivity of these detection limits was higher by 1–3 folds compared to that of the previously reported PCR methods. In addition, the G serum group was accurately detected using this real-time PCR method without interference by high concentrations of artificially contaminated serum groups F and D. These results indicate that this method has high sensitivity and accuracy and is promising for identifying and rapidly detecting P. aeruginosa serogroup G in water samples. Moreover, this research will contribute to the development of effective vaccines and therapies for infections caused by multidrug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Chufang Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Juan Wang,
| | - Qingping Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, China
- Qingping Wu,
| |
Collapse
|
11
|
Goldberg JB, Crisan CV, Luu JM. Pseudomonas aeruginosa Antivirulence Strategies: Targeting the Type III Secretion System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:257-280. [PMID: 36258075 DOI: 10.1007/978-3-031-08491-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Pseudomonas aeruginosa type III secretion system (T3SS) is a complex molecular machine that delivers toxic proteins from the bacterial cytoplasm directly into host cells. This apparatus spans the inner and outer membrane and employs a needle-like structure that penetrates through the eucaryotic cell membrane into the host cell cytosol. The expression of the P. aeruginosa T3SS is highly regulated by environmental signals including low calcium and host cell contact. P. aeruginosa strains with mutations in T3SS genes are less pathogenic, suggesting that the T3SS is a virulence mechanism. Given that P. aeruginosa is naturally antibiotic resistant and multidrug resistant isolates are rapidly emerging, new antibiotics to target P. aeruginosa are needed. Furthermore, even if new antibiotics were to be developed, the timeline between when an antibiotic is released and resistance development is relatively short. Therefore, the concept of targeting virulence factors has garnered attention. So-called "antivirulence" approaches do not kill the microbe but instead focus on rendering it harmless and therefore unable to cause damage. Since these therapies target a particular system or pathway, the normal microbiome is unlikely to be affected and there is less concern about the spread to other microbes. Finally, and most importantly, since any antivirulence drug does not kill the microbe, there should be less selective pressure to develop resistance to these inhibitors. The P. aeruginosa T3SS has been well studied due to its importance for pathogenesis in numerous human and animal infections. Thus, many P. aeruginosa T3SS inhibitors have been described as potential antivirulence therapeutics, some of which have progressed to clinical trials.
Collapse
Affiliation(s)
- Joanna B Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA.
| | - Cristian V Crisan
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Justin M Luu
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Lu T, Das S, Howlader DR, Zheng Q, Ratnakaram SSK, Whittier SK, Picking WD, Picking WL. L-DBF Elicits Cross Protection Against Different Serotypes of Shigella spp. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.729731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shigellosis is a severe diarrheal disease caused by members of the genus Shigella, with at least 80 million cases and 700,000 deaths annually around the world. The type III secretion system (T3SS) is the primary virulence factor used by the shigellae, and we have previously demonstrated that vaccination with the type T3SS proteins IpaB and IpaD, along with an IpaD/IpaB fusion protein (DBF), protects mice from Shigella infection in a lethal pulmonary model. To simplify the formulation and development of the DBF Shigella vaccine, we have genetically fused LTA1, the active subunit of heat-labile toxin from enterotoxigenic E. coli, with DBF to produce the self-adjuvanting antigen L-DBF. Here we immunized mice with L-DBF via the intranasal, intramuscular, and intradermal routes and challenged them with a lethal dose of S. flexneri 2a. While none of the mice vaccinated intramuscularly or intradermally were protected, mice vaccinated with L-DBF intranasally were protected from lethal challenges with S. flexneri 2a, S. flexneri 1b, S. flexneri 3a, S. flexneri 6, and S. sonnei. Intranasal L-DBF induced both B cell and T cell responses that correlated with protection against Shigella infection. Our results suggest that L-DBF is a candidate for developing an effective serotype-independent vaccine against Shigella spp.
Collapse
|