1
|
Eteme ON, Zondegoumba EN, Tadayozzi YS, Serafim JA, Leite WQ, de Freitas Genari Severino M, Vicente EF. Methods for extraction, isolation and sequencing of cyclotides and others cyclic peptides with anti-helminthic activities: An overview. Parasitol Int 2024; 98:102808. [PMID: 37717651 DOI: 10.1016/j.parint.2023.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
The mortality rate caused by parasitic worms on their hosts is of great concern and studies have been carried out to find molecules to reduce the prevalence, host-parasite interaction, and resistance of parasites to treatments. Existing drugs on the market are very often toxic and have many side effects, hence the need to find new, more active molecules. It has been demonstrated in several works that medicinal plants constitute a wide range of new molecules that can solve this problem. Several works have already been able to demonstrate that cyclic peptides of plant origin have shown good activity in the fight against different types of helminths. Therefore, this review aims to provide a general overview of the methods and techniques of extraction, isolation, activities and mechanisms of action of cyclotides and other cyclic peptides for application in the treatment of helminthic infections.
Collapse
Affiliation(s)
- Olivier Ndogo Eteme
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo 17602-496, Brazil; University of Yaounde I, Faculty of Science, Department of Organic Chemistry, PO. BOX 812, Cameroon.
| | | | - Yasmin Saegusa Tadayozzi
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo 17602-496, Brazil
| | - Jessica Aparecida Serafim
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo 17602-496, Brazil
| | - Wendell Queiroz Leite
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal 14884-900, Brazil
| | | | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo 17602-496, Brazil.
| |
Collapse
|
2
|
Retzl B, Zimmermann-Klemd AM, Winker M, Nicolay S, Gründemann C, Gruber CW. Exploring Immune Modulatory Effects of Cyclotide-Enriched Viola tricolor Preparations. PLANTA MEDICA 2023; 89:1493-1504. [PMID: 37748505 PMCID: PMC10684336 DOI: 10.1055/a-2173-8627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
Viola tricolor is a medicinal plant with documented application as an anti-inflammatory herb. The standard of care for the treatment of inflammatory bowel disease is immunosuppressive therapeutics or biologics, which often have undesired effects. We explored V. tricolor herbal preparations that are rich in an emerging class of phytochemicals with drug-like properties, so-called cyclotides. As an alternative to existing inflammatory bowel disease medications, cyclotides have immunomodulatory properties, and their intrinsic stability allows for application in the gastrointestinal tract, for instance, via oral administration. We optimized the isolation procedure to improve the yield of cyclotides and compared the cellular effects of violet-derived organic solvent-extracts, aqueous preparations, and an isolated cyclotide from this plant on primary human T lymphocytes and macrophages, i.e., cells that are crucial for the initiation and progression of inflammatory bowel disease. The hot water herbal decoctions have a stronger immunosuppressive activity towards proliferation, interferon-γ, and interleukin-21 secretion of primary human T cells than a DCM/MeOH cyclotide-enriched extract, and the isolated cyclotide kalata S appears as one of the active components responsible for the observed effects. This effect was increased by a longer boiling duration. In contrast, the DCM/MeOH cyclotide-enriched extract was more effective in reducing the levels of cytokines interleukin-6, interleukin-12, interleukin-23, tumor necrosis factor-α, and C - X-C motif chemokine ligand 10, secreted by human monocyte-derived macrophages. Defined cyclotide preparations of V. tricolor have promising pharmacological effects in modulating immune cell responses at the cytokine levels. This is important towards understanding the role of cyclotide-containing herbal drug preparations for future applications in immune disorders, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Bernhard Retzl
- Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Amy Marisa Zimmermann-Klemd
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Moritz Winker
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Sven Nicolay
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| |
Collapse
|
3
|
Calvo MM, López-Caballero ME, Martínez-Alvarez O. Identification of Polyphenols in Sea Fennel ( Crithmum maritimum) and Seaside Arrowgrass ( Triglochin maritima) Extracts with Antioxidant, ACE-I, DPP-IV and PEP-Inhibitory Capacity. Foods 2023; 12:3886. [PMID: 37959005 PMCID: PMC10650209 DOI: 10.3390/foods12213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Sea fennel and seaside arrowgrass are two abundant but underutilized halophytes along the Atlantic and Mediterranean coasts. This study investigated the antioxidant capacity and the potential antihypertensive (Angiotensin Converting Enzyme I, ACE-I inhibition), hypoglycaemic (Dipeptidyl Peptidase IV, DPP-IV inhibition), and nootropic (Prolyl Endopeptidase, PEP inhibition) activity of their polyphenol extracts. They had a high phenol content (21-24 mEq GA/g), antioxidant capacity evaluated using the ABTS (17-2 mg ascorbic acid/g) and FRAP (170-270 mM Mohr's salt/g) assays, and effective ACE-inhibiting properties (80-90% inhibiting activity at final concentration of 0.5 mg/mL). Additionally, the sea fennel extract displayed high DPP-IV inhibitory capacity (73% at 1 mg/mL), while the seaside arrowgrass extract exhibited potent Prolyl endopeptidase inhibitory capacity (75% at 1 mg/mL). Fractionation by HPLC concentrated the bioactive molecules in two fractions, for which the composition was analyzed by LC-MS/MS. Different chlorogenic acids seemed to play an important role in the bioactivity of sea fennel extract, and different flavonoids, mainly apigenin, luteolin and chrysoeriol, in the bioactivity of the seaside arrowgrass extract. Given their potential health benefits, these extracts could serve as valuable bioactive ingredients and could potentially encourage the cultivation of these species in regions where traditional crops face challenges in growth.
Collapse
Affiliation(s)
| | | | - Oscar Martínez-Alvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 6th José Antonio Novais St., 28040 Madrid, Spain; (M.M.C.); (M.E.L.-C.)
| |
Collapse
|
4
|
Attah FA, Lawal BA, Yusuf AB, Adedeji OJ, Folahan JT, Akhigbe KO, Roy T, Lawal AA, Ogah NB, Olorundare OE, Chamcheu JC. Nutritional and Pharmaceutical Applications of Under-Explored Knottin Peptide-Rich Phytomedicines. PLANTS (BASEL, SWITZERLAND) 2022; 11:3271. [PMID: 36501311 PMCID: PMC9737898 DOI: 10.3390/plants11233271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Phytomedicines reportedly rich in cystine knot peptides (Knottins) are found in several global diets, food/herbal supplements and functional foods. However, their knottin peptide content has largely been unexplored, notably for their emerging dual potentials at both the food and medicine space. The nutritional roles, biological targets and mechanism(s) of activity of these knotted peptides are largely unknown. Meanwhile, knottins have recently been unveiled as emerging peptide therapeutics and nutraceuticals of primary choice due to their broad spectrum of bioactivity, hyper stability, selective toxicity, impressive selectivity for biomolecular targets, and their bioengineering applications. In addition to their potential dietary benefits, some knottins have displayed desirable limited toxicity to human erythrocytes. In an effort to appraise what has been accomplished, unveil knowledge gaps and explore the future prospects of knottins, an elaborate review of the nutritional and pharmaceutical application of phytomedicines rich in knottins was carried out. Herein, we provide comprehensive data on common dietary and therapeutic knottins, the majority of which are poorly investigated in many food-grade phytomedicines used in different cultures and localities. Findings from this review should stimulate scientific interest to unveil novel dietary knottins and knottin-rich nutraceutical peptide drug candidates/leads with potential for future clinical application.
Collapse
Affiliation(s)
- Francis Alfred Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Bilqis Abiola Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Abdulmalik Babatunde Yusuf
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Oluwakorede Joshua Adedeji
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Joy Temiloluwa Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | - Kelvin Oluwafemi Akhigbe
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | - Azeemat Adeola Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Ngozi Blessing Ogah
- Department of Biotechnology, Ebonyi State University, Abakaliki 480101, Nigeria
| | | | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| |
Collapse
|
5
|
Fernández-Bobey A, Pinto MEF, de Almeida LC, de Souza BM, Dias NB, de Paula-Souza J, Cilli EM, Lopes NP, Costa-Lotufo LV, Palma MS, da Silva Bolzani V. Cytotoxic Cyclotides from Anchietea pyrifolia, a South American Plant Species. JOURNAL OF NATURAL PRODUCTS 2022; 85:2127-2134. [PMID: 36044031 DOI: 10.1021/acs.jnatprod.1c01129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cyclotides are mini-proteins with potent bioactivities and outstanding potential for agricultural and pharmaceutical applications. More than 450 different plant cyclotides have been isolated from six angiosperm families. In Brazil, studies involving this class of natural products are still scarce, despite its rich floristic diversity. Herein were investigated the cyclotides from Anchietea pyrifolia roots, a South American medicinal plant from the family Violaceae. Fourteen putative cyclotides were annotated by LC-MS. Among these, three new bracelet cyclotides, anpy A-C, and the known cycloviolacins O4 (cyO4) and O17 (cyO17) were sequenced through a combination of chemical and enzymatic reactions followed by MALDI-MS/MS analysis. Their cytotoxic activity was evaluated by a cytotoxicity assay against three human cancer cell lines (colorectal carcinoma cells: HCT 116 and HCT 116 TP53-/- and breast adenocarcinoma, MCF 7). For all assays, the IC50 values of isolated compounds ranged between 0.8 and 7.3 μM. CyO17 was the most potent cyclotide for the colorectal cancer cell lines (IC50, 0.8 and 1.2 μM). Furthermore, the hemolytic activity of anpy A and B, cyO4, and cyO17 was assessed, and the cycloviolacins were the least hemolytic (HD50 > 156 μM). This work sheds light on the cytotoxic effects of the anpy cyclotides against cancer cells. Moreover, this study expands the number of cyclotides obtained to date from Brazilian plant biodiversity and adds one more genus containing these molecules to the list of the Violaceae family.
Collapse
Affiliation(s)
- Antonio Fernández-Bobey
- Nucleus of Bioassays, Biosynthesis, and Ecophysiology of Natural Products (NuBBE), Institute of Chemistry, Sao Paulo State University (UNESP), 14800-060, Araraquara, Sao Paulo, Brazil
- Department of Basic and Applied Biology, Laboratory of Structural Biology and Zoochemistry, Institute of Biosciences, Sao Paulo State University (UNESP), 13506-900, Rio Claro, Sao Paulo, Brazil
| | - Meri Emili Ferreira Pinto
- Nucleus of Bioassays, Biosynthesis, and Ecophysiology of Natural Products (NuBBE), Institute of Chemistry, Sao Paulo State University (UNESP), 14800-060, Araraquara, Sao Paulo, Brazil
| | - Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo (USP), 05508-900, Sao Paulo, Brazil
| | - Bibiana Monson de Souza
- Department of Basic and Applied Biology, Laboratory of Structural Biology and Zoochemistry, Institute of Biosciences, Sao Paulo State University (UNESP), 13506-900, Rio Claro, Sao Paulo, Brazil
| | - Nathalia Baptista Dias
- Scientific and Technological Bioresource Nucleus (BIOREN), University of The Frontier (UFRO), 4881-176, Temuco, Chile
| | - Juliana de Paula-Souza
- Department of Botany, Federal University of Santa Catarina (UFSC), 88040-535, Florianopolis, Santa Catarina, Brazil
| | - Eduardo Maffud Cilli
- Nucleus of Bioassays, Biosynthesis, and Ecophysiology of Natural Products (NuBBE), Institute of Chemistry, Sao Paulo State University (UNESP), 14800-060, Araraquara, Sao Paulo, Brazil
| | - Norberto Peporine Lopes
- Nucleus Research in Natural and Synthetic Products (NPPNS), Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo (USP), 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo (USP), 05508-900, Sao Paulo, Brazil
| | - Mario Sergio Palma
- Department of Basic and Applied Biology, Laboratory of Structural Biology and Zoochemistry, Institute of Biosciences, Sao Paulo State University (UNESP), 13506-900, Rio Claro, Sao Paulo, Brazil
| | - Vanderlan da Silva Bolzani
- Nucleus of Bioassays, Biosynthesis, and Ecophysiology of Natural Products (NuBBE), Institute of Chemistry, Sao Paulo State University (UNESP), 14800-060, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
6
|
Dayani L, Varshosaz J, Aliomrani M, Sadeghi Dinani M, Hashempour H, Taheri A. Morphological studies of self-assembled cyclotides extracted from Viola odorata as novel versatile platforms in biomedical applications. Biomater Sci 2022; 10:5172-5186. [PMID: 35833353 DOI: 10.1039/d2bm00848c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Self-assembling peptides have attracted researchers' attention recently. They are classified as biomedical materials with unique properties formed in response to environmental conditions. Cyclotides are macrocyclic plant-derived peptides containing 28-37 amino acids that have the ability to self-assemble. Herein, we investigated the effect of pH, time, and temperature on the self-assembling properties of the cyclotides extracted from Viola odorata. For this purpose, the cyclotides were dispersed in aqueous trifluoroacetic acid at pH 2, 4, or 6 and incubated at 25 or 37 °C for 1, 2, 3, 5, 7 or 10 days, and the morphology of the self-assembled structures was identified by optical microscopy, polarized optical microscopy, scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. At pH 2 and 4, the self-assembly process of cyclotides comprises a number of steps, starting with the formation of spherical peptide nanostructures followed by hierarchically assembled nanotubes, and then shifting to nanofibers after 10 days. At pH 6, amorphous structures were produced even after 10 days. The temperature also could affect the self-assembly mechanism of the cyclotides. At 25 °C, the spherical peptide micelles formed firstly and then merged to form nanotubes, while at 37 °C the cyclotides showed crystallization followed by an increase in length with time. The fluorescence microscopy images showed that the nanotubes could efficiently entrap the hydrophobic molecules of coumarin. This comparative study on the self-assembly of the cyclotides extracted from Viola odorata is the first example exploring the capacity of these cyclotides to adopt precise nanostructures. The nanotubes and nanofibers obtained with these cyclotides might find interesting applications in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Ladan Dayani
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sadeghi Dinani
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Hashempour
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Azade Taheri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Khan A, Waqas M, Khan M, Halim SA, Rehman NU, Al-Harrasi A. Identification of novel prolyl oligopeptidase inhibitors from resin of Boswella papyrifera (Del.) Hochst. and their mechanism: Virtual and biochemical studies. Int J Biol Macromol 2022; 213:751-767. [DOI: 10.1016/j.ijbiomac.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022]
|
8
|
Calvo MM, Martín-Diana AB, Rico D, López-Caballero ME, Martínez-Álvarez O. Antioxidant, Antihypertensive, Hypoglycaemic and Nootropic Activity of a Polyphenolic Extract from the Halophyte Ice Plant ( Mesembryanthemum crystallinum). Foods 2022; 11:foods11111581. [PMID: 35681331 PMCID: PMC9180490 DOI: 10.3390/foods11111581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
This study aims to determine the potential antioxidant, antihypertensive, hypoglycaemic and nootropic activity of a purified polyphenolic extract from the halophyte ice plant (Mesembryanthemum crystallinum). The ice plant extract showed good antioxidant activity measured by DPPH, ORAC, TEAC, FRAP and ferrous ion chelating activity. Moreover, the extract showed potent ACE, DPP-IV and PEP-inhibitory activity (90.5%, 98.6% and 73.1%, respectively, at a final concentration of 1 mg/mL). The extract was fractionated and the fraction with the highest content of total phenolic compounds showed the highest bioactivity, suggesting that polyphenols could be mainly responsible for the abovementioned activities. The tentative polyphenol identification by HPLC-ESI-QTOF-MS in this fraction revealed that flavones (>65%) are the major group, with apigenin (38%) predominating, followed by diosmin (17.7%) and luteolin (11.9%). They could presumably be the main elements responsible for the enzymatic inhibition activity. Additionally, 4-hydroxybenzoic acid, p-coumaric acid and a hydroxycinnamic acid derivative (2-O-(p-cumaroyl)-l-malic acid) were found in the extract. To our knowledge, this is the first time that some of these activities have been reported for halophyte extracts.
Collapse
Affiliation(s)
- Marta María Calvo
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais 10, 28040 Madrid, Spain; (M.M.C.); (M.E.L.-C.)
| | - Ana Belén Martín-Diana
- Agricultural Technological Institute of Castile and León (ITACyL), Government of Castile and León, Ctra. de Burgos Km. 119, Finca Zamadueñas, 47071 Valladolid, Spain; (A.B.M.-D.); (D.R.)
| | - Daniel Rico
- Agricultural Technological Institute of Castile and León (ITACyL), Government of Castile and León, Ctra. de Burgos Km. 119, Finca Zamadueñas, 47071 Valladolid, Spain; (A.B.M.-D.); (D.R.)
| | - María Elvira López-Caballero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais 10, 28040 Madrid, Spain; (M.M.C.); (M.E.L.-C.)
| | - Oscar Martínez-Álvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), C/José Antonio Novais 10, 28040 Madrid, Spain; (M.M.C.); (M.E.L.-C.)
- Correspondence:
| |
Collapse
|