1
|
Zhang Q, Li Y, Zhu Q, Xie T, Xiao Y, Zhang F, Li N, Deng K, Xin H, Huang X. TRIM65 promotes renal cell carcinoma through ubiquitination and degradation of BTG3. Cell Death Dis 2024; 15:355. [PMID: 38777825 PMCID: PMC11111765 DOI: 10.1038/s41419-024-06741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
As a typical E3 ligase, TRIM65 (tripartite motif containing 65) is involved in the regulation of antiviral innate immunity and the pathogenesis of certain tumors. However, the role of TRIM65 in renal cell carcinoma (RCC) and the underlying mechanism has not been determined yet. In this study, we identified TRIM65 as a novel oncogene in RCC, which enhanced the tumor cell proliferation and anchorage-independent growth abilities both in vitro and in vivo. Moreover, we found that TRIM65-regulated RCC proliferation mainly via direct interaction with BTG3 (BTG anti-proliferation factor 3), which in turn induced the K48-linked ubiquitination and subsequent degradation through K41 amino acid. Furthermore, TRIM65 relieved G2/M phase cell cycle arrest via degradation of BTG3 and regulated downstream factors. Further studies revealed that TRIM65 acts through TRIM65-BTG3-CyclinD1 axis and clinical sample IHC chip data indicated a negative correction between TRIM65 and BTG3. Taken together, our findings demonstrated that TRIM65 promotes RCC cell proliferation via regulation of the cell cycle through degradation of BTG3, suggesting that TRIM65 may be a promising target for RCC therapy.
Collapse
Affiliation(s)
- Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yue Xiao
- First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Feng Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, 330031, China
| | - Keyu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Ding L, Sun Y, Liang Y, Zhang J, Fu Z, Ren C, Li P, Liu W, Xiao R, Wang H, Zhang Z, Yue X, Li C, Wu Z, Feng Y, Liang X, Ma C, Gao L. Beta-Cell Tipe1 Orchestrates Insulin Secretion and Cell Proliferation by Promoting Gαs/cAMP Signaling via USP5. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304940. [PMID: 38417114 PMCID: PMC11040358 DOI: 10.1002/advs.202304940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Inadequate β-cell mass and insulin secretion are essential for the development of type 2 diabetes (T2D). TNF-α-induced protein 8-like 1 (Tipe1) plays a crucial role in multiple diseases, however, a specific role in T2D pathogenesis remains largely unexplored. Herein, Tipe1 as a key regulator in T2D, contributing to the maintenance of β cell homeostasis is identified. The results show that the β-cell-specific knockout of Tipe1 (termed Ins2-Tipe1BKO) aggravated diabetic phenotypes in db/db mice or in mice with high-fat diet-induced diabetes. Notably, Tipe1 improves β cell mass and function, a process that depends on Gαs, the α subunit of the G-stimulating protein. Mechanistically, Tipe1 inhibited the K48-linked ubiquitination degradation of Gαs by recruiting the deubiquitinase USP5. Consequently, Gαs or cAMP agonists almost completely restored the dysfunction of β cells observed in Ins2-Tipe1BKO mice. The findings characterize Tipe1 as a regulator of β cell function through the Gαs/cAMP pathway, suggesting that Tipe1 may emerge as a novel target for T2D intervention.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Yan Liang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Jie Zhang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Zhendong Fu
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Caiyue Ren
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Pengfei Li
- Department of EndocrinologyYucheng People's HospitalDezhouShandong251200P. R. China
| | - Wen Liu
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Rong Xiao
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Hao Wang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and EmbryologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Yuemin Feng
- Department of GastroenterologyShengLi Hospital of Shandong First Medical UniversityJinanShandong250012P. R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of EducationShandong Key Laboratory of Infection and Immunityand Department of ImmunologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| |
Collapse
|
4
|
Wu Q, Liu R, Yang Y, Peng J, Huang J, Li Z, Huang K, Zhu X. USP5 promotes tumorigenesis by activating Hedgehog/Gli1 signaling pathway in osteosarcoma. Am J Cancer Res 2024; 14:1204-1216. [PMID: 38590401 PMCID: PMC10998757 DOI: 10.62347/jmff8182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
Changes in protein ubiquitination have been linked to cancer. Deubiquitinating enzymes (DUBs) counteract E3 ligase activities and have emerged as promising targets for cancer treatment. Ubiquitin-specific peptidase 5 (USP5) is a member of the DUBs family and has been implicated in promoting tumorigenesis in numerous cancers. However, the clinical significance and biological function of USP5 in osteosarcoma (OS) remains unclear. Here, we found elevated USP5 expression in OS tissues compared with normal bone tissues. Furthermore, we observed significant associations of elevated USP5 levels with increased mortality and more malignant phenotypes in OS patients. Moreover, our results revealed that USP5 could facilitate metastasis and cell progression in OS by activating the hedgehog (Hh) signaling pathway using cultured cells and animal tumor models. Mechanistically, USP5 appeared to stabilize and deubiquitinate Gli1, a key mediator of the Hh signaling pathway. Additionally, the oncogenic effect of USP5 in OS was dependent on Gli1 stability. Our findings support the model where USP5 contributes to OS pathogenesis by activating the Hh/Gli1 signaling pathway, making USP5 a potential diagnostic and therapeutic target for OS.
Collapse
Affiliation(s)
- Qing Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Rui Liu
- The Second Affiliated Hospital, Jianxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Yuting Yang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jingyi Peng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jun Huang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Zhiyun Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
5
|
Li G, Ma L, Feng C, Yin H, Bao J, Wu D, Zhang Z, Li X, Li Z, Yang C, Wang H, Fang F, Hu X, Li M, Xu L, Xu Y, Liang H, Yang T, Wang J, Pan J. MZ1, a BRD4 inhibitor, exerted its anti-cancer effects by suppressing SDC1 in glioblastoma. BMC Cancer 2024; 24:220. [PMID: 38365636 PMCID: PMC10870565 DOI: 10.1186/s12885-024-11966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a relatively prevalent primary tumor of the central nervous system in children, characterized by its high malignancy and mortality rates, along with the intricate challenges of achieving complete surgical resection. Recently, an increasing number of studies have focused on the crucial role of super-enhancers (SEs) in the occurrence and development of GBM. This study embarks on the task of evaluating the effectiveness of MZ1, an inhibitor of BRD4 meticulously designed to specifically target SEs, within the intricate framework of GBM. METHODS The clinical data of GBM patients was sourced from the Chinese Glioma Genome Atlas (CGGA) and the Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and the gene expression data of tumor cell lines was derived from the Cancer Cell Line Encyclopedia (CCLE). The impact of MZ1 on GBM was assessed through CCK-8, colony formation assays, EdU incorporation analysis, flow cytometry, and xenograft mouse models. The underlying mechanism was investigated through RNA-seq and ChIP-seq analyses. RESULTS In this investigation, we made a noteworthy observation that MZ1 exhibited a substantial reduction in the proliferation of GBM cells by effectively degrading BRD4. Additionally, MZ1 displayed a notable capability in inducing significant cell cycle arrest and apoptosis in GBM cells. These findings were in line with our in vitro outcomes. Notably, MZ1 administration resulted in a remarkable decrease in tumor size within the xenograft model with diminished toxicity. Furthermore, on a mechanistic level, the administration of MZ1 resulted in a significant suppression of pivotal genes closely associated with cell cycle regulation and epithelial-mesenchymal transition (EMT). Interestingly, our analysis of RNA-seq and ChIP-seq data unveiled the discovery of a novel prospective oncogene, SDC1, which assumed a pivotal role in the tumorigenesis and progression of GBM. CONCLUSION In summary, our findings revealed that MZ1 effectively disrupted the aberrant transcriptional regulation of oncogenes in GBM by degradation of BRD4. This positions MZ1 as a promising candidate in the realm of therapeutic options for GBM treatment.
Collapse
Affiliation(s)
- Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Liya Ma
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, P.R. China
| | - Chenxi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Jianping Bao
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Hairong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Xiaohan Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Yunyun Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Hansi Liang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Tianquan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China.
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China.
| |
Collapse
|
6
|
Wu LZ, Zou Y, Wang BR, Ni HF, Kong YG, Hua QQ, Chen SM. Enhancing nasopharyngeal carcinoma cell radiosensitivity by suppressing AKT/mTOR via CENP-N knockdown. J Transl Med 2023; 21:792. [PMID: 37940975 PMCID: PMC10631041 DOI: 10.1186/s12967-023-04654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE Investigating the impact of centromere protein N (CENP-N) on radiosensitivity of nasopharyngeal carcinoma (NPC) cells. METHODS Using immunohistochemistry and immunofluorescence to detect CENP-N expression in tissues from 35 patients with radiosensitive or radioresistant NPC. Assessing the effect of combined CENP-N knockdown and radiotherapy on various cellular processes by CCK-8, colony formation, flow cytometry, and Western blotting. Establishing a NPC xenograft model. When the tumor volume reached 100 mm3, a irradiation dose of 6 Gy was given, and the effects of the combined treatment were evaluated in vivo using immunofluorescence and Western blotting techniques. RESULTS The level of CENP-N was significantly reduced in radiosensitive tissues of NPC (p < 0.05). Knockdown of CENP-N enhanced NPC radiosensitivity, resulting in sensitizing enhancement ratios (SER) of 1.44 (5-8 F) and 1.16 (CNE-2Z). The combined treatment showed significantly higher levels of proliferation suppression, apoptosis, and G2/M phase arrest (p < 0.01) compared to either CENP-N knockdown alone or radiotherapy alone. The combined treatment group showed the highest increase in Bax and γH2AX protein levels, whereas the protein Cyclin D1 exhibited the greatest decrease (p < 0.01). However, the above changes were reversed after treatment with AKT activator SC79. In vivo, the mean volume and weight of tumors in the radiotherapy group were 182 ± 54 mm3 and 0.16 ± 0.03 g. The mean tumor volume and weight in the combined treatment group were 84 ± 42 mm3 and 0.04 ± 0.01 g. CONCLUSION Knockdown of CENP-N can enhance NPC radiosensitivity by inhibiting AKT/mTOR.
Collapse
Affiliation(s)
- Li-Zhi Wu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - You Zou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Bin-Ru Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Hai-Feng Ni
- Department of Otolaryngology Head and Neck surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing-Quan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China.
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China.
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Yang K, Zhu G, Sun Y, Hu Y, Lv Y, Li Y, Pan J, Chen F, Zhou Y, Zhang J. Prognostic significance of cyclin D1 expression pattern in HPV-negative oral and oropharyngeal carcinoma: A deep-learning approach. J Oral Pathol Med 2023; 52:919-929. [PMID: 37701976 DOI: 10.1111/jop.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND We aimed to establish image recognition and survival prediction models using a novel scoring system of cyclin D1 expression pattern in patients with human papillomavirus-negative oral or oropharyngeal squamous cell carcinoma. METHODS The clinicopathological data of 610 patients with human papillomavirus-negative oral/oropharyngeal squamous cell carcinoma were analyzed retrospectively. Cox univariate and multivariate risk regression analyses were performed to compare cyclin D1 expression pattern scoring with the traditional scoring method-cyclin D1 expression level scoring-in relation to patients' overall and progression-free survival. An image recognition model employing the cyclin D1 expression pattern scoring system was established by YOLOv5 algorithms. From this model, two independent survival prediction models were established using the DeepHit and DeepSurv algorithms. RESULTS Cyclin D1 had three expression patterns in oral and oropharyngeal squamous cell carcinoma cancer nests. Superior to cyclin D1 expression level scoring, cyclin D1 expression pattern scoring was significantly correlated with the prognosis of patients with oral squamous cell carcinoma (p < 0.0001) and oropharyngeal squamous cell carcinoma (p < 0.05). Moreover, it was an independent prognostic risk factor in both oral squamous cell carcinoma (p < 0.0001) and oropharyngeal squamous cell carcinoma (p < 0.05). The cyclin D1 expression pattern-derived image recognition model showed an average test set accuracy of 78.48% ± 4.31%. In the overall survival prediction models, the average concordance indices of the test sets established by DeepSurv and DeepHit were 0.71 ± 0.02 and 0.70 ± 0.01, respectively. CONCLUSION Combined with the image recognition model of the cyclin D1 expression pattern, the survival prediction model had a relatively good prediction effect on the overall survival prognosis of patients with human papillomavirus-negative oral or oropharyngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guixin Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanan Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaying Hu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yinan Lv
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yiwei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Juncheng Pan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiali Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Li S, Song Y, Wang K, Liu G, Dong X, Yang F, Chen G, Cao C, Zhang H, Wang M, Li Y, Zeng T, Liu C, Li B. USP32 deubiquitinase: cellular functions, regulatory mechanisms, and potential as a cancer therapy target. Cell Death Discov 2023; 9:338. [PMID: 37679322 PMCID: PMC10485055 DOI: 10.1038/s41420-023-01629-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
An essential protein regulatory system in cells is the ubiquitin-proteasome pathway. The substrate is modified by the ubiquitin ligase system (E1-E2-E3) in this pathway, which is a dynamic protein bidirectional modification regulation system. Deubiquitinating enzymes (DUBs) are tasked with specifically hydrolyzing ubiquitin molecules from ubiquitin-linked proteins or precursor proteins and inversely regulating protein degradation, which in turn affects protein function. The ubiquitin-specific peptidase 32 (USP32) protein level is associated with cell cycle progression, proliferation, migration, invasion, and other cellular biological processes. It is an important member of the ubiquitin-specific protease family. It is thought that USP32, a unique enzyme that controls the ubiquitin process, is closely linked to the onset and progression of many cancers, including small cell lung cancer, gastric cancer, breast cancer, epithelial ovarian cancer, glioblastoma, gastrointestinal stromal tumor, acute myeloid leukemia, and pancreatic adenocarcinoma. In this review, we focus on the multiple mechanisms of USP32 in various tumor types and show that USP32 controls the stability of many distinct proteins. Therefore, USP32 is a key and promising therapeutic target for tumor therapy, which could provide important new insights and avenues for antitumor drug development. The therapeutic importance of USP32 in cancer treatment remains to be further proven. In conclusion, there are many options for the future direction of USP32 research.
Collapse
Grants
- Bing Li, Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China Chunyan Liu, Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
Collapse
Affiliation(s)
- Shuang Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kexin Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Teng Zeng
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunyan Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Shi S, Pan X, Chen M, Zhang L, Zhang S, Wang X, Shi S, Chen Z, Lin W, Jiang Y. USP5 promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein. Hepatol Commun 2023; 7:e0193. [PMID: 37534934 PMCID: PMC10553006 DOI: 10.1097/hc9.0000000000000193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/12/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The role of thioredoxin-interacting protein (TXNIP) in lipopolysaccharide-induced liver injury in mice has been reported, but the underlying mechanisms are poorly understood. METHODS We overexpressed deubiquitinase in cells overexpressing TXNIP and then detected the level of TXNIP to screen out the deubiquitinase regulating TXNIP; the interaction between TXNIP and deubiquitinase was verified by coimmunoprecipitation. After knockdown of a deubiquitinase and overexpression of TXNIP in Huh7 and HepG2 cells, lipopolysaccharide was used to establish a cellular inflammatory model to explore the role of deubiquitinase and TXNIP in hepatocyte inflammation. RESULTS In this study, we discovered that ubiquitin-specific protease 5 (USP5) interacts with TXNIP and stabilizes it through deubiquitylation in Huh-7 and HepG2 cells after treatment with lipopolysaccharide. In lipopolysaccharide-treated Huh-7 and HepG2 cells, USP5 knockdown increased cell viability, reduced apoptosis, and decreased the expression of inflammatory factors, including NLRP3, IL-1β, IL-18, ASC, and procaspase-1. Overexpression of TXNIP reversed the phenotype induced by knockdown USP5. CONCLUSIONS In summary, USP5 promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein.
Collapse
Affiliation(s)
- Songchang Shi
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Xiaobin Pan
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Minyong Chen
- Department of Hepatobiliary and Pancreatic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Lihui Zhang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Shujuan Zhang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Xincai Wang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Songjing Shi
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Zhixin Chen
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou, Fujian Province, China
| | - Wei Lin
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Yi Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou, Fujian Province, China
| |
Collapse
|
10
|
Yan B, Guo J, Deng S, Chen D, Huang M. A pan-cancer analysis of the role of USP5 in human cancers. Sci Rep 2023; 13:8972. [PMID: 37268697 DOI: 10.1038/s41598-023-35793-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023] Open
Abstract
Posttranslational modifications (PTM) such as acetylation, deubiquitination, and phosphorylation of proteins, play important roles in various kinds of cancer progression. Ubiquitin-specific proteinase 5 (USP5), a unique member of deubiquitinating enzymes (DUBs) which recognizes unanchored polyubiquitin specifically, could regulate the stability of many tumorigenesis-associated proteins to influence cancer initiation and progression. However, the diverse biological significance of USP5 in pan-cancer has not been systematically and comprehensively studied. Here, we explored the role of USP5 in pan-cancer using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database, and we also acquired and analyzed data via various software and web platforms such as R, GEPIA2.0, HPA, TISIDB, cBioPortal, UALCAN, TIMER 2.0, CancerSEA and BioGRID. USP5 expression was high in most cancers and differed significantly in different molecular and immune subtypes of cancers. In addition, USP5 had certain diagnostic value in multiple cancers, and high expression of USP5 generally predicted poor prognosis for cancer patients. We also found that the most frequent genetic alterations type of USP5 was mutation, and the DNA methylation level of USP5 decreased in various cancers. Furthermore, USP5 expression correlated with cancer-associated fibroblasts (CAFs), endothelial cells (EC) and genetic markers of immunodulators in cancers. Moreover, the result from single cell sequencing showed that USP5 could regulate several tumor biological behaviors such as apoptosis, DNA damage and metastasis. Gene enrichment analysis indicated "spliceosome" and "RNA splicing" may be the critical mechanism for USP5 to involve in cancer. Taken together, our study elucidates the biological significance of USP5 in the diagnosis, prognosis and immune in human pan-cancer.
Collapse
Affiliation(s)
- Bokang Yan
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, Hunan, China
| | - Jiaxing Guo
- Department of Hematology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, Hunan, China
| | - Shuang Deng
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, Hunan, China
| | - Dongliang Chen
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, Hunan, China.
| | - Meiyuan Huang
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, Hunan, China.
| |
Collapse
|
11
|
Ma L, Li G, Yang T, Zhang L, Wang X, Xu X, Ni H. An inhibitor of BRD4, GNE987, inhibits the growth of glioblastoma cells by targeting C-Myc and S100A16. Cancer Chemother Pharmacol 2022; 90:431-444. [PMID: 36224471 PMCID: PMC9637061 DOI: 10.1007/s00280-022-04483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Among children, glioblastomas (GBMs) are a relatively common type of brain tumor. BRD4 expression was elevated in GBM and negatively correlated with the prognosis of glioma. We investigated the anti-GBM effects of a novel BRD4 inhibitor GNE987. METHODS We evaluated the anti-tumor effect of GNE987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, the size of xenografts, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS In vitro experiments showed that GNE987 significantly degraded BRD4, inhibited the proliferation of GBM cells, blocked the cell cycle, and induced apoptosis. Similarly, in vivo experiments, GNE987 also inhibited GBM growth as seen from the size of xenografts and Ki67 immunohistochemical staining. Based on Western blotting, GNE987 can significantly reduce the protein level of C-Myc; meanwhile, we combined ChIP-seq with RNA-seq techniques to confirm that GNE987 downregulated the transcription of S100A16 by disturbing H3K27Ac. Furthermore, we validated that S100A16 is indispensable in GBM growth. CONCLUSION GNE987 may be effective against GBM that targets C-Myc expression and influences S100A16 transcription through downregulation of BRD4.
Collapse
Affiliation(s)
- Liya Ma
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
- Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Tianquan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Li Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Xinxin Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Xiaowen Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Hong Ni
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China.
| |
Collapse
|
12
|
Gan P, Sun M, Wu H, Ke J, Dong X, Chen F. A novel mechanism for inhibiting proliferation of rheumatoid arthritis fibroblast-like synoviocytes: geniposide suppresses HIF-1α accumulation in the hypoxic microenvironment of synovium. Inflamm Res 2022; 71:1375-1388. [DOI: 10.1007/s00011-022-01636-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
|
13
|
Chen S, Li L. Degradation strategy of cyclin D1 in cancer cells and the potential clinical application. Front Oncol 2022; 12:949688. [PMID: 36059670 PMCID: PMC9434365 DOI: 10.3389/fonc.2022.949688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023] Open
Abstract
Cyclin D1 has been reported to be upregulated in several solid and hematologic tumors, promoting cancer progression. Thus, decreasing cyclin D1 by degradation could be a promising target strategy for cancer therapy. This mini review summarizes the roles of cyclin D1 in tumorigenesis and progression and its degradation strategies. Besides, we proposed an exploration of the degradation of cyclin D1 by FBX4, an F box protein belonging to the E3 ligase SKP-CUL-F-box (SCF) complex, which mediates substrate ubiquitination, as well as a postulate about the concrete combination mode of FBX4 and cyclin D1. Furthermore, we proposed a possible photodynamic therapy strategythat is based on the above concrete combination mode for treating superficial cancer.
Collapse
Affiliation(s)
- Shuyi Chen
- The Sixth Student Battalion, School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Ling Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Ling Li,
| |
Collapse
|
14
|
Contribution of the Testosterone Androgen Receptor–PARD3B Signaling Axis to Tumorigenesis and Malignance of Glioblastoma Multiforme through Stimulating Cell Proliferation and Colony Formation. J Clin Med 2022; 11:jcm11164818. [PMID: 36013056 PMCID: PMC9410375 DOI: 10.3390/jcm11164818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 02/07/2023] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most common and malignant brain tumor with very poor prognoses. After surgical resection of the primary tumor, rapid proliferation of residual glioblastoma cells is a critical cause explaining tumor malignance and recurrence. In this study, we evaluated de novo roles of the testosterone androgen receptor (AR)–PARD3B signaling axis in the tumorigenesis and malignance of human GBM and the possible related mechanisms. Methods: AR and PARD3B gene expressions and their correlations were mined from The Cancer Genome Atlas (TCGA) database and analyzed using the UALCAN system. Analyses using a real-time PCR, cell proliferation, and colony formation and a loss-of-function strategy by suppressing AR activity with its specific inhibitor, enzalutamide, were then carried out to determine roles of the testosterone AR–PARD3B signaling axis in tumor malignance. Results: Expressions of AR, PARD3B mRNA, and proteins in human GBM tissues were upregulated compared to normal human brain tissues. In contrast, levels of AR and PARD3B mRNA in most TCGA pan-cancer types were downregulated compared to their respective normal tissues. Interestingly, a highly positive correlation between AR and PARD3B gene expressions in human GBM was identified. The results of a bioinformatics search further showed that there were five AR-specific DNA-binding elements predicted in the 5′ promoter of the PARD3B gene. Regarding the mechanisms, exposure of human glioblastoma cells to testosterone induced AR and PARD3B gene expressions and successively stimulated cell proliferation and colony formation. Suppressing AR activity concurrently resulted in significant attenuations of testosterone-induced PARD3B gene expression, cell proliferation, and colony formation in human glioblastoma cells. Conclusions: This study showed the contribution of the testosterone AR–PARD3B signaling axis to the tumorigenesis and malignance of human GBM through stimulating cell proliferation and colony formation. Therefore, the AR-PARD3B signaling axis could be targeted for potential therapy for human GBM.
Collapse
|
15
|
Hill J, Nyathi Y. USP5 enhances SGTA mediated protein quality control. PLoS One 2022; 17:e0257786. [PMID: 35895711 PMCID: PMC9328565 DOI: 10.1371/journal.pone.0257786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Mislocalised membrane proteins (MLPs) present a risk to the cell due to exposed hydrophobic amino acids which cause MLPs to aggregate. Previous studies identified SGTA as a key component of the machinery that regulates the quality control of MLPs. Overexpression of SGTA promotes deubiqutination of MLPs resulting in their accumulation in cytosolic inclusions, suggesting SGTA acts in collaboration with deubiquitinating enzymes (DUBs) to exert these effects. However, the DUBs that play a role in this process have not been identified. In this study we have identified the ubiquitin specific peptidase 5 (USP5) as a DUB important in regulating the quality control of MLPs. We show that USP5 is in complex with SGTA, and this association is increased in the presence of an MLP. Overexpression of SGTA results in an increase in steady-state levels of MLPs suggesting a delay in proteasomal degradation of substrates. However, our results show that this effect is strongly dependent on the presence of USP5. We find that in the absence of USP5, the ability of SGTA to increase the steady state levels of MLPs is compromised. Moreover, knockdown of USP5 results in a reduction in the steady state levels of MLPs, while overexpression of USP5 increases the steady state levels. Our findings suggest that the interaction of SGTA with USP5 enables specific MLPs to escape proteasomal degradation allowing selective modulation of MLP quality control. These findings progress our understanding of aggregate formation, a hallmark in a range of neurodegenerative diseases and type II diabetes, as well as physiological processes of aggregate clearance.
Collapse
Affiliation(s)
- Jake Hill
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Yvonne Nyathi
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- * E-mail:
| |
Collapse
|