1
|
Chen O, Fu L, Wang Y, Li J, Liu J, Wen Y. Targeting HSP90AA1 to overcome multiple drug resistance in breast cancer using magnetic nanoparticles loaded with salicylic acid. Int J Biol Macromol 2025; 298:139443. [PMID: 39756742 DOI: 10.1016/j.ijbiomac.2024.139443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Multiple drug resistance (MDR) remains a major obstacle in effective breast cancer chemotherapy. This study explores the role of HSP90AA1 in driving MDR and evaluates the potential of magnetic nanoparticles (Fe3O4@SA) loaded with salicylic acid (SA) to counteract drug resistance. A comprehensive screening of 200 SA-related target genes identified nine core genes, including HSP90AA1. Pharmacophore analysis revealed that SA interacts with HSP90AA1, a key regulator of mitochondrial K+ channels. Fe3O4@SA nanoparticles demonstrated efficient cellular uptake and lysosomal escape, markedly improving the chemosensitivity of resistant breast cancer cells and promoting apoptosis. In vivo experiments further confirmed the anticancer efficacy of Fe3O4@SA, highlighting its potential as a promising therapeutic strategy to overcome MDR in breast cancer.
Collapse
Affiliation(s)
- Ou Chen
- Department of clinical laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Linlin Fu
- Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Wang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinggui Li
- Liaoning Jiahe Hospital of Traditional Chinese Medicine, Medical Imaging Center, Shenyang, China
| | - Jun Liu
- Department of cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yanqing Wen
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Ukon K, Nojima S, Motooka D, Takashima T, Kohara M, Kiyokawa H, Kimura K, Fukui E, Tahara S, Kido K, Matsui T, Shintani Y, Okuzaki D, Morii E. Spatial transcriptome analysis of lung squamous cell carcinoma arising from interstitial pneumonia provides insights into tumor heterogeneity. Pathol Res Pract 2024; 266:155805. [PMID: 39756106 DOI: 10.1016/j.prp.2024.155805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Interstitial pneumonia (IP) is a refractory disease that causes severe inflammation and fibrosis in the interstitium of the lungs, often resulting in the development of lung cancer (LC) during treatment. Previous studies have demonstrated that the prognosis of LC complicated by IP is inferior to that of LC without IP. It is therefore of the utmost importance to gain a deeper understanding of the heterogeneity of such tumors. In the present study, we conducted spatial transcriptome analysis of squamous cell carcinoma arising from IP. The results suggested involvement of the glucocorticoid receptor pathway in treatment resistance. Immunostaining of squamous cell carcinoma specimens from patients with IP demonstrated that the tumors expressed NR3C1 to varying degrees. Furthermore, higher NR3C1 expression levels were associated with a significantly increased risk of recurrence. Our results point to a novel subtype of lung squamous cell carcinoma. Further analysis of the molecular mechanisms associated with this subtype may facilitate the development of novel diagnostic criteria and therapeutic approaches.
Collapse
Affiliation(s)
- Koto Ukon
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tsuyoshi Takashima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaharu Kohara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroki Kiyokawa
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Kimura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kansuke Kido
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Matsui
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan; RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
| |
Collapse
|
3
|
Karimzadeh M, Momen-Roknabadi A, Cavazos TB, Fang Y, Chen NC, Multhaup M, Yen J, Ku J, Wang J, Zhao X, Murzynowski P, Wang K, Hanna R, Huang A, Corti D, Nguyen D, Lam T, Kilinc S, Arensdorf P, Chau KH, Hartwig A, Fish L, Li H, Behsaz B, Elemento O, Zou J, Hormozdiari F, Alipanahi B, Goodarzi H. Deep generative AI models analyzing circulating orphan non-coding RNAs enable detection of early-stage lung cancer. Nat Commun 2024; 15:10090. [PMID: 39572521 PMCID: PMC11582319 DOI: 10.1038/s41467-024-53851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Liquid biopsies have the potential to revolutionize cancer care through non-invasive early detection of tumors. Developing a robust liquid biopsy test requires collecting high-dimensional data from a large number of blood samples across heterogeneous groups of patients. We propose that the generative capability of variational auto-encoders enables learning a robust and generalizable signature of blood-based biomarkers. In this study, we analyze orphan non-coding RNAs (oncRNAs) from serum samples of 1050 individuals diagnosed with non-small cell lung cancer (NSCLC) at various stages, as well as sex-, age-, and BMI-matched controls. We demonstrate that our multi-task generative AI model, Orion, surpasses commonly used methods in both overall performance and generalizability to held-out datasets. Orion achieves an overall sensitivity of 94% (95% CI: 87%-98%) at 87% (95% CI: 81%-93%) specificity for cancer detection across all stages, outperforming the sensitivity of other methods on held-out validation datasets by more than ~ 30%.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ti Lam
- Exai Bio Inc., Palo Alto, CA, US
| | | | | | | | | | | | - Helen Li
- Exai Bio Inc., Palo Alto, CA, US
| | | | | | - James Zou
- Stanford University, Stanford, CA, US
| | | | | | - Hani Goodarzi
- University of California, San Francisco, CA, US.
- Arc Institute, Palo Alto, CA, US.
| |
Collapse
|
4
|
Iksen I, Singharajkomron N, Nguyen HM, Hoang HNT, Ho DV, Pongrakhananon V. Adunctin E from Conamomum rubidum Induces Apoptosis in Lung Cancer via HSP90AA1 Modulation: A Network Pharmacology and In Vitro Study. Int J Mol Sci 2024; 25:11368. [PMID: 39518920 PMCID: PMC11546842 DOI: 10.3390/ijms252111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer stands out as a leading cause of death among various cancer types, highlighting the urgent need for effective anticancer drugs and the discovery of new compounds with potent therapeutic properties. Natural sources, such as the Conamomum genus, offer various bioactive compounds. Adunctin E (AE), a dihydrochalcone derived from Conamomum rubidum, exhibited several pharmacological activities, and its potential as an anticancer agent remains largely unexplored. Thus, this study aimed to elucidate its apoptotic-inducing effect and identify its molecular targets. The network pharmacology analysis led to the identification of 71 potential targets of AE against lung cancer. Subsequent gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway enrichment analyses revealed the involvement of these targets in cancer-associated signaling pathways. Notably, HSP90AA1, MAPK1, and PIK3CA emerged as key players in apoptosis. In silico molecular docking and dynamic simulations suggested a strong and stable interaction between AE and HSP90AA1. In vitro experiments further confirmed a significant apoptotic-inducing effect of AE on lung cancer cell lines A549 and H460. Furthermore, immunoblot analysis exhibited a substantial decrease in HSP90AA1 levels in response to AE treatment. These findings support the potential anticancer activity of AE through the HSP90AA1 mechanism, underscoring its promise as a novel compound worthy of further research and development for anti-lung cancer therapy.
Collapse
Affiliation(s)
- Iksen Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.I.); (N.S.)
| | - Natsaranyatron Singharajkomron
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.I.); (N.S.)
| | - Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Hanh Nhu Thi Hoang
- Faculty of Engineering and Food Technology, Hue University of Agriculture and Forestry, Hue University, Hue City 49000, Vietnam;
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City 49000, Vietnam;
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City 49000, Vietnam;
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.I.); (N.S.)
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
An J, Han M, Tang H, Peng C, Huang W, Peng F. Blestriarene C exerts an inhibitory effect on triple-negative breast cancer through multiple signaling pathways. Front Pharmacol 2024; 15:1434812. [PMID: 39502536 PMCID: PMC11534688 DOI: 10.3389/fphar.2024.1434812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Breast cancer is the most common cancer worldwide, the leading cause of cancer death in women, and the fifth leading cause of cancer death. Triple negative breast cancer (TNBC), with high metastasis and mortality rates, is the most challenging subtype in breast cancer treatment. There is an urgent need to develop anti-TNBC drugs with significant efficacy, low side effects and good availability. In early drug screening, blestriarene C was found to have inhibitory effects on TNBC cells. In this article, we further explore the mechanisms associated with blestriarene C for breast cancer. Methods In this article, we take the approach of network pharmacology combined with in vivo and in vitro experiments. Network pharmacology analysis was used to predict the active components in Baiji, and to investigate the hub targets and related mechanisms of BC in TNBC treatment. The mechanism of anti-TNBC in vitro was evaluated by CCK-8 assay, cell apoptosis and cell cycle assays, wound healing assay, WB assay, and molecular docking analysis. The inhibition effect in vivo was test in subcutaneous tumor models established in mice. Results Through network pharmacology analysis and experiments, we screened out BC as the main active ingredient, and found that BC could inhibit the Ras/ERK/c-Fos signaling pathway while downregulating the expression of HSP90AA1 and upregulating the expression of PTGS2, thereby promoting apoptosis, causing S-phase cycle arrest, and inhibiting the proliferation and migration of BT549 cells. The in vivo results illustrated that BC inhibited the growth of TNBC tumors and has a high safety profile. By integrating network pharmacology with in vitro and in vivo experiments, this study demonstrated that BC inhibited the proliferation and migration of TNBC cells by inhibiting the Ras/ERK/c-Fos signaling pathway, promoting apoptosis, and causing S-phase cycle arrest. Discussion This study provides new evidence for the use of BC as a novel drug for TNBC treatment.
Collapse
Affiliation(s)
- Junsha An
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyu Han
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Bahmei A, Karimi F, Mahini SM, Irandoost H, Tandel P, Niknam H, Tamaddon G. Targeting telomerase with MST-312 leads to downregulation of CCND1, MDM2, MYC, and HSP90AA1 and induce apoptosis in Jurkat cell line. Med Oncol 2024; 41:267. [PMID: 39400638 DOI: 10.1007/s12032-024-02412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/23/2024] [Indexed: 10/15/2024]
Abstract
Acute lymphoblastic leukemia is a challenging disease to treat, especially in older adults who are most commonly diagnosed and have a high risk of relapse, even with current treatment options. MST-312, targets the RNA component of telomerase, inhibiting its activity and leading to growth arrest and telomere shortening in cancer cells. This study aimed to investigate the effects of MST-312 on apoptosis rates and the expression of telomerase target genes, CCND1, MDM2, MYC, and HSP90AA1, in Jurkat cell line. Jurkat cell line was cultured and treated with various concentrations of MST-312(0 µM, 0.5 µM, 1 µM, 2 µM, and 4 µM). The optimal concentration of MST-312 was determined using MTT assay. Flow cytometry was employed to evaluate the apoptosis induced by MST-312 treatment. The expression levels of the target genes were measured using real-time polymerase chain reaction before and after the treatment with MST-312. P-value < 0.05 was considered statistically significant. The percentages of apoptotic cells after 48 h, as determined by flow cytometry analysis, were 30.32%, 52.35%, 57.60%, and 68.82%, respectively, compared to the control group which was 4.6%. The expression levels of all genes, including CCND1, MDM2, MYC, and HSP90AA1, were decreased compared to the control group. The results showed that MST-312 induced dose- and time-dependent apoptosis and downregulated the expression of CCND1, MDM2, MYC, and HSP90AA1in Jurkat cell line.
Collapse
Affiliation(s)
- Atefeh Bahmei
- Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Karimi
- Shiraz Molecular Pathology Research Center, Daneshbod Path Lab, Shiraz, Iran
| | - Seyed Moein Mahini
- Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Irandoost
- Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Tandel
- Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Homa Niknam
- Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholmhossein Tamaddon
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Heritz JA, Backe, SJ, Mollapour M. Molecular chaperones: Guardians of tumor suppressor stability and function. Oncotarget 2024; 15:679-696. [PMID: 39352796 PMCID: PMC11444336 DOI: 10.18632/oncotarget.28653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The term 'tumor suppressor' describes a widely diverse set of genes that are generally involved in the suppression of metastasis, but lead to tumorigenesis upon loss-of-function mutations. Despite the protein products of tumor suppressors exhibiting drastically different structures and functions, many share a common regulatory mechanism-they are molecular chaperone 'clients'. Clients of molecular chaperones depend on an intracellular network of chaperones and co-chaperones to maintain stability. Mutations of tumor suppressors that disrupt proper chaperoning prevent the cell from maintaining sufficient protein levels for physiological function. This review discusses the role of the molecular chaperones Hsp70 and Hsp90 in maintaining the stability and functional integrity of tumor suppressors. The contribution of cochaperones prefoldin, HOP, Aha1, p23, FNIP1/2 and Tsc1 as well as the chaperonin TRiC to tumor suppressor stability is also discussed. Genes implicated in renal cell carcinoma development-VHL, TSC1/2, and FLCN-will be used as examples to explore this concept, as well as how pathogenic mutations of tumor suppressors cause disease by disrupting protein chaperoning, maturation, and function.
Collapse
Affiliation(s)
- Jennifer A. Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J. Backe,
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| |
Collapse
|
8
|
Zhao Q, Li X, Wu J, Zhang R, Chen S, Cai D, Xu H, Peng W, Li G, Nan A. TRMT10C-mediated m7G modification of circFAM126A inhibits lung cancer growth by regulating cellular glycolysis. Cell Biol Toxicol 2024; 40:78. [PMID: 39289194 PMCID: PMC11408563 DOI: 10.1007/s10565-024-09918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
The N7-methylguanosine (m7G) modification and circular RNAs (circRNAs) have been shown to play important roles in the development of lung cancer. However, the m7G modification of circRNAs has not been fully elucidated. This study revealed the presence of the m7G modification in circFAM126A. We propose the novel hypothesis that the methyltransferase TRMT10C mediates the m7G modification of circFAM126A and that the stability of m7G-modified circFAM126A is reduced. circFAM126A is downregulated in lung cancer and significantly inhibits lung cancer growth both in vitro and in vivo. The expression of circFAM126A correlates with the stage of lung cancer and with the tumour diameter, and circFAM126A can be used as a potential molecular target for lung cancer. The molecular mechanism by which circFAM126A increases HSP90 ubiquitination and suppresses AKT1 expression to regulate cellular glycolysis, ultimately inhibiting the progression of lung cancer, is elucidated. This study not only broadens the knowledge regarding the expression and regulatory mode of circRNAs but also provides new insights into the molecular mechanisms that regulate tumour cell metabolism and affect tumour cell fate from an epigenetic perspective. These findings will facilitate the development of new strategies for lung cancer prevention and treatment.
Collapse
Affiliation(s)
- Qingyun Zhao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xiaofei Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxi Wu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Sixian Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Dunyu Cai
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
9
|
Zuo Y, Dang R, Peng H, Hu P, Yang Y. LL37-mtDNA regulates viability, apoptosis, inflammation, and autophagy in lipopolysaccharide-treated RLE-6TN cells by targeting Hsp90aa1. Open Life Sci 2024; 19:20220943. [PMID: 39220589 PMCID: PMC11365468 DOI: 10.1515/biol-2022-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis-induced acute lung injury is associated with lung epithelial cell injury. This study analyzed the role of the antimicrobial peptide LL37 with mitochondrial DNA (LL37-mtDNA) and its potential mechanism of action in lipopolysaccharide (LPS)-treated rat type II alveolar epithelial cells (RLE-6TN cells). RLE-6TN cells were treated with LPS alone or with LL37-mtDNA, followed by transcriptome sequencing. Differentially expressed and pivotal genes were screened using bioinformatics tools. The effects of LL37-mtDNA on cell viability, inflammation, apoptosis, reactive oxygen species (ROS) production, and autophagy-related hallmark expression were evaluated in LPS-treated RLE-6TN cells. Additionally, the effects of Hsp90aa1 silencing following LL37-mtDNA treatment were investigated in vitro. LL37-mtDNA further suppressed cell viability, augmented apoptosis, promoted the release of inflammatory cytokines, increased ROS production, and elevated LC3B expression in LPS-treated RLE-6TN cells. Using transcriptome sequencing and bioinformatics, ten candidate genes were identified, of which three core genes were verified to be upregulated in the LPS + LL37-mtDNA group. Additionally, Hsp90aa1 downregulation attenuated the effects of LL37-mtDNA on LPS-treated RLE-6TN cells. Hsp90aa1 silencing possibly acted as a crucial target to counteract the effects of LL37-mtDNA on viability, apoptosis, inflammation, and autophagy activation in LPS-treated RLE-6TN cells.
Collapse
Affiliation(s)
- Yunlong Zuo
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Run Dang
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Hongyan Peng
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Peidan Hu
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Yiyu Yang
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
10
|
Soyer SM, Ozbek P, Kasavi C. Lung Adenocarcinoma Systems Biomarker and Drug Candidates Identified by Machine Learning, Gene Expression Data, and Integrative Bioinformatics Pipeline. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:408-420. [PMID: 38979602 DOI: 10.1089/omi.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Lung adenocarcinoma (LUAD) is a significant planetary health challenge with its high morbidity and mortality rate, not to mention the marked interindividual variability in treatment outcomes and side effects. There is an urgent need for robust systems biomarkers that can help with early cancer diagnosis, prediction of treatment outcomes, and design of precision/personalized medicines for LUAD. The present study aimed at systems biomarkers of LUAD and deployed integrative bioinformatics and machine learning tools to harness gene expression data. Predictive models were developed to stratify patients based on prognostic outcomes. Importantly, we report here several potential key genes, for example, PMEL and BRIP1, and pathways implicated in the progression and prognosis of LUAD that could potentially be targeted for precision/personalized medicine in the future. Our drug repurposing analysis and molecular docking simulations suggested eight drug candidates for LUAD such as heat shock protein 90 inhibitors, cardiac glycosides, an antipsychotic agent (trifluoperazine), and a calcium ionophore (ionomycin). In summary, this study identifies several promising leads on systems biomarkers and drug candidates for LUAD. The findings also attest to the importance of integrative bioinformatics, structural biology and machine learning techniques in biomarker discovery, and precision oncology research and development.
Collapse
Affiliation(s)
- Semra Melis Soyer
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| | - Ceyda Kasavi
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| |
Collapse
|
11
|
Dernovšek J, Zajec Ž, Poje G, Urbančič D, Sturtzel C, Goričan T, Grissenberger S, Ciura K, Woziński M, Gedgaudas M, Zubrienė A, Grdadolnik SG, Mlinarič-Raščan I, Rajić Z, Cotman AE, Zidar N, Distel M, Tomašič T. Exploration and optimisation of structure-activity relationships of new triazole-based C-terminal Hsp90 inhibitors towards in vivo anticancer potency. Biomed Pharmacother 2024; 177:116941. [PMID: 38889640 DOI: 10.1016/j.biopha.2024.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
The development of new anticancer agents is one of the most urgent topics in drug discovery. Inhibition of molecular chaperone Hsp90 stands out as an approach that affects various oncogenic proteins in different types of cancer. These proteins rely on Hsp90 to obtain their functional structure, and thus Hsp90 is indirectly involved in the pathophysiology of cancer. However, the most studied ATP-competitive inhibition of Hsp90 at the N-terminal domain has proven to be largely unsuccessful clinically. Therefore, research has shifted towards Hsp90 C-terminal domain (CTD) inhibitors, which are also the focus of this study. Our recent discovery of compound C has provided us with a starting point for exploring the structure-activity relationship and optimising this new class of triazole-based Hsp90 inhibitors. This investigation has ultimately led to a library of 33 analogues of C that have suitable physicochemical properties and several inhibit the growth of different cancer types in the low micromolar range. Inhibition of Hsp90 was confirmed by biophysical and cellular assays and the binding epitopes of selected inhibitors were studied by STD NMR. Furthermore, the most promising Hsp90 CTD inhibitor 5x was shown to induce apoptosis in breast cancer (MCF-7) and Ewing sarcoma (SK-N-MC) cells while inducing cause cell cycle arrest in MCF-7 cells. In MCF-7 cells, it caused a decrease in the levels of ERα and IGF1R, known Hsp90 client proteins. Finally, 5x was tested in zebrafish larvae xenografted with SK-N-MC tumour cells, where it limited tumour growth with no obvious adverse effects on normal zebrafish development.
Collapse
Affiliation(s)
- Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Goran Poje
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb 10000, Croatia
| | - Dunja Urbančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, Vienna 1090, Austria
| | - Tjaša Goričan
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Sarah Grissenberger
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, Vienna 1090, Austria
| | - Krzesimir Ciura
- Department of Physical Chemistry, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Mateusz Woziński
- Department of Physical Chemistry, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Irena Mlinarič-Raščan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb 10000, Croatia
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, Vienna 1090, Austria
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
12
|
Suo F, Wu Y, Zhou Q, Li L, Wei X. BIRC3-HSP90B1 Interaction Inhibits Non-Small Cell Lung Cancer Progression through the Extracellular Signal-Regulated Kinase Pathway. ACS OMEGA 2024; 9:19148-19157. [PMID: 38708247 PMCID: PMC11064049 DOI: 10.1021/acsomega.3c10274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
The long-term prognosis of nonsmall cell lung cancer (NSCLC) remains unsatisfactory, which is a major challenge in lung cancer treatment. BIRC3 is an inhibitor of apoptosis (IAP) protein that contributes to tumor regulation. However, the underlying regulatory mechanisms of BIRC3 in NSCLC remains unknown. We initiated an analysis of BIRC3 expression data in NSCLC tumors and adjacent tissues using the TCGA and GEO databases and examined the variations in prognosis. Further, we conducted overexpression (OE) and knockdown (KD) studies on BIRC3 to evaluate its effects on NSCLC cell proliferation, migration, and invasion. Additionally, through utilization of a nude mouse model, the regulatory effects of BIRC3 on NSCLC were verified in vivo. Co-immunoprecipitation (Co-IP) assay served to pinpoint the proteins with which BIRC3 interacts. The results indicated that BIRC3 is down-regulated in NSCLC tissues and that patients with high BIRC3 expression demonstrate a better prognosis. BIRC3 is a tumor suppressor, inhibiting the proliferation and metastasis of NSCLC. Co-IP results revealed that BIRC3 interacts with HSP90B1, leading to a decrease in HSP90B1 expression and subsequent negative regulation of the ERK signaling pathway. BIRC3 may serve as a prognostic biomarker for NSCLC. It directly interacts with HSP90B1 to negatively regulate the ERK signaling pathway, thereby hindering the progression of NSCLC.
Collapse
Affiliation(s)
| | | | | | - Longfei Li
- Department of Cardiothoracic
Surgery, Xuzhou Cancer Hospital, Xuzhou 221000, P.R China
| | - Xiangju Wei
- Department of Cardiothoracic
Surgery, Xuzhou Cancer Hospital, Xuzhou 221000, P.R China
| |
Collapse
|
13
|
Zhu Y, Dai Z. HSP90: A promising target for NSCLC treatments. Eur J Pharmacol 2024; 967:176387. [PMID: 38311278 DOI: 10.1016/j.ejphar.2024.176387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The emergence of targeted therapies and immunotherapies has improved the overall survival of patients with nonsmall cell lung cancer (NSCLC), but the 5-year survival rate remains low. New drugs are needed to overcome this dilemma. Moreover, the significant correlation between various client proteins of heat-shock protein (HSP) 90 and tumor occurrence, progression, and drug resistance suggests that HSP90 is a potential therapeutic target for NSCLC. However, the outcomes of clinical trials for HSP90 inhibitors have been disappointing, indicating significant toxicity of these drugs and that further screening of the beneficiary population is required. NSCLC patients with oncogenic-driven gene mutations or those at advanced stages who are resistant to multi-line treatments may benefit from HSP90 inhibitors. Enhancing the therapeutic efficacy and reducing the toxicity of HSP90 inhibitors can be achieved via the optimization of their drug structure, using them in combination therapies with low-dose HSP90 inhibitors and other drugs, and via targeted administration to tumor lesions. Here, we provide a review of the recent research on the role of HSP90 in NSCLC and summarize relevant studies of HSP90 inhibitors in NSCLC.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China
| | - Zhaoxia Dai
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China.
| |
Collapse
|
14
|
Antonisamy AJ, Rajendran K, Dhanaraj P. Network pharmacology integrated molecular docking of fucoidan against oral cancer and in vitro evaluation- A study using GEO datasets. J Biomol Struct Dyn 2024:1-24. [PMID: 38385359 DOI: 10.1080/07391102.2024.2316771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Oral cancer is a widespread health concern in rural India due to a lack of awareness, delayed diagnosis and limited access to affordable treatment options. The current chemotherapy has notable side effects, underscoring the need for new drug candidates with improved bioavailability and specificity. In this current research, fucoidan, a sulphated polysaccharide, was extracted from the brown algae Spatoglossum asperum, and shown to be cytotoxic in vitro against oral cancer cells (KB cell line) at an IC50 of 107.76 µg/ml, suggesting its potential as a drug candidate. This study further aimed to explore the potential therapeutic implications of fucoidan in managing oral cancer using network pharmacology. PharmMapper, Comparative Toxicogenomics Database and SuperPred were initially used to identify fucoidan protein targets. The identified targets were further screened against Gene Expression Omnibus (GSE23558, GSE25099 and GSE146483), OMIM, TCGA and GeneCards datasets to identify oral cancer-specific protein targets. The interactions between the selected proteins were visualised using STRING and Cytoscape. Subsequently, Database for Annotation, Visualization and Integrated Discovery was used for gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of candidate targets. The cancer-related network was assessed using CancerGeneNet, while life expectancy based on the expression of the top 10 CytoHubba ranked hub genes was evaluated using Kaplan-Meier plots. Finally, EGFR, AKT1, HSP90AA1 and SRC were selected for docking and molecular dynamics simulation with fucoidan, using Maestro and GROMACS, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arul Jayanthi Antonisamy
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, India
| | - Karthikeyan Rajendran
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, India
| | - Premnath Dhanaraj
- Department of Biotechnology, School of Agriculture and Bio sciences, Karunya Institute of Technology and Science, Coimbatore, Tamil Nadu, India
| |
Collapse
|
15
|
Li L, Lin M, Luo J, Sun H, Zhang Z, Lin D, Chen L, Feng S, Lin X, Zhou R, Song J. Loss of keratin 23 enhances growth inhibitory effect of melatonin in gastric cancer. Mol Med Rep 2024; 29:22. [PMID: 38099343 PMCID: PMC10784722 DOI: 10.3892/mmr.2023.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
To investigate the effect of keratin 23 (KRT23) on the anticancer activity of melatonin (MLT) against gastric cancer (GC) cells, microarray analysis was applied to screen differentially expressed genes in AGS GC cells following MLT treatment. Western blotting was used to detect the expression of KRT23 in GC cells and normal gastric epithelial cell line GES‑1. KRT23 knockout was achieved by CRISPR/Cas9. Assays of cell viability, colony formation, cell cycle, electric cell‑substrate impedance sensing and western blotting were conducted to reveal the biological functions of KRT23‑knockout cells without or with MLT treatment. Genes downregulated by MLT were enriched in purine metabolism, pyrimidine metabolism, genetic information processing and cell cycle pathway. Expression levels of KRT23 were downregulated by MLT treatment. Expression levels of KRT23 in AGS and SNU‑216 GC cell lines were significantly higher compared with normal gastric epithelial cell line GES‑1. KRT23 knockout led to reduced phosphorylation of ERK1/2 and p38, arrest of the cell cycle and inhibition of GC cell proliferation. Moreover, KRT23 knockout further enhanced the inhibitory activity of MLT on the tumor cell proliferation by inhibiting the phosphorylation of p38/ERK. KRT23 knockout contributes to the antitumor effects of MLT in GC via suppressing p38/ERK phosphorylation. In the future, KRT23 might be a potential prognostic biomarker and a novel molecular target for GC.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Meifang Lin
- Department of Pathology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jianhua Luo
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Huaqin Sun
- Center of Translational Hematology, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhiguang Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Dacen Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Lushan Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Sisi Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Xiuping Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Ruixiang Zhou
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Histology and Embryology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jun Song
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
16
|
Huang X, Zhang W, Yang N, Zhang Y, Qin T, Ruan H, Zhang Y, Tian C, Mo X, Tang W, Liu J, Zhang B. Identification of HSP90B1 in pan-cancer hallmarks to aid development of a potential therapeutic target. Mol Cancer 2024; 23:19. [PMID: 38243263 PMCID: PMC10799368 DOI: 10.1186/s12943-023-01920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
Heat shock proteins play crucial roles in various biochemical processes, encompassing protein folding and translocation. HSP90B1, a conserved member of the heat shock protein family, growing evidences have demonstrated that it might be closely associated with cancer development. In the present study, we employed multi-omics analyses and cohort validations to explore the dynamic expression of HSP90B1 in pan-cancer and comprehensively evaluate HSP90B1 as a novel biomarker that hold promise for precision cancer diagnostics and therapeutics. The results suggest HSP90B1 was highly expressed in various kinds of tumors, often correlating with a poor prognosis. Notably, methylation of HSP90B1 emerged as a protective factor in several cancer types. In immune infiltration analysis, the expression of HSP90B1 in most tumors showed a negative association with CD8 + T cells. HSP90B1 expression was positively correlated with microsatellite instability and tumor mutational burden. HSP90B1 expression was also discovered to be positively correlated with tumor metabolism, cell cycle-related pathways and the expression of immune checkpoint genes. The expression of HSP90B1 was mainly negatively correlated with immunostimulatory genes and positively correlated with immunosuppressive genes, as well as strongly correlated with chemokines and their receptor genes. In addition, the HSP90B1 inhibitor PU-WS13 demonstrated significant efficacy in suppressing cancer cell proliferation in both leukemic and solid tumor cells, and remarkably reduced the expression of the cancer cell surface immune checkpoint PD-L1. The single-cell RNA sequencing analysis further highlighted that HSP90B1 was significantly higher in tumor cells compared to surrounding cells, revealing a potential target therapeutic window. Taken together, HSP90B1 emerges as a promising avenue for breakthroughs in cancer diagnosis, prognosis and therapy. This study provides a rationale for HSP90B1 targeted cancer diagnosis and therapy in future.
Collapse
Affiliation(s)
- Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Weiming Zhang
- Department of Clinical Oncology, Wuming Hospital of Guangxi Medical University, Nanning, The People's Republic of China
| | - Na Yang
- Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, The People's Republic of China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan, The People's Republic of China
| | - Yujie Zhang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Tianyu Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Hanyi Ruan
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Yan Zhang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chao Tian
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| | - Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan, The People's Republic of China.
| |
Collapse
|
17
|
Huang S. Efficient analysis of toxicity and mechanisms of environmental pollutants with network toxicology and molecular docking strategy: Acetyl tributyl citrate as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167904. [PMID: 37858827 DOI: 10.1016/j.scitotenv.2023.167904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The study aims to promote network toxicology strategy to efficiently investigate the putative toxicity and underlying molecular mechanisms of environmental pollutants through an example of exploring brain injury induced by ATBC exposure. By utilizing ChEMBL, STITCH, GeneCards, and OMIM databases, we identified 213 potential targets associated with ATBC exposure and brain injury. Further refinements via STRING and Cytoscape software highlight 23 core targets, including AKT1, CASP3, and HSP90AA1. GO and KEGG pathway analysis conducted through DAVID and FUMA databases reveal that core targets of ATBC-induced brain toxicity are predominantly enriched in cancer signaling and neuroactive ligand receptor interaction pathways. Molecular docking was performed with Autodock, which confirmed robust binding between ATBC and core targets. Together, these findings suggest that ATBC may impact the occurrence and development of brain cancer and brain related inflammation, whereas pose risks for cognitive impairment and neurodegeneration, by modulating the apoptosis and proliferation of brain cancer cells, activating inflammatory signaling pathways, and regulating neuroplasticity. This research provides a theoretical basis for understanding the molecular mechanism of ATBC-induced brain toxicity, as well as establishing a foundation for the prevention and treatment of prostatic diseases associated with exposure to plastic products containing ATBC and certain ATBC-overwhelmed environments. Moreover, our network toxicology approach also expedites the elucidation of toxicity pathways for uncharacterized environmental chemicals.
Collapse
Affiliation(s)
- Shujun Huang
- West China School Of Public Health, West China Medical Center, Sichuan University, China.
| |
Collapse
|
18
|
Yuan R, Li K, Li Q, Wang C, Zhang H, Ge L, Ren Y, You F. Bioactive components and the molecular mechanism of Shengxian Decoction against lung adenocarcinoma based on network pharmacology and molecular docking. Am J Transl Res 2023; 15:6988-7012. [PMID: 38186989 PMCID: PMC10767532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE The aim of this study was to identify the active components of Shengxian Decoction (SXT) and to elucidate the multi-component, multi-target, and multi-pathway regulatory mechanisms underlying the efficacy of SXT in treating lung adenocarcinoma (LUAD). METHODS The effects of SXT extract on proliferation, migration, and invasion capabilities of human LUAD cells were determined through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound healing, and Transwell assays. High-Performance Liquid Chromatography (HPLC) was employed to pinpoint the primary active constituents of SXT. The SXT-active component-target-pathway network and protein-protein interaction (PPI) network were constructed based on network pharmacology. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using DAVID. The clinical significance of key targets was assessed using several external databases, and molecular docking confirmed the binding affinities between key targets and SXT active components. RESULTS SXT significantly inhibited the proliferation, migration and invasion of human LUAD cells. HPLC identified and quantified seven active SXT components. Network pharmacology yielded 197 targets, 128 signaling pathways, and 448 GO terms. The PPI network and external validation underscored 13 key targets significantly associated with the influence of SXT on LUAD progression. Molecular docking demonstrated strong interactions between SXT active components and key targets. CONCLUSION SXT treats LUAD through a multifaceted approach involving various components, targets, and pathways. This research offers novel insights into the constituents and molecular mechanisms of SXT in LUAD therapy.
Collapse
Affiliation(s)
- Ruijiao Yuan
- College of Life Science, Sichuan Normal UniversityChengdu, Sichuan, China
| | - Kejuan Li
- College of Life Science, Sichuan Normal UniversityChengdu, Sichuan, China
| | - Qi Li
- College of Life Science, Sichuan Normal UniversityChengdu, Sichuan, China
| | - Chun Wang
- College of Life Science, Sichuan Normal UniversityChengdu, Sichuan, China
| | - Hong Zhang
- College of Life Science, Sichuan Normal UniversityChengdu, Sichuan, China
| | - Lihong Ge
- College of Life Science, Sichuan Normal UniversityChengdu, Sichuan, China
| | - Yifeng Ren
- Hospital of Chengdu University of Traditional Chinese MedicineChengdu, Sichuan, China
| | - Fengming You
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese MedicineChengdu, Sichuan, China
| |
Collapse
|
19
|
Sharma S, Kumar P. Dissecting the functional significance of HSP90AB1 and other heat shock proteins in countering glioblastomas and ependymomas using omics analysis and drug prediction using virtual screening. Neuropeptides 2023; 102:102383. [PMID: 37729687 DOI: 10.1016/j.npep.2023.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Heat shock proteins (HSPs) are the evolutionary family of proteins that are highly conserved and present widely in various organisms and play an array of important roles and cellular functions. Currently, very few or no studies are based on the systematic analysis of the HSPs in Glioblastoma (GBMs) and ependymomas. We performed an integrated omics analysis to predict the mutual regulatory differential HSP signatures that were associated with both glioblastoma and ependymomas. Further, we explored the various common dysregulated biological processes operating in both the tumors, and were analyzed using functional enrichment, gene ontology along with the pathway analysis of the predicted HSPs. We established an interactome network of protein-protein interaction (PPIN) to identify the hub HSPs that were commonly associated with GBMs and ependymoma. To understand the mutual molecular mechanism of the HSPs in both malignancies, transcription factors, and miRNAs overlapping with both diseases were explored. Moreover, a transcription factor-miRNAs-HSPs coregulatory network was constructed along with the prediction of potential candidate drugs that were based on perturbation-induced gene expression analysis. Based on the RNA-sequencing data, HSP90AB1 was identified as the most promising target among other predicted HSPs. Finally, the ranking of the drugs was arranged based on various drug scores. In conclusion, this study gave a spotlight on the mutual targetable HSPs, biological pathways, and regulatory signatures associated with GBMs and ependymoma with an improved understanding of crosstalk involved. Additionally, the role of therapeutics was also explored against HSP90AB1. These findings could potentially be able to explain the interplay of HSP90AB1 and other HSPs within these two malignancies.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University, Shahabad Daulatpur, Bawana Road, Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University, Shahabad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
20
|
Elkhalifa AEO, Banu H, Khan MI, Ashraf SA. Integrated Network Pharmacology, Molecular Docking, Molecular Simulation, and In Vitro Validation Revealed the Bioactive Components in Soy-Fermented Food Products and the Underlying Mechanistic Pathways in Lung Cancer. Nutrients 2023; 15:3949. [PMID: 37764733 PMCID: PMC10537301 DOI: 10.3390/nu15183949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Globally, lung cancer remains one of the leading causes of cancer-related mortality, warranting the exploration of novel and effective therapeutic approaches. Soy-fermented food products have long been associated with potential health benefits, including anticancer properties. There is still a lack of understanding of the active components of these drugs as well as their underlying mechanistic pathways responsible for their anti-lung cancer effects. In this study, we have undertaken an integrated approach combining network pharmacology and molecular docking to elucidate the mechanism of action of soy-fermented food products against lung cancer through simulation and in vitro validation. Using network pharmacology, we constructed a comprehensive network of interactions between the identified isoflavones in soy-fermented food products and lung cancer-associated targets. Molecular docking was performed to predict the binding affinities of these compounds with key lung cancer-related proteins. Additionally, molecular simulation was utilized to investigate the stability of the compound-target complexes over time, providing insights into their dynamic interactions. Our results identified daidzein as a potential active component in soy-fermented food products with high binding affinities towards critical lung cancer targets. Molecular dynamic simulations confirmed the stability of the daidzein-MMP9 and daidzein-HSP90AA1 complexes, suggesting their potential as effective inhibitors. Additionally, in vitro validation experiments demonstrated that treatment with daidzein significantly inhibited cancer cell proliferation and suppressed cancer cell migration and the invasion of A549 lung cancer cells. Consequently, the estrogen signaling pathway was recognized as the pathway modulated by daidzein against lung cancer. Overall, the findings of the present study highlight the therapeutic potential of soy-fermented food products in lung cancer treatment and provide valuable insights for the development of targeted therapies using the identified bioactive compounds. Further investigation and clinical studies are warranted to validate these findings and translate them into clinical applications for improved lung cancer management.
Collapse
Affiliation(s)
- Abd Elmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| |
Collapse
|
21
|
Ge F, Wang Y, Sharma A, Yang Y, Liu H, Essler M, Jaehde U, Schmidt-Wolf IGH. Cytokine-Induced Killer Cells in Combination with Heat Shock Protein 90 Inhibitors Functioning via the Fas/FasL Axis Provides Rationale for a Potential Clinical Benefit in Burkitt's lymphoma. Int J Mol Sci 2023; 24:12476. [PMID: 37569852 PMCID: PMC10419260 DOI: 10.3390/ijms241512476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Constant efforts are being made to develop methods for improving cancer immunotherapy, including cytokine-induced killer (CIK) cell therapy. Numerous heat shock protein (HSP) 90 inhibitors have been assessed for antitumor efficacy in preclinical and clinical trials, highlighting their individual prospects for targeted cancer therapy. Therefore, we tested the compatibility of CIK cells with HSP90 inhibitors using Burkitt's lymphoma (BL) cells. Our analysis revealed that CIK cytotoxicity in BL cells was augmented in combination with independent HSP90 inhibitors 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) and ganetespib. Interestingly, CIK cell cytotoxicity did not diminish after blocking with NKG2D (natural killer group 2, member D), which is a prerequisite for their activation. Subsequent analyses revealed that the increased expression of Fas on the surface of BL cells, which induces caspase 3/7-dependent apoptosis, may account for this effect. Thus, we provide evidence that CIK cells, either alone or in combination with HSP90 inhibitors, target BL cells via the Fas-FasL axis rather than the NKG2D pathway. In the context of clinical relevance, we also found that high expression of HSP90 family genes (HSP90AA1, HSP90AB1, and HSP90B1) was significantly associated with the reduced overall survival of BL patients. In addition to HSP90, genes belonging to the Hsp40, Hsp70, and Hsp110 families have also been found to be clinically significant for BL survival. Taken together, the combinatorial therapy of CIK cells with HSP90 inhibitors has the potential to provide clinical benefits to patients with BL.
Collapse
Affiliation(s)
- Fangfang Ge
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127 Bonn, Germany; (F.G.); (Y.W.); (A.S.)
| | - Yulu Wang
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127 Bonn, Germany; (F.G.); (Y.W.); (A.S.)
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127 Bonn, Germany; (F.G.); (Y.W.); (A.S.)
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Yu Yang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Y.); (H.L.)
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Y.); (H.L.)
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany;
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany;
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127 Bonn, Germany; (F.G.); (Y.W.); (A.S.)
| |
Collapse
|
22
|
Liu SY, Huang DJ, En-yu Tang, Zhang RX, Zhang ZM, Gao T, Xu GQ. Construction of a non-negative matrix factorization model of immunogenic cell death-related genes in lung adenocarcinoma and analysis of survival prognosis. Heliyon 2023; 9:e14820. [PMID: 37025770 PMCID: PMC10070601 DOI: 10.1016/j.heliyon.2023.e14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose To explore the effectiveness of the model based on non-negative matrix factorization (NMF), analyze the tumor microenvironment and immune microenvironment for evaluating the prognosis of lung adenocarcinoma, establish a risk model, and screen independent prognostic factors. Methods Downloading the transcription data files and clinical information files of lung adenocarcinoma from TCGA database and GO database, the R software was used to establish the NMF cluster model, and then the survival analysis between groups, tumor microenvironment analysis, and immune microenvironment analysis was performed according to the NMF cluster result. R software was used to construct prognostic models and calculate risk scores. Survival analysis was used to compare survival differences between different risk score groups. Results Two ICD subgroups were established according to the NMF model. The survival of the ICD low-expression subgroup was better than that of the ICD high-expression subgroup. Univariate COX analysis screened out HSP90AA1, IL1, and NT5E as prognostic genes, and the prognostic model established on this basis has clinical guiding significance. Conclusion The model based on NMF has the prognostic ability for lung adenocarcinoma, and the prognostic model of ICD-related genes has a certain guiding significance for survival.
Collapse
|
23
|
Geng X, Chi W, Lin X, Niu Z, Jiang Q, Sui Y, Jiang J. Determining the mechanism of action of the Qishan formula against lung adenocarcinoma by integration of network pharmacology, molecular docking, and proteomics. Medicine (Baltimore) 2023; 102:e33384. [PMID: 37000102 PMCID: PMC10063309 DOI: 10.1097/md.0000000000033384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the main pathological type of lung cancer. Qishan formula (QSF) is reportedly efficacious against LUAD. However, its mechanisms of action currently remain elusive. Therefore, network pharmacology, molecular docking techniques and proteomics were used to verify the potential pharmacological effects of QSF in the treatment of LUAD. METHODS The active ingredients and potential targets of QSF were obtained from the TCMSP, chemical source network and construct a drug-component-target networks using Cytoscape v3.7.2. Data for disease targets were obtained from 5 databases: TCGA, OMIM, DrugBank, DisGeNET, and GeneCards. Drug disease cross targets were used to construct protein-protein interaction networks for selecting the core targets using the STRING database and enrichment pathway networks using the DAVID database. Finally, TMT quantitative proteomics was used to identify the possible core targets and action pathways. Molecular docking to verify the affinity between components and targets. RESULTS Network pharmacology identified core components of QSF against LUAD included baicalein, methylophiopogonone B, quercetin, kaempferol, isorhamnetin, and luteolin, which can act on 10 key targets (SRC, TP53, PIK3R1, MAPK3, STAT3, MAKP1, HSP90AA1, PIK3CA, HRAS, and AKT1). QSF might play a therapeutic role in LUAD by regulating biological processes such as signal transduction, protein phosphorylation, cell proliferation, and apoptosis, as well as the PI3K/AKT, MAPK, FoxO, and other signaling pathways. Proteomics identified 207 differentially expressed proteins, and by integrating with network pharmacology and molecular docking results we found that 6 core components of QSF may target TP53 against LUAD through the PI3K/AKT signaling pathway. CONCLUSION QSF is a multitarget recipe potentially exerting pleiotropic effects in LUAD.
Collapse
Affiliation(s)
- Xue Geng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Herbin, China
| | - Wencheng Chi
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Herbin, China
- Department of Oncology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Herbin, China
| | - Xiaoyue Lin
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Herbin, China
| | - Zeji Niu
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Herbin, China
| | - Qinghui Jiang
- Department of Oncology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Herbin, China
| | - Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jiakang Jiang
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Herbin, China
- Department of Oncology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Herbin, China
| |
Collapse
|
24
|
Li J, Liu X, Li J, Han D, Li Y, Ge P. Mechanism of andrographis paniculata on lung cancer by network pharmacology and molecular docking. Technol Health Care 2023:THC220698. [PMID: 36641698 DOI: 10.3233/thc-220698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been widely recognized and accepted worldwide to provide favorable therapeutic effects for cancer patients. As Andrographis paniculata has an anti-tumor effect, it might inhibit lung cancer. OBJECTIVE The drug targets and related pathways involved in the action of Andrographis paniculata against lung cancer were predicted using network pharmacology, and its mechanism was further explored at the molecular level. METHODS This work selected the effective components and targets of Andrographis paniculata against the Traditional Chinese Medicine System Pharmacology (TCMSP) database. Targets related to lung cancer were searched for in the GEO database (accession number GSE136043). The volcanic and thermal maps of differential expression genes were produced using the software R. Then, the target genes were analyzed by GO and KEGG analysis using the software R. This also utilized the AutoDock tool to study the molecular docking of the active component structures downloaded from the PubChem database and the key target structures downloaded from the PDB database, and the docking results were visualized using the software PyMol. RESULTS The results of molecular docking show that wogonin, Mono-O-methylwightin, Deoxycamptothecine, andrographidine F_qt, Quercetin tetramethyl (3',4',5,7) ether, 14-deoxyandrographolide, andrographolide-19-β-D-glucoside_qt and 14-deoxy-11-oxo-andrographolide were potential active components, while AKT1, MAPK14, RELA and NCOA1 were key targets. CONCLUSION This study showed the main candidate components, targets, and pathways involved in the action of Andrographis paniculata against lung cancer.
Collapse
Affiliation(s)
- Jiaxin Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaonan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiaxin Li
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Dongwei Han
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yu Li
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pengling Ge
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
25
|
HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death Dis 2022; 13:929. [PMID: 36335088 PMCID: PMC9637177 DOI: 10.1038/s41419-022-05373-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Heat shock protein (HSP) 90, an important component of the molecular chaperone network, is closely concerned with cellular signaling pathways and stress response by participating in the process of maturation and activation of client proteins, playing a crucial role both in the normal and abnormal operation of the organism. In functionally defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by HSP90, including apoptosis, autophagy, necroptosis, ferroptosis, and others. Here, we show the complex relationship between HSP90 and different types of PCD in various diseases, and discuss the possibility of HSP90 as the common regulatory nodal in multiple PCD, which would provide a new perspective for the therapeutic approaches in disease.
Collapse
|
26
|
Wang F, Zhang H, Wang H, Qiu T, He B, Yang Q. Combination of AURKA inhibitor and HSP90 inhibitor to treat breast cancer with AURKA overexpression and TP53 mutations. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:180. [PMID: 36071247 DOI: 10.1007/s12032-022-01777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Breast cancer is the most common cancer among women worldwide. Researches show that Aurora kinase A (AURKA) is highly expressed in approximately 73% of breast cancer patients, which induces drug resistance in breast cancer patients and decreases the median survival time. AURKA regulates spindle assembly, centrosome maturation, and chromosome alignment. AURKA overexpression affects the occurrence and development of breast cancer. Besides AURKA overexpression, heat shock protein 90 (HSP90) maintains the survival and proliferation of tumor cells by stabilizing the structure of oncoproteins, including P53 mutants (mtP53). TP53 mutations accounted for approximately 13%, 40%, 80%, 33%, 71%, and 82% of luminal A, Luminal B, Luminal C, normal basal-like, HER2-amplified, and basal-like breast cancers, respectively. TP53 mutation can aggravate cell genome instability and enhance the invasion, migration, and resistance of cancer cell. This review describes the research status of AURKA and HSP90 in breast cancer, summarizes the structure, function, and the chaperone cycle of HSP90, elaborates the interrelation between HSP90, mtP53, P53, and AURKA, and proposes the combination of HSP90 inhibitor and AURKA inhibitor to treat breast cancer. Targeting AURKA and HSP90 to treat cancer with AURKA overexpression and TP53 mutations will help improve the specificity and efficiency of breast cancer treatment and solve the problem of drug resistance.
Collapse
Affiliation(s)
- Fuping Wang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100000, China
| | - Haotian Zhang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100000, China
| | - Haitao Wang
- Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100000, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Binghong He
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100000, China
| | - Qiong Yang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100000, China.
| |
Collapse
|
27
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
28
|
Ren X, Li T, Zhang W, Yang X. Targeting Heat-Shock Protein 90 in Cancer: An Update on Combination Therapy. Cells 2022; 11:cells11162556. [PMID: 36010632 PMCID: PMC9406578 DOI: 10.3390/cells11162556] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Heat-shock protein 90 (HSP90) is an important molecule chaperone associated with tumorigenesis and malignancy. HSP90 is involved in the folding and maturation of a wide range of oncogenic clients, including diverse kinases, transcription factors and oncogenic fusion proteins. Therefore, it could be argued that HSP90 facilitates the malignant behaviors of cancer cells, such as uncontrolled proliferation, chemo/radiotherapy resistance and immune evasion. The extensive associations between HSP90 and tumorigenesis indicate substantial therapeutic potential, and many HSP90 inhibitors have been developed. However, due to HSP90 inhibitor toxicity and limited efficiency, none have been approved for clinical use as single agents. Recent results suggest that combining HSP90 inhibitors with other anticancer therapies might be a more advisable strategy. This review illustrates the role of HSP90 in cancer biology and discusses the therapeutic value of Hsp90 inhibitors as complements to current anticancer therapies.
Collapse
Affiliation(s)
- Xiude Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Wei Zhang
- Departments of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Correspondence: (W.Z.); (X.Y.)
| | - Xuejun Yang
- Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing 102218, China
- Correspondence: (W.Z.); (X.Y.)
| |
Collapse
|
29
|
Ren H, Zheng J, Cheng Q, Yang X, Fu Q. Establishment of a Necroptosis-Related Prognostic Signature to Reveal Immune Infiltration and Predict Drug Sensitivity in Hepatocellular Carcinoma. Front Genet 2022; 13:900713. [PMID: 35957699 PMCID: PMC9357940 DOI: 10.3389/fgene.2022.900713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a common type of primary liver cancer and has a poor prognosis. In recent times, necroptosis has been reported to be involved in the progression of multiple cancers. However, the role of necroptosis in HCC prognosis remains elusive.Methods: The RNA-seq data and clinical information of HCC patients were downloaded from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Differentially expressed genes (DEGs) and prognosis-related genes were explored, and the nonnegative matrix factorization (NMF) clustering algorithm was applied to divide HCC patients into different subtypes. Based on the prognosis-related DEGs, univariate Cox and LASSO Cox regression analyses were used to construct a necroptosis-related prognostic model. The relationship between the prognostic model and immune cell infiltration, tumor mutational burden (TMB), and drug response were explored.Results: In this study, 13 prognosis-related DEGs were confirmed from 18 DEGs and 24 prognostic-related genes. Based on the prognosis-related DEGs, patients in the TCGA cohort were clustered into three subtypes by the NMF algorithm, and patients in C3 had better survival. A necroptosis-related prognostic model was established according to LASSO analysis, and HCC patients in TCGA and ICGC were divided into high- and low-risk groups. Kaplan–Meier (K–M) survival analysis revealed that patients in the high-risk group had a shorter survival time compared to those in the low-risk group. Using univariate and multivariate Cox analyses, the prognostic model was identified as an independent prognostic factor and had better survival predictive ability in HCC patients compared with other clinical biomarkers. Furthermore, the results revealed that the high-risk patients had higher stromal, immune, and ESTIMATE scores; higher TP53 mutation rate; higher TMB; and lower tumor purities compared to those in the low-risk group. In addition, there were significant differences in predicting the drug response between the high- and low-risk groups. The protein and mRNA levels of these prognostic genes were upregulated in HCC tissues compared to normal liver tissues.Conclusion: We established a necroptosis-related prognostic signature that may provide guidance for individualized drug therapy in HCC patients; however, further experimentation is needed to validate our results.
Collapse
Affiliation(s)
- Huili Ren
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
- *Correspondence: Qin Fu,
| |
Collapse
|
30
|
Jiang W, Wang W, Sun L, Xiao Y, Ma T, Li B, Yan X, Wu Y, Li H, Lian J, He F. (-)-Gossypol enhances the anticancer activity of epirubicin via downregulating survivin in hepatocellular carcinoma. Chem Biol Interact 2022; 364:110060. [PMID: 35872041 DOI: 10.1016/j.cbi.2022.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
Epirubicin (EPI)-based transarterial chemoembolization is an effective therapy for advanced hepatocellular carcinoma (HCC). However, EPI-induced survivin expression limits its tumor-killing potential in HCC. Interestingly, (-)-gossypol ((-)-Gsp), a male contraceptive, suppresses various malignancies. More importantly, (-)-Gsp also holds promise for enhancing the antitumor effects of chemotherapy in numerous cancer types. In the present study, we demonstrated for the first time that (-)-Gsp-sensitized EPI inhibited cell growth and induced apoptosis of HCC cells in vitro. Furthermore, (-)-Gsp sensitized EPI by attenuating the EPI-elevated survivin protein levels. Mechanistic studies showed that EPI stimulated survivin protein synthesis by promoting translation initiation, which was alleviated by (-)-Gsp mainly through suppressing the AKT-4EBP1/p70S6K-survivin and ERK-4EBP1-survivin pathways. HCC xenograft experiments in nude mice also showed that (-)-Gsp treatment acted synergistically with EPI to repress xenograft tumor growth. Overall, our proof-of-concept results may pave the way for novel strategies for the treatment of HCC based on the combination of EPI and (-)-Gsp.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wan Wang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Liangbo Sun
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yunhua Xiao
- Department of Nuclear Medicine, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Teng Ma
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Bosheng Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojing Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yaran Wu
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Hongli Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiqin Lian
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
31
|
Sasaki K, Fujiwara T, Ochi T, Ono K, Kato H, Onodera K, Ichikawa S, Fukuhara N, Onishi Y, Yokoyama H, Miyata T, Harigae H. TM5614, an Inhibitor of Plasminogen Activator Inhibitor-1, Exerts an Antitumor Effect on Chronic Myeloid Leukemia. TOHOKU J EXP MED 2022; 257:211-224. [DOI: 10.1620/tjem.2022.j036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Tohru Fujiwara
- Department of Hematology, Tohoku University Graduate School
| | - Tetsuro Ochi
- Department of Hematology, Tohoku University Graduate School
| | - Koya Ono
- Department of Hematology, Tohoku University Graduate School
| | - Hiroki Kato
- Department of Hematology, Tohoku University Graduate School
| | - Koichi Onodera
- Department of Hematology, Tohoku University Graduate School
| | | | | | - Yasushi Onishi
- Department of Hematology, Tohoku University Graduate School
| | | | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine
| | | |
Collapse
|