1
|
Qu Q, Ma YM, Zhang WB, Chen R, Wang ZH, Jin WX, Huang YW, Xuan ZY, Liu MJ, Chen XL, Lv WJ, Guo SN. Period circadian clock 3 is crucial for regulation of IL-22-producing type 3 innate lymphoid cells by flavonoids from Shen Ling Bai Zhu San to alleviate colitis. Int J Biol Macromol 2025; 288:138730. [PMID: 39672410 DOI: 10.1016/j.ijbiomac.2024.138730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/15/2024]
Abstract
Type 3 Innate lymphoid cells (ILC3s) functions bear complex response during Inflammatory bowel diseases (IBD). Here, our study first analyzed the main pharmacological components in Shen Ling Bai Zhu San n-butanol extracts (S-Nb), and then explored whether S-Nb administrated immune response of ILC3s, and how it regulates ILC3s. Shen Ling Bai Zhu San (SLBZS) or S-Nb were administrated for 7 days to analyze the frequency of ILC3s and their produced cytokine. Using siRNA technology to knock down the expression of period circadian clock 2 (Per2) and period circadian clock 3 (Per3) and Anti-IL-22 antibody was supplied to mice, then detecting the moderator effect of S-Nb on colitis. The most class of S-Nb is flavonoids, with a content of approximately 48%. Oral administration of S-Nb enhanced the production of NCR+ILC3s and IL-22 produced by ILC3s, but did not alter IL-17A. Surprisingly, knocking down the expression of Per3 instead of Per2 inhibited the modulation effect of S-Nb on colitis and reduced IL-22 production, whether originating from NCR+ILC3s or NCR-ILC3s. After neutralizing the expression of IL-22 in mice, S-Nb was deprived of ability to alleviate colitis. The reason why S-Nb alleviates colitis is by enhancing the expression of Per3 via flavonoids, which in turn promotes the secretion of IL-22+ILC3s in intestine.
Collapse
Affiliation(s)
- Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yi-Mu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen-Bo Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhi-Hua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen-Xin Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yi-Wen Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhao-Ying Xuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Meng-Jie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiao-Li Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wei-Jie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Shi-Ning Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Feng Y, Pan M, Li R, He W, Chen Y, Xu S, Chen H, Xu H, Lin Y. Recent developments and new directions in the use of natural products for the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155812. [PMID: 38905845 DOI: 10.1016/j.phymed.2024.155812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) represents a significant global health challenge, and there is an urgent need to explore novel therapeutic interventions. Natural products have demonstrated highly promising effectiveness in the treatment of IBD. PURPOSE This study systematically reviews the latest research advancements in leveraging natural products for IBD treatment. METHODS This manuscript strictly adheres to the PRISMA guidelines. Relevant literature on the effects of natural products on IBD was retrieved from the PubMed, Web of Science and Cochrane Library databases using the search terms "natural product," "inflammatory bowel disease," "colitis," "metagenomics", "target identification", "drug delivery systems", "polyphenols," "alkaloids," "terpenoids," and so on. The retrieved data were then systematically summarized and reviewed. RESULTS This review assessed the different effects of various natural products, such as polyphenols, alkaloids, terpenoids, quinones, and others, in the treatment of IBD. While these natural products offer promising avenues for IBD management, they also face challenges in terms of clinical translation and drug discovery. The advent of metagenomics, single-cell sequencing, target identification techniques, drug delivery systems, and other cutting-edge technologies heralds a new era in overcoming these challenges. CONCLUSION This paper provides an overview of current research progress in utilizing natural products for the treatment of IBD, exploring how contemporary technological innovations can aid in discovering and harnessing bioactive natural products for the treatment of IBD.
Collapse
Affiliation(s)
- Yaqian Feng
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Mengting Pan
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruiqiong Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weishen He
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yangyang Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shaohua Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Hui Chen
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China.
| | - Huilong Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
3
|
Lu Z, Peng Q, Hu R, Wang Y, Fan K, Zhang T. Naringin attenuates inflammatory injury to the bovine endometrium by regulating the endoplasmic reticulum stress-PI3K/AKT-autophagy axis. Front Pharmacol 2024; 15:1424511. [PMID: 39234103 PMCID: PMC11371590 DOI: 10.3389/fphar.2024.1424511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Background: Endometritis seriously affects maternal reproductive health and fertility. Natural compounds have the characteristics of high efficiency and low residue in disease treatment. We aimed to discover and reveal the pharmacological effects of naringin, which is widely present in food and plants, on endometritis. Methods: Based on network pharmacology, the potential targets and pathways of naringin's actions on endometritis were predicted. Animal in vivo experiments were conducted to examine the inflammatory response of lipopolysaccharides (LPSs) in uterine tissue and the therapeutic effect of naringin. An in vitro primary bovine endometrial epithelial cell inflammation and drug treatment model was constructed. The production of reactive oxygen species (ROS) was measured using DCFH-DA, and the effect of naringin on LPS-induced endometritis was evaluated using HE staining, real-time quantitative PCR, Western blot, and immunofluorescence staining methods. Results: Naringin alleviated LPS-induced inflammatory injury and oxidative stress in the endometrium of mice and bovine endometrial epithelial cells (bEECs). Furthermore, in vitro studies were carried out to reveal the potential anti-inflammatory mechanisms of naringin based on network pharmacology. We found that naringin significantly inhibited LPS-stimulated endoplasmic reticulum stress (ERS)-related gene and protein expression, thus reducing the unfolded protein response (UPR). Furthermore, treatment of naringin attenuated the autophagic flux induced by ERS. In a further study, we observed that PI3K/AKT pathway inhibitors or ERS inducers partially reverse naringin's inhibition of autophagy and cell apoptosis. Conclusion: It is demonstrated that naringin suppresses autophagy by directly inhibiting the ERS-PI3K/AKT axis and exerting anti-inflammatory and antioxidant effects in endometritis. These findings provide novel insights into the pathogenesis of endometritis, highlighting potential therapeutic targets of traditional herbs and compounds.
Collapse
Affiliation(s)
- Zihao Lu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Longyan University and Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Qingyang Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ruiting Hu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yan Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Kewei Fan
- Longyan University and Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Longyan University and Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| |
Collapse
|
4
|
Cheng S, Chen W, Guo Z, Ding C, Zuo R, Liao Q, Liu G. Paeonol alleviates ulcerative colitis by modulating PPAR-γ and nuclear factor-κB activation. Sci Rep 2024; 14:18390. [PMID: 39117680 PMCID: PMC11310503 DOI: 10.1038/s41598-024-68992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the gastrointestinal tract. Although paeonol has been used for treating UC due to its anti-inflammatory and antioxidant effects, the underlying mechanisms remain unclear. In this study, we investigated the mechanisms of paeonol's action on UC by conducting in-vitro and in-vivo studies using NCM460 cells and RAW264.7 cells, and the DSS-induced mice colitis model. The in vitro studies demonstrate that paeonol exerts inhibitory effects on the activation of the NF-κB signaling pathway through upregulating PPARγ expression, thereby attenuating pro-inflammatory cytokine production, reducing reactive oxygen species levels, and promoting M2 macrophage polarization. These effects are significantly abrogated upon addition of the PPARγ inhibitor GW9662. Moreover, UC mice treated with paeonol showed increased PPARγ expression, which reduced inflammation and apoptosis to maintain intestinal epithelial barrier integrity. In conclusion, our findings suggest that paeonol inhibits the NF-κB signaling pathway by activating PPARγ, reducing inflammation and oxidative stress and improving Dss-induced colitis. This study provides a new insight into the mechanism of treating UC by paeonol.
Collapse
Affiliation(s)
- Shuyu Cheng
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Wujin Chen
- The Third People's Hospital of Fujian Province, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, China
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Chenchun Ding
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Renjie Zuo
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Quan Liao
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guoyan Liu
- School of Medicine Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China.
- School of Pharmaceutical Sciences Xiamen University, Xiamen University, Xiamen, 361102, China.
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 350108, China.
| |
Collapse
|
5
|
Wang M, Wang Z, Li Z, Qu Y, Zhao J, Wang L, Zhou X, Xu Z, Zhang D, Jiang P, Fan B, Liu Y. Targeting programmed cell death in inflammatory bowel disease through natural products: New insights from molecular mechanisms to targeted therapies. Phytother Res 2024. [PMID: 38706097 DOI: 10.1002/ptr.8216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder primarily characterized by intestinal inflammation and recurrent ulceration, leading to a compromised intestinal barrier and inflammatory infiltration. This disorder's pathogenesis is mainly attributed to extensive damage or death of intestinal epithelial cells, along with abnormal activation or impaired death regulation of immune cells and the release of various inflammatory factors, which contribute to the inflammatory environment in the intestines. Thus, maintaining intestinal homeostasis hinges on balancing the survival and functionality of various cell types. Programmed cell death (PCD) pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, and neutrophil extracellular traps, are integral in the pathogenesis of IBD by mediating the death of intestinal epithelial and immune cells. Natural products derived from plants, fruits, and vegetables have shown potential in regulating PCD, offering preventive and therapeutic avenues for IBD. This article reviews the role of natural products in IBD treatment by focusing on targeting PCD pathways, opening new avenues for clinical IBD management.
Collapse
Affiliation(s)
- Mengjie Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Wang
- People's Hospital of Zhengzhou, Zhengzhou, China
| | - Zhichao Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiting Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinpeng Zhou
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziqi Xu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Fan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Liu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Peng Y, Qu R, Xu S, Bi H, Guo D. Regulatory mechanism and therapeutic potentials of naringin against inflammatory disorders. Heliyon 2024; 10:e24619. [PMID: 38317884 PMCID: PMC10839891 DOI: 10.1016/j.heliyon.2024.e24619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Naringin is a natural flavonoid with therapeutic properties found in citrus fruits and an active natural product from herbal plants. Naringin has become a focus of attention in recent years because of its ability to actively participate in the body's immune response and maintain the integrity of the immune barrier. This review aims to elucidate the mechanism of action and therapeutic efficacy of naringin in various inflammatory diseases and to provide a valuable reference for further research in this field. The review provided the chemical structure, bioavailability, pharmacological properties, and pharmacokinetics of naringin and found that naringin has good therapeutic potential for inflammatory diseases, exerting anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-ulcerative and detoxifying effects in the disease. Moreover, we found that the great advantage of naringin treatment is that it is safe and can even alleviate the toxic side effects associated with some of the other drugs, which may become a highlight of naringin research. Naringin, an active natural product, plays a significant role in systemic diseases' anti-inflammatory and antioxidant regulation through various signaling pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
7
|
Liang J, Yang C, Li P, Zhang M, Xie X, Xie X, Chen Y, Wang Q, Zhou L, Luo X. Astragaloside IV inhibits AOM/DSS-induced colitis-associated tumorigenesis via activation of PPARγ signaling in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155116. [PMID: 37776619 DOI: 10.1016/j.phymed.2023.155116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Colitis-associated colorectal cancer (CAC) is a severe complication of inflammatory bowel disease (IBD), resulting from long-term inflammation in the intestines. The primary cause of CAC is the imbalance of oxidative metabolism in intestinal cells, triggered by excessive reactive oxygen (ROS) and nitrogen (NO) species production due to prolonged intestinal inflammation. This imbalance leads to genomic instability caused by DNA damage, eventually resulting in the development of intestinal cancer. Previous studies have demonstrated that astragaloside IV is effective in treating dextran sulfate sodium salt (DSS)-induced colitis, but there is currently no relevant research on its efficacy in treating CAC. METHODS To investigate the effect of astragaloside IV against CAC and the underlying mechanism, C57 mice were treated with (20, 40, 80 mg/kg) astragaloside IV while CAC was induced by intraperitoneal injection of 10 mg/kg azoxymethane (AOM) and ad libitum consumption of 2% dextran sulfate sodium salt (DSS). We re-verified the activating effects of astragaloside IV on PPARγ signaling in IEC-6 cells, which were reversed by GW9662 (the PPARγ inhibitor). RESULTS Our results showed that astragaloside IV significantly improved AOM/DSS-induced CAC mice by inhibiting colonic shortening, preventing intestinal mucosal damage, reducing the number of tumors and, the expression of Ki67 protein. In addition, astragaloside IV could activate PPARγ signaling, which not only promoted the expression of Nrf2 and HO-1, restored the level of SOD, CAT and GSH, but also inhibited the expression of iNOS and reduced the production of NO in the intestine and IEC-6 cells. And this effect could be reversed by GW9662 in vitro. Astragaloside IV thus decreased the level of ROS and NO in the intestinal tract of mice, as well as reduced the damage of DNA, and therefore inhibited the occurrence of CAC. CONCLUSION Astragaloside IV can activate PPARγ signaling in intestinal epithelial cells and reduces DNA damage caused by intestinal inflammation, thereby inhibiting colon tumourigenesis. The novelty of this study is to use PPARγ as the target to inhibit DNA damage to prevent the occurrence of CAC.
Collapse
Affiliation(s)
- Junjie Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China; Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital)
| | - Caiyi Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Pengcheng Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Xueqian Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Xuting Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Yunliang Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China.
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Outer Ring Road, Panyu District, Guangzhou, Guang Dong 510006, China.
| |
Collapse
|
8
|
Zhang D, Hong L, Zhang RS, Zhang Q, Yao J, Wang J, Zhang N. Identification of the key mechanisms of action of Si-Ni-San in uveitis using bioinformatics and network pharmacology. Medicine (Baltimore) 2023; 102:e34615. [PMID: 37653797 PMCID: PMC10470687 DOI: 10.1097/md.0000000000034615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Uveitis is an eye disease with a high rate of blindness, whose pathogenesis is not completely understood. Si-Ni-San (SNS) has been used as a traditional medicine to treat uveitis in China. However, its mechanism of action remains unclear. This study explored the potential mechanisms of SNS in the treatment of uveitis through network pharmacology and bioinformatics. METHODS Using R language and Perl software, the active components and predicted targets of SNS, as well as the related gene targets of uveitis, were mined through the Traditional Chinese Medicine Systems Pharmacology, Therapeutic Target, Gene Expression Omnibus, GeneCards, and DrugBank databases. The network diagram of active components and intersection targets was constructed using Cytoscape software and the String database. The CytoNCA plug-in was used to conduct topological analysis on the network diagram and screen out the core compounds and key targets. The genes were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. Chemoffice, Pymol, AutoDock, and Vina were used to analyze the molecular docking of key targets and core compounds of diseases through the PubChem database. RESULTS JUN, RELA, and MAPK may play important roles in the treatment of uveitis by SNS. Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that core genes were mainly concentrated in MAPK, toll-like receptor, tumor necrosis factor, and nucleotide oligomerization domain-like receptor signaling pathways. In addition, molecular docking results showed that the bioactive compounds (kaempferol, luteolin, naringin, and quercetin) exhibited good binding ability to JUN, RELA, and MAPK. CONCLUSION Based on these findings, SNS exhibits multi-component and multi-target synergistic action in the treatment of uveitis, and its mechanism may be related to anti-inflammatory and immune regulation.
Collapse
Affiliation(s)
- Dandan Zhang
- Dalian Women and Children’s Medical Group, Dalian, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Ha Er Bin Shi, China
| | - Liu Hong
- Dalian Women and Children’s Medical Group, Dalian, China
| | - Rui Su Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qian Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Yao
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiadi Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Banan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Wang L, Zhou Y, Ding Y, Chen C, Chen X, Su N, Zhang X, Pan Y, Li J. Novel flavin-containing monooxygenase protein FMO1 interacts with CAT2 to negatively regulate drought tolerance through ROS homeostasis and ABA signaling pathway in tomato. HORTICULTURE RESEARCH 2023; 10:uhad037. [PMID: 37101513 PMCID: PMC10124749 DOI: 10.1093/hr/uhad037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Drought stress is the major abiotic factor that can seriously affect plant growth and crop production. The functions of flavin-containing monooxygenases (FMOs) are known in animals. They add molecular oxygen to lipophilic compounds or produce reactive oxygen species (ROS). However, little information on FMOs in plants is available. Here, we characterized a tomato drought-responsive gene that showed homology to FMO, and it was designated as FMO1. FMO1 was downregulated promptly by drought and ABA treatments. Transgenic functional analysis indicated that RNAi suppression of the expression of FMO1 (FMO1-Ri) improved drought tolerance relative to wild-type (WT) plants, whereas overexpression of FMO1 (FMO1-OE) reduced drought tolerance. The FMO1-Ri plants exhibited lower ABA accumulation, higher levels of antioxidant enzyme activities, and less ROS generation compared with the WT and FMO1-OE plants under drought stress. RNA-seq transcriptional analysis revealed the differential expression levels of many drought-responsive genes that were co-expressed with FMO1, including PP2Cs, PYLs, WRKY, and LEA. Using Y2H screening, we found that FMO1 physically interacted with catalase 2 (CAT2), which is an antioxidant enzyme and confers drought resistance. Our findings suggest that tomato FMO1 negatively regulates tomato drought tolerance in the ABA-dependent pathway and modulates ROS homeostasis by directly binding to SlCAT2.
Collapse
Affiliation(s)
| | | | - Yin Ding
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Chunrui Chen
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xueting Chen
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Nini Su
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xingguo Zhang
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Yu Pan
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | | |
Collapse
|
10
|
Xue JC, Yuan S, Meng H, Hou XT, Li J, Zhang HM, Chen LL, Zhang CH, Zhang QG. The role and mechanism of flavonoid herbal natural products in ulcerative colitis. Biomed Pharmacother 2023; 158:114086. [PMID: 36502751 DOI: 10.1016/j.biopha.2022.114086] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine that presents clinically with abdominal pain, mucopurulent stools, and posterior urgency. The lesions of UC are mainly concentrated in the rectal and colonic mucosa and submucosa. For patients with mild to moderate UC, the best pharmacological treatment includes glucocorticoids, immunosuppressants, antibiotics, and biologics, but the long-term application can have serious toxic side effects. Currently, nearly 40% of UC patients are treated with herbal natural products in combination with traditional medications to reduce the incidence of toxic side effects. Flavonoid herbal natural products are the most widely distributed polyphenols in plants and fruits, which have certain antioxidant and anti-inflammatory activities. Flavonoid herbal natural products have achieved remarkable efficacy in the treatment of UC. The pharmacological mechanisms are related to anti-inflammation, promotion of mucosal healing, maintenance of intestinal immune homeostasis, and regulation of intestinal flora. In this paper, we summarize the flavonoid components of anti-ulcerative colitis and their mechanisms reported in the past 10 years, to provide a basis for rational clinical use and the development of new anti-ulcerative colitis drugs.
Collapse
Affiliation(s)
- Jia-Chen Xue
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin Province 133002, China
| | - Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China
| | - Hua-Min Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Li Chen
- Jinan People's Hospital, Jinan, Shandong Province 271100, China
| | - Cheng-Hao Zhang
- Department of Oral Teaching and Research, Yanbian University, Yanji, Jilin Province 133000, China.
| | - Qing-Gao Zhang
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin Province 133002, China; Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China.
| |
Collapse
|
11
|
Li C, Tang Y, Ye Y, Zuo M, Lu Q. Potential of natural flavonols and flavanones in the treatment of ulcerative colitis. Front Pharmacol 2023; 14:1120616. [PMID: 36937890 PMCID: PMC10020211 DOI: 10.3389/fphar.2023.1120616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease generally characterized by chronic, persistent, recurrent, and non-specific ulcers of the intestine. Its main clinical manifestations include abdominal pain, diarrhea, and bloody stools. This disease is difficult to cure and even carries the risk of canceration. It has been listed as a modern refractory disease by the World Health Organization. Though a large amount of drugs are available for the inhibition of UC, the conventional treatment such as aminosalicylic acids, glucocorticoids, immunosuppressors, and biological agents possess certain limitations and serious side effects. Therefore, it is urgently needed for safe and effective drugs of UC, and natural-derived flavonols and flavanones showed tremendous potential. The present study concentrated on the progress of natural-derived flavonols and flavanones from edible and pharmaceutical plants for the remedy of UC over the last two decades. The potential pharmaceutical of natural-derived flavonols and flavanones against UC were closely connected with the modulation of gut microflora, gut barrier function, inflammatory reactions, oxidative stress, and apoptosis. The excellent efficacy and safety of natural flavonols and flavanones make them prospective drug candidates for UC suppression.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yonghao Ye
- Zhuhai Resproly Pharmaceutical Technology Company Limited, Zhuhai, China
| | - Manhua Zuo
- Department of Nursing, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- *Correspondence: Qiang Lu,
| |
Collapse
|
12
|
Wang S, Qiang Q, Xiang L, Fernie AR, Yang J. Targeted approaches to improve tomato fruit taste. HORTICULTURE RESEARCH 2022; 10:uhac229. [PMID: 36643745 PMCID: PMC9832879 DOI: 10.1093/hr/uhac229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Tomato (Solanum lycopersicum) is the most valuable fruit and horticultural crop species worldwide. Compared with the fruits of their progenitors, those of modern tomato cultivars are, however, often described as having unsatisfactory taste or lacking flavor. The flavor of a tomato fruit arises from a complex mix of tastes and volatile metabolites, including sugars, acids, amino acids, and various volatiles. However, considerable differences in fruit flavor occur among tomato varieties, resulting in mixed consumer experiences. While tomato breeding has traditionally been driven by the desire for continual increases in yield and the introduction of traits that provide a long shelf-life, consumers are prepared to pay a reasonable premium for taste. Therefore, it is necessary to characterize preferences of tomato flavor and to define its underlying genetic basis. Here, we review recent conceptual and technological advances that have rendered this more feasible, including multi-omics-based QTL and association analyses, along with the use of trained testing panels, and machine learning approaches. This review proposes how the comprehensive datasets compiled to date could allow a precise rational design of tomato germplasm resources with improved organoleptic quality for the future.
Collapse
Affiliation(s)
- Shouchuang Wang
- To whom correspondence should be addressed. E-mail: , or . Tel: 86-0898-66184571. Fax number: 0898-66184571
| | | | - Lijun Xiang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Alisdair R Fernie
- To whom correspondence should be addressed. E-mail: , or . Tel: 86-0898-66184571. Fax number: 0898-66184571
| | - Jun Yang
- To whom correspondence should be addressed. E-mail: , or . Tel: 86-0898-66184571. Fax number: 0898-66184571
| |
Collapse
|
13
|
Zhai X, Dai T, Chi Z, Zhao Z, Wu G, Yang S, Dong D. Naringin alleviates acetaminophen-induced acute liver injury by activating Nrf2 via CHAC2 upregulation. ENVIRONMENTAL TOXICOLOGY 2022; 37:1332-1342. [PMID: 35179299 DOI: 10.1002/tox.23487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Severe acetaminophen (APAP)-induced hepatic damage is the second most common cause for hepatic transplantation. Clinically, hepatic damage caused by APAP is treated using N-acetyl-L-cysteine, which can induce numerous side effects. Naringin, a bioflavonoid abundant in grapefruit and other citrus fruits, displays marked antiinflammatory and antioxidant activities. Herein, we aimed to investigate the potential mechanism underlying naringin-mediated protection against APAP-induced acute hepatotoxicity. We observed that naringin afforded protection against APAP-induced acute liver failure in mice. Importantly, pretreatment with naringin before APAP administration further increased antioxidant enzyme expression, inhibited the production of proinflammatory cytokines, and activated apoptotic pathways. Furthermore, we observed that the protective effect was associated with the upregulation of cation transport regulator-like protein 2 (CHAC2) and nuclear factor erythroid derived-2-related factor 2 (Nrf2). Notably, CHAC2 knockdown inhibited Nrf2 activation and naringin-mediated antioxidant, antiinflammatory, and antiapoptotic effects in APAP-induced liver injury. Likewise, si-Nrf2 blocked the protective effect of naringin against APAP-induced liver injury. Collectively, our results indicate that naringin may be a potent CHAC2 activator, alleviating APAP-induced hepatitis via CHAC2-mediated activation of the Nrf2 pathway. These data provide new insights into mechanisms through which CHAC2 regulates APAP-induced liver injury by targeting Nrf2, which should be considered a novel therapeutic target.
Collapse
Affiliation(s)
- Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tiantian Dai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhongchao Chi
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zirui Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Gaolei Wu
- Department of Pharmacy, Dalian Municipal Women and Children's Medical Center, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Perindopril/Ambrosin Combination Mitigates Dextran Sulfate Sodium-Induced Colitis in Mice: Crosstalk between Toll-like Receptor 4, the Pro-Inflammatory Pathways, and SIRT1/PPAR-γ Signaling. Pharmaceuticals (Basel) 2022; 15:ph15050600. [PMID: 35631426 PMCID: PMC9143999 DOI: 10.3390/ph15050600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Colitis is one of the inflammatory states that affect the intestinal wall and may even predispose to malignancy due to chronic irritation. Although the etiology of colitis is not yet fully explored, a combination of genetic and environmental factors is strongly incriminated. Perindopril is an angiotensin-converting enzyme inhibitor that is used for the management of a wide range of cardiovascular diseases. Ambrosin is a sesquiterpene lactone that was proven to have beneficial effects in disorders characterized by inflammatory nature. The objective of this study is to make a comparison between the effects of perindopril or ambrosin on dextran sulfate sodium (DSS)-induced colitis in mice and to explore the effect of their combination. The present findings indicate that each ambrosin or perindopril alone or in combination is able to ameliorate oxidative stress and suppress the proinflammatory pathways in the colonic tissues of DSS-treated mice via mechanisms related to toll-like receptor 4/nuclear factor kappa B signaling and modulation of peroxisome proliferator-activated receptor gamma/sirtuin-1 levels. In addition, each ambrosin or perindopril alone or in combination inhibits apoptosis and augments the mediators of autophagy in DSS-treated mice. These effects are reflected in the amelioration of the histopathological and electron microscopic changes in the colonic tissues. Interestingly, the most remarkable effects are those encountered with the perindopril/ambrosin combination compared to the groups treated with each of these agents alone. In conclusion, the perindopril/ambrosin combination might represent an effective modality for mitigation of the pathogenic events and the clinical sequelae of colitis.
Collapse
|
15
|
Yuan Y, Hu Q, Liu L, Xie F, Yang L, Li Y, Zhang C, Chen H, Tang J, Shen X. Dehydrocostus Lactone Suppresses Dextran Sulfate Sodium-Induced Colitis by Targeting the IKKα/β-NF-κB and Keap1-Nrf2 Signalling Pathways. Front Pharmacol 2022; 13:817596. [PMID: 35321327 PMCID: PMC8936814 DOI: 10.3389/fphar.2022.817596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Dehydrocostus lactone (DCL) is a major sesquiterpene lactone isolated from Aucklandia lappa Decne, a traditional Chinese herbal medicine that used to treat gastrointestinal diseases. This study aimed to examine the therapeutic effects of DCL on dextran sulfate sodium (DSS)-induced colitis with a focus on identifying the molecular mechanisms involved in DCL-mediated anti-inflammatory activity in macrophages. First, oral administration of DCL (5–15 mg/kg) not only ameliorated symptoms of colitis and colonic barrier injury, but also inhibited the expression of proinflammatory cytokines and myeloperoxidase in colon tissues in DSS-challenged mice. Furthermore, DCL also exhibited significant anti-inflammatory activity in LPS/IFNγ-stimulated RAW264.7 macrophages. Importantly, DCL significantly suppressed the phosphorylation and degradation of IκBα and subsequent NF-κB nuclear translocation, and enhanced the nuclear accumulation of Nrf2 in LPS/IFNγ-treated RAW264.7 cells. Mechanistically, DCL could directly interact with IKKα/β and Keap1, thereby leading to the inhibition of NF-κB signalling and the activation of Nrf2 pathway. Furthermore, DCL-mediated actions were abolished by dithiothreitol, suggesting a thiol-mediated covalent linkage between DCL and IKKα/β or Keap1. These findings demonstrated that DCL ameliorates colitis by targeting NF-κB and Nrf2 signalling, suggesting that DCL may be a promising candidate in the clinical treatment of colitis.
Collapse
Affiliation(s)
- Yun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaofei Shen,
| |
Collapse
|