1
|
Zhou YL, Wu J, Wang HL, Feng WW, Peng F, Zhang RQ, Yan HL, Liu J, Tan YZ, Peng C. Fuzi lizhong pills alter microbial community compositions and metabolite profiles in ulcerative colitis rat with spleen-kidney yang deficiency syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118645. [PMID: 39089661 DOI: 10.1016/j.jep.2024.118645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic inflammatory bowel condition that is frequently related with Spleen-Kidney Yang Deficiency Syndrome (SKYD) in Chinese medicine. Fuzi Lizhong Pill (FLZP), a traditional medicine for SKYD, has been utilized in China for generations, although the exact mechanism by which it treats UC is unknown. AIM OF THE STUDY The goal of this study is to further understand FLZP's therapeutic mechanism in SKYD-associated UC. MATERIALS AND METHODS To investigate the impact of FLZP on SKYD-associated UC, we used a comprehensive method that included serum metabolomics and gut microbiota profiling. The chemical composition of FLZP was determined using mass spectrometry. UC rats with SKYD were induced and treated with FLZP. Serum metabolomics and 16S rRNA microbial community analysis were used to evaluate FLZP's effects on endogenous metabolites and gut microbiota, respectively. Correlation analysis investigated the association between metabolites and intestinal flora. A metabolic pathway analysis was undertaken to discover putative FLZP action mechanisms. RESULTS FLZP contains 109 components, including liquiritin (584.8176 μg/g), benzoylaconine (16.3087 μg/g), benzoylhypaconine (31.9583), and hypaconitine (8.1160 μg/g). FLZP predominantly regulated seven metabolites and eight metabolic pathways involved in amino acid and nucleotide metabolism, with an emphasis on energy metabolism and gastrointestinal digestion. FLZP also influenced intestinal flora variety, increasing probiotic abundance while decreasing pathogenic bacteria prevalence. An integrated investigation identified associations between changes in certain gut flora and energy metabolism, specifically the tricarboxylic acid (TCA) cycle. CONCLUSIONS FLZP successfully cures UC in SKYD rats by regulating amino acid and energy metabolism. Its positive effects may include altering microbiota composition and metabolite profiles in UC rats with SKYD. These findings shed light on FLZP's mode of action and its implications for UC management.
Collapse
Affiliation(s)
- Yin-Lin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Pharmacy Department, Zigong Traditional Chinese Medicine Hospital, 643011, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Liang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wu-Wen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610065, China.
| | - Ruo-Qi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ling Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu-Zhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Oh KK, Yoon SJ, Song SH, Park JH, Kim JS, Kim DJ, Suk KT. The synchronized feature of Saururus chinensis and gut microbiota against T2DM, NAFLD, obesity and hypertension via integrated pharmacology. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:278-290. [PMID: 38733373 DOI: 10.1080/21691401.2024.2350475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), obesity (OB) and hypertension (HT) are categorized as metabolic disorders (MDs), which develop independently without distinct borders. Herein, we examined the gut microbiota (GM) and Saururus chinensis (SC) to confirm their therapeutic effects via integrated pharmacology. The overlapping targets from the four diseases were determined to be key protein coding genes. The protein-protein interaction (PPI) networks, and the SC, GM, signalling pathway, target and metabolite (SGSTM) networks were analysed via RPackage. Additionally, molecular docking tests (MDTs) and density functional theory (DFT) analysis were conducted to determine the affinity and stability of the conformer(s). TNF was the main target in the PPI analysis, and equol derived from Lactobacillus paracasei JS1 was the most effective agent for the formation of the TNF complex. The SC agonism (PPAR signalling pathway), and antagonism (neurotrophin signalling pathway) by SC were identified as agonistic bioactives (aromadendrane, stigmasta-5,22-dien-3-ol, 3,6,6-trimethyl-3,4,5,7,8,9-hexahydro-1H-2-benzoxepine, 4α-5α-epoxycholestane and kinic acid), and antagonistic bioactives (STK734327 and piclamilast), respectively, via MDT. Finally, STK734327-MAPK1 was the most favourable conformer according to DFT. Overall, the seven bioactives from SC and equol that can be produced by Lactobacillus paracasei JS1 can exert synergistic effects on these four diseases.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Sang-Jun Yoon
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Seol Hee Song
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jeong Ha Park
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jeong Su Kim
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Ki-Tae Suk
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
3
|
Chen X, Chen X, Qu Q, Lin Y, Chen R, Zhu Y, Lv W, Guo S. Lizhong decoction inhibits porcine epidemic diarrhea virus in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118428. [PMID: 38852639 DOI: 10.1016/j.jep.2024.118428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lizhong decoction (LZD) is a frequently utilized traditional Chinese remedy for diarrhea. It is unknown how effective it is as an antiviral against PEDV infection. AIM OF THE STUDY In vitro and in vivo PEDV infection models were used to evaluate the anti-PEDV potential of LZD extract. MATERIALS AND METHODS LC-MS was used for qualitative analysis of LZD. The antiviral effect of LZD against PEDV using flow cytometry (FC), Quantitative real-time polymerase chain reaction (QPCR), immunofluorescence assay (IFA) analysis in Vero and IPEC-J2 cells. Additionally, we measured the survival rate, clinical symptoms, body weights, fecal scores, temperature, histological analysis, and viral load in a model of newborn piglets infected with PEDV in order to assess the antiviral impact of LZD in vivo. RESULTS In total, 648 compounds were identified, including 144 Alkaloids, 128 Terpenoids, etc. LZD effectively suppressed PEDV replication in vitro. According to time of addition experiments, LZD mostly inhibited PEDV during the viral life cycle's replication stages. During PEDV infection, LZD can Significantly decrease the apoptotic rate of IPEC-J2 cells and Vero cells. In comparison to the model group, LZD was able to decrease the viral titers in the infected piglets' intestinal and visceral tissues, ameliorate their intestinal pathology, cause a significant increase in body weight growth and increase the piglet survival rate. CONCLUSION Our findings indicate that the aqueous solution derived from LZD suppressed PEDV replication both in vitro and in vivo, indicating its potential as a candidate for pharmaceutical development.
Collapse
Affiliation(s)
- Xiaoli Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xingyu Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yulin Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
4
|
Tang BB, Su CX, Wen N, Zhang Q, Chen JH, Liu BB, Wang YQ, Huang CQ, Hu YL. FMT and TCM to treat diarrhoeal irritable bowel syndrome with induced spleen deficiency syndrome- microbiomic and metabolomic insights. BMC Microbiol 2024; 24:433. [PMID: 39455910 PMCID: PMC11515126 DOI: 10.1186/s12866-024-03592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Diarrheal irritable bowel syndrome (IBS-D) is a functional bowel disease with diarrhea, and can be associated with common spleen deficiency syndrome of the prevelent traditional Chinese medicine (TCM) syndrome. Fecal microbiota transplantation (FMT) could help treating IBS-D, but may provide variable effects. Our study evaluated the efficacy of TCM- shenling Baizhu decoction and FMT in treating IBS-D with spleen deficiency syndrome, with significant implications on gut microbiome and serum metabolites. METHODS The new borne rats were procured from SPF facility and separated as healthy (1 group) and IBS-D model ( 3 groups) rats were prepared articially using mother's separation and senna leaf treatment. 2 groups of IBS-D models were further treated with TCM- shenling Baizhu decoction and FMT. The efficacy was evaluated by defecation frequency, bristol stool score, and intestinal tight junction proteins (occludin-1 and claudin-1) expression. Microbiomic analysis was conducted using 16 S rRNA sequencing and bioinformatics tools. Metabolomics were detected in sera of rats by LC-MS and annotated by using KEGG database. RESULTS Significant increment in occludin-1 and claudin-1 protein expression alleviated the diarrheal severity in IBS-D rats (P < 0.05) after treatment with FMT and TCM. FMT and TCM altered the gut microbiota and regulated the tryptophan metabolism, steroid hormone biosynthesis and glycerophospholipid metabolism of IBS-D rats with spleen deficiency syndrome.The microbial abundance were changed in each case e.g., Monoglobus, Dubosiella, and Akkermansia and othe metabolic profiles. CONCLUSION FMT and TCM treatment improved the intestinal barrier function by regulating gut microbiota and improved metabolic pathways in IBS-D with spleen deficiency syndrome.
Collapse
Affiliation(s)
- Bin-Bin Tang
- Second Outpatient Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Cheng-Xia Su
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Na Wen
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Qian Zhang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Jian-Hui Chen
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin-Bin Liu
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Yi-Qing Wang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Chao-Qun Huang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.
| | - Yun-Lian Hu
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.
- Hubei Shizhen Laboratory, Wuhan, China.
| |
Collapse
|
5
|
Tan H, Shi Y, Yue T, Zheng D, Luo S, Weng J, Zheng X. Machine learning approach reveals microbiome, metabolome, and lipidome profiles in type 1 diabetes. J Adv Res 2024; 64:213-221. [PMID: 38042287 PMCID: PMC11464464 DOI: 10.1016/j.jare.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a complex disorder influenced by genetic and environmental factors. The gut microbiome, the serum metabolome, and the serum lipidome have been identified as key environmental factors contributing to the pathophysiological mechanisms of T1D. OBJECTIVES We aimed to explore the gut microbiota, serum metabolite, and serum lipid signatures in T1D patients by machine learning. METHODS We evaluated 137 individuals in a cross-sectional cohort involving 38 T1D patients, 38 healthy controls, and 61 T1D patients for validation. We characterized gut microbiome, serum metabolite, and serum lipid profiles with machine learning approaches (logistic regression, support vector machine, Gaussian naive Bayes, and random forest). RESULTS The machine learning approaches using the microbiota composition did not accurately diagnose T1D (model accuracy = 0.7555), while the accuracy of the model using the metabolite composition was 0.9333. Based on the metabolite composition, 3-hydroxybutyric acid and 9-oxo-ode (area under curve = 0.70 and 0.67, respectively, both increased in T1D) were meaningful overlap metabolites screened by multiple bioinformatics methods. We confirmed the biological relevance of the microbiome, metabolome, and lipidome features in the validation group. CONCLUSION By using machine learning algorithms and multi-omics, we demonstrated that T1D patients are associated with altered microbiota, metabolite, and lipidomic signatures or functions.
Collapse
Affiliation(s)
- Huiling Tan
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yu Shi
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Tong Yue
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dongxue Zheng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Sihui Luo
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Xueying Zheng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
6
|
Zhang X, Wang H, Niu Y, Chen C, Zhang W. Effects of cottonseed meal protein hydrolysate on intestinal microbiota of yellow-feather broilers. Front Microbiol 2024; 15:1434252. [PMID: 39360315 PMCID: PMC11445190 DOI: 10.3389/fmicb.2024.1434252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
We evaluated the effects of cottonseed meal protein hydrolysate (CPH) on the intestinal microbiota of yellow-feather broilers. We randomly divided 240 chicks into four groups with six replicates: basal diet with 0% (CON), 1% (LCPH), 3% (MCPH), or 5% (HCPH) CPH. The test lasted 63 days and included days 1-21, 22-42, and 43-63 phases. The ACE, Chao1, and Shannon indices in the MCPH and HCPH groups of 42-day-old broilers were higher than those in the CON group (p < 0.05), indicating that the cecum microbial diversity and richness were higher in these groups. Firmicutes and Bacteroidetes were the dominant phyla; however, the main genera varied during the different periods. The abundance of Lactobacillus in CPH treatment groups of 21-day-old broilers was high (p < 0.05); in the 42-day-old broilers, the abundances of Barnesiella, Clostridia_vadinBB60_group, and Parasutterella in the LCPH group, Desulfovibrio, Lactobacillus, Clostridia_vadinBB60_group, and Butyricicoccus in the MCPH group, and Megamonas and Streptococcus in the HCPH group increased; in the 63-day-old broilers, the abundance of Clostridia_UCG-014 and Synergistes in the LCPH and HCPH group, respectively, increased (p < 0.05), and that of Alistipes in the LCPH and MCPH groups decreased (p < 0.05). And changes in the abundance of probiotics were beneficial to improve the intestinal morphology and growth performance. In addition, the LCPH treatment increased the complexity of the microbial network, while the MCPH treatment had the same effect in 42-day-old broilers. Thus, CPH increased the relative abundance of beneficial intestinal microbiota and enhanced the richness and diversity of the bacterial microbiota in broilers aged <42 days; this effect was weakened after 42 days.
Collapse
Affiliation(s)
| | | | | | - Cheng Chen
- *Correspondence: Cheng Chen, ; Wenju Zhang,
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
7
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Zhang D, Cheng H, Wu J, Zhou Y, Tang F, Liu J, Feng W, Peng C. The energy metabolism-promoting effect of aconite is associated with gut microbiota and bile acid receptor TGR5-UCP1 signaling. Front Pharmacol 2024; 15:1392385. [PMID: 39323631 PMCID: PMC11422068 DOI: 10.3389/fphar.2024.1392385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/18/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction As a widely used traditional Chinese medicine with hot property, aconite can significantly promote energy metabolism. However, it is unclear whether the gut microbiota and bile acids contribute to the energy metabolism-promoting properties of aconite. The aim of this experiment was to verify whether the energy metabolism-promoting effect of aconite aqueous extract (AA) is related to gut microbiota and bile acid (BA) metabolism. Methods The effect of AA on energy metabolism in rats was detected based on body weight, body temperature, and adipose tissue by HE staining and immunohistochemistry. In addition, 16S rRNA high-throughput sequencing and targeted metabolomics were used to detect changes in gut microbiota and BA concentrations, respectively. Antibiotic treatment and fecal microbiota transplantation (FMT) were also performed to demonstrate the importance of gut microbiota. Results Rats given AA experienced an increase in body temperature, a decrease in body weight, and an increase in BAT (brown adipose tissue) activity and browning of WAT (white adipose tissue). Sequencing analysis and targeted metabolomics indicated that AA modulated gut microbiota and BA metabolism. The energy metabolism promotion of AA was found to be mediated by gut microbiota, as demonstrated through antibiotic treatment and FMT. Moreover, the energy metabolism-promoting effect of aconite is associated with the bile acid receptor TGR5 (Takeda G-protein-coupled receptor 5)-UCP1 (uncoupling protein 1) signaling pathway. Conclusion The energy metabolism-promoting effect of aconite is associated with gut microbiota and bile acid receptor TGR5-UCP1 signaling.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Zhang S, Tian D, Xia Z, Yang F, Chen Y, Yao Z, He Y, Miao X, Zhou G, Yao X, Tang J. Chang-Kang-Fang alleviates diarrhea predominant irritable bowel syndrome (IBS-D) through inhibiting TLR4/NF-κB/NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118236. [PMID: 38670405 DOI: 10.1016/j.jep.2024.118236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chang-Kang-Fang (CKF), originated from traditional Chinese medicine (TCM) formulas, has been utilized to treat diarrhea predominant irritable bowel syndrome (IBS-D) based on clinical experience. However, the underlying mechanism of CKF for treating IBS-D remains unclear and need further clarification. AIM OF THE STUDY The objective of this present investigation was to validate the efficacy of CKF on IBS-D model rats and to uncover its potential mechanism for the treatment of IBS-D. MATERIALS AND METHODS We first established the IBS-D rat model through neonatal maternal separation (NMS) in combination with restraint stress (RS) and the administration of senna decoction via gavage. To confirm the therapeutic effect of CKF on treating IBS-D, abdominal withdrawal reflex (AWR) scores, the quantity of fecal pellets, and the fecal water content (FWC) were measured to evaluate the influence of CKF on visceral hypersensitivity and the severity of diarrhea symptom after the intragastric administration of CKF for 14 days. Subsequently, enzyme linked immunosorbent assay (ELISA) was applied to assess the effect of CKF on neuropeptides substance P (SP) and 5-hydroxytryptamine (5-HT), as well as inflammatory cytokines in serum and in intestinal tissues. Further, colonic pathological changes, the amount of colonic mast cells, and the expression level of occludin in rat colon tissues, were investigated by hematoxylin-eosin (HE) staining, toluidine blue staining, and immunohistochemistry, respectively. To explore the underlying mechanisms, alterations in colonic RNA transcriptomics for the normal, model, and CKF treatment groups were assessed using RNA sequencing (RNA-Seq). Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot (WB), and immunofluorescence (IF) assays were applied to validate the effect of CKF on predicted pathways in vivo and in vitro. In addition, to elucidate the potential active compounds in CKF, 11 representative components found in CKF were selected, and their anti-inflammation potentials were evaluated using LPS-treated RAW264.7 cell models. RESULTS CKF treatment significantly reduced the number of fecal pellets, attenuated visceral hypersensitivity, and decreased 5-HT and SP concentrations in serum and colon tissues, along with a reduction in colonic mast cell counts, correlating with improved symptoms in IBS-D rats. Meanwhile, CKF treatment reduced the colonic inflammatory cell infiltration, lowered the levels of IL-6, TNF-α, and IL-1β in serum and colon tissues, and increased the occludin protein expression in colon tissues to improve inflammatory response and colonic barrier function. RNA-Seq, in conjugation with our previous network pharmacology analysis, indicated that CKF might mitigate the symptoms of IBS-D rats by inhibiting the Toll like receptor 4/Nuclear factor kappa-B/NLR family pyrin domain-containing protein 3 (TLR4/NF-κB/NLRP3) pathway, which was confirmed by WB, IF, and qRT-PCR experiments in vivo and in vitro. Furthermore, coptisine, berberine, hyperoside, epicatechin, and gallic acid present in CKF emerged as potential active components for treating IBS-D, as they demonstrated in vitro anti-inflammatory effects. CONCLUSION Our findings demonstrate that CKF effectively improves the symptoms of IBS-D rats, potentially through the inhibition of the TLR4/NF-κB/NLRP3 pathway. Moreover, this study unveils the potential bioactive components in CKF that could be applied in the treatment of IBS-D.
Collapse
Affiliation(s)
- Sihao Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zixuan Xia
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Fengge Yang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Yanhui Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhihong Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Yi He
- National Key Laboratory of Chinese Medicine Modernization, Tianjin, 300410, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Xinglong Miao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin, 300410, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Guirong Zhou
- National Key Laboratory of Chinese Medicine Modernization, Tianjin, 300410, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China.
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Ke W, Wu J, Li H, Huang S, Li H, Wang Y, Wu Y, Yuan J, Zhang S, Tang H, Lei K. Network pharmacology and experimental validation to explore the mechanism of Changji'an formula against irritable bowel syndrome with predominant diarrhea. Heliyon 2024; 10:e33102. [PMID: 39005919 PMCID: PMC11239594 DOI: 10.1016/j.heliyon.2024.e33102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Changji'an Formula (CJAF) is a Chinese herbal compound, which is effective against irritable bowel syndrome with predominant diarrhea (IBS-D) in clinic. However, the molecular mechanism has not been well defined. In the current study, the potential targets and signaling pathways of CJAF against IBS-D were predicted using network pharmacology analysis. The pharmacological mechanisms of CJAF against IBS-D and the potential mechanism were validated by using an IBS-D mouse model induced by enema with trinitrobenzene-sulfonic acid (TNBS) plus with restraint stress and further intervened with CJAF. A total of 232 active compounds of CJAF were obtained, a total of 397 potential targets for the active ingredients were retrieved and a total of 219 common targets were obtained as the potential targets of CJAF against IBS-D. GO and KEGG enrichment analyses showed that multiple targets were enriched and could be experimentally validated in a mouse model of IBS-D. The mechanisms were mainly converged on the immune and inflammatory pathways, especially the NF-κB, TNF and IL-17 signaling pathway, which were closely involved in the treatment of CJAF against IBS-D. Animal experiment showed that CJAF alleviated visceral hypersensitivity and diarrhea symptom of IBS-D. CJAF also restored the histological and ultrastructure damage of IBS-D. The result of Western blot showed that CJAF upregulated colonic tight junction proteins of ZO-1, Occludin and Claudin-1. Further results demonstrated that CJAF inhibited the protein expression of NF-κB/NLRP3 inflammasome pathway targets and downregulated proinflammatory mediators of IL-1β, IL-18, TNF-α. In conclusion, CJAF could effectively reduce inflammatory response and alleviate visceral hypersensitivity as well as diarrhea symptom of IBS-D by inhibiting the NF-κB/NLRP3 signaling pathway. This study not only reveals the mechanism of CJAF against IBS-D, but also provides a novel therapeutic strategy for IBS-D.
Collapse
Affiliation(s)
- Wei Ke
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, China
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Jinjun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Hongbin Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Siyu Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Huibiao Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yongfu Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingxiu Wu
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Jie Yuan
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Shuncong Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Hongmei Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Kaijun Lei
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, China
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| |
Collapse
|
11
|
Chen W, Huang C, Tang D, Wan J, Zhou X, Wu C, Yang X. Huangtu decoction alleviates chronic diarrhea of spleen-yang deficiency in mice by altering host metabolome and intestinal microbiota composition. Am J Transl Res 2024; 16:2248-2262. [PMID: 39006272 PMCID: PMC11236646 DOI: 10.62347/ihnx2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Huangtu decoction (HTD), a traditional Chinese medicine recipe, warms the spleen, nourishes the blood, and stops bleeding. It has been used to treat dysentery, gastrointestinal bleeding, diarrhea, and other symptoms caused by spleen-yang deficiency for more than 2,000 years in China. However, the mechanism underlying the treatment of chronic diarrhea due to spleen-yang deficiency (CDSD) using HTD remains unclear. AIMS This study investigated whether HTD could mediate intestinal flora and serum metabolites to improve CDSD symptoms using a mouse model. METHODS A CDSD mouse model induced by senna and an abnormal diet was constructed. The regulatory effects of HTD at 12.5, 25.0, and 50.0 g/kg/d on CDSD mice were assessed by measuring their bodyweight, diarrhea rate, loose stool rate, and histopathology. Changes in the intestinal flora of CDSD mice were analyzed by 16S rRNA gene sequencing. Untargeted serum metabolomic analysis was performed using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS). RESULTS HTD had a modulating effect on CDSD by reducing the weight loss, diarrhea rate, loose stool rate, and pathologic damage. Intestinal flora analysis showed that HTD altered the community composition by decreasing the abundance of Allobaculum, Lactobacillus, and Ruminococcus. Serum metabolomics revealed that ascorbate and aldarate metabolism, aldosterone synthesis and secretion, platelet activation, hypoxia-inducible factor 1 signaling pathway, inositol phosphate metabolism, phosphatidylinositol signaling, galactose metabolism, and alpha-linolenic acid metabolism were modulated after HTD treatment. CONCLUSION HTD may alleviate CDSD symptoms by reducing weight loss, diarrhea rate, loose stool rate, and pathologic damage caused by modeling and regulating intestinal flora and serum metabolites in CDSD mice.
Collapse
Affiliation(s)
- Wenwen Chen
- Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China Chengdu 610091, Sichuan, China
| | - Chunyan Huang
- Department of Quality Assurance and Scientific Research, Chengdu Institute for Drug Control Chengdu 610045, Sichuan, China
| | - Dandan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137, Sichuan, China
| | - Jun Wan
- College of Life Science and Engineering, Southwest Jiaotong University Chengdu 610031, Sichuan, China
| | - Xia Zhou
- College of Life Science and Engineering, Southwest Jiaotong University Chengdu 610031, Sichuan, China
| | - Chunjie Wu
- Department of Quality Assurance and Scientific Research, Chengdu Institute for Drug Control Chengdu 610045, Sichuan, China
| | - Xiao Yang
- Department of Obstetrics, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China Chengdu 610091, Sichuan, China
| |
Collapse
|
12
|
Madjirebaye P, Peng Z, Mueed A, Huang T, Peng F, Allasra Y, Benar ME, Hu Z, Xie M, Xiong T. Promising probiotic-fermented soymilk for alleviating acute diarrhea: insights into the microbiome and metabolomics. Food Funct 2024; 15:4462-4474. [PMID: 38563684 DOI: 10.1039/d3fo05690b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fermented soymilk (FSM4) has attracted much attention due to its nutritional and health characteristics. Exploring FSM4 products to alleviate diarrhea can ensure their effectiveness as a therapeutic food for alleviating gastrointestinal disorders. However, the relationship between gut microbiota and gut metabolite production remains unknown during diarrheal episodes. Therefore, the diarrhea-alleviating role and mechanisms of FSM4 in diarrhea rats were investigated via biochemical, gut microbiota, and serum metabolite analyses. The findings showed that consuming FSM4 improved diarrhea symptoms and reduced systemic inflammation better than non-fermented soymilk (NFSM). It is worth noting that FSM4 promoted the diversity, richness, structure, and composition of gut microbiota. It increased the ability to reduce inflammation associated with harmful bacteria (Anaerofilum, Flavonifractor, Bilophila, Anaerostipes, [Ruminococcus]_torques_group, Clostridium_sensu_stricto_1, Turicibacter, Ruminococcus_1, Ruminiclostridium_6, Prevotellaceae_NK3B31_group and Fusicatenibacter), while stimulating the growth of healthy species (Lactobacillus, Ruminococcaceae_UCG-014, Oscillibacter, [Eubacterium]_coprostanoligenes_group, Negativibacillus, and Erysipelotrichaceae_UCG-003). Moreover, metabolomics analysis showed that lipid metabolites such as lysophosphatidylethanolamine (LysoPE) and sphingolipids were upregulated in the NG group, closely related to pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, and IFN-γ) and the aforementioned pathogenic bacteria. Notably, in treatment groups, especially FSM4, the accumulation of L-ornithine, aspartic acid, ursocholic acid, 18-oxooleate, and cyclopentanethiol was increased, which was robustly associated with the anti-inflammatory factor IL-10 and beneficial bacteria mentioned above. Therefore, it can be inferred that the amino acids, bile acid, 18-oxooleate, and cyclopentanethiol produced in the FSM4 group can serve as metabolic biomarkers, which synergistically act with the gut microbiota to help alleviate inflammation for diarrhea remission. Overall, FSM4 may provide a new alternative, as an anti-inflammatory diet, to alleviate diarrhea.
Collapse
Affiliation(s)
- Philippe Madjirebaye
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Fei Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Yammadjita Allasra
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | | | - Zhengchen Hu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| |
Collapse
|
13
|
Wu Y, Li S, Lv L, Jiang S, Xu L, Chen H, Li L. Protective effect of Pediococcus pentosaceus Li05 on diarrhea-predominant irritable bowel syndrome in rats. Food Funct 2024; 15:3692-3708. [PMID: 38488110 DOI: 10.1039/d3fo04904c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pediococcus pentosaceus Li05 (Li05) has demonstrated potential benefits in various intestinal and liver diseases, but its potential and mechanisms in relieving diarrhea have not been understood. The objective of this research was to examine the effects and mechanisms of Li05 in rats with diarrhea-predominant irritable bowel syndrome (IBS-D) induced by wrap restrain stress (WRS) and 4% acetic acid. The results demonstrated that Li05 effectively alleviated weight loss, visceral sensitivity and diarrhea in rats with IBS-D. It also improved intestinal and systemic inflammation by reducing the levels of chemokines and proinflammatory cytokines (GRO/KC, RANTES, IL-1β, IL-7, and IL-18). The 5-hydroxytryptamine (5-HT) signaling pathway is involved in regulating excessive intestinal motility and secretion in IBS-D. Li05 effectively reduced the expression levels of the 5-HT3B receptor (5-HT3BR) (p < 0.01) in the intestine. Additionally, Li05 intervention had a regulatory effect on the gut composition, with a decrease in the abundance of [Ruminococcus] gauvreauii group, Dubosiella, Erysipelatoclostridium and Blautia, and an increase in the abundance of Alloprevotella, Anaerotruncus and Mucispirillum. Furthermore, Li05 induced significant changes in fatty acid and amino acid metabolism in the gut of rats with IBS-D. These findings indicate that Li05 exhibits an effective improvement in IBS-D symptoms by reducing inflammation and modulating gut microbiota and metabolism. Based on the above results, Li05 holds promise as a potential probiotic for managing IBS-D.
Collapse
Affiliation(s)
- Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Lvwan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| |
Collapse
|
14
|
Zhan K, Wu H, Xu Y, Rao K, Zheng H, Qin S, Yang Y, Jia R, Chen W, Huang S. The function of the gut microbiota-bile acid-TGR5 axis in diarrhea-predominant irritable bowel syndrome. mSystems 2024; 9:e0129923. [PMID: 38329942 PMCID: PMC10949424 DOI: 10.1128/msystems.01299-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Imbalanced gut microbiota (GM) and abnormal fecal bile acid (BA) are thought to be the key factors for diarrhea-predominant irritable bowel syndrome (IBS-D), but the underlying mechanism remains unclear. Herein, we explore the influence of the GM-BA-Takeda G-protein-coupled receptor 5 (TGR5) axis on IBS-D. Twenty-five IBS-D patients and fifteen healthy controls were recruited to perform BA-related metabolic and metagenomic analyses. Further, the microbiota-humanized IBS-D rat model was established by fecal microbial transplantation (FMT) to investigate the GM-BA-TGR5 axis effects on the colonic barrier and visceral hypersensitivity (VH) in IBS-D. Finally, we used chenodeoxycholic acid (CDCA), an important BA screened out by metabolome, to evaluate whether it affected diarrhea and VH via the TGR5 pathway. Clinical research showed that GM associated with bile salt hydrolase (BSH) activity such as Bacteroides ovatus was markedly reduced in the GM of IBS-D, accompanied by elevated total and primary BA levels. Moreover, we found that CDCA not only was increased as the most important primary BA in IBS-D patients but also could induce VH through upregulating TGR5 in the colon and ileum of normal rats. TGR5 inhibitor could reverse the phenotype, depression-like behaviors, pathological change, and level of fecal BSH in a microbiota-humanized IBS-D rat model. Our findings proved that human-associated FMT could successfully induce the IBS-D rat model, and the imbalanced GM-BA-TGR5 axis may promote colonic mucosal barrier dysfunction and enhance VH in IBS-D. IMPORTANCE Visceral hypersensitivity and intestinal mucosal barrier damage are important factors that cause abnormal brain-gut interaction in diarrhea-predominant irritable bowel syndrome (IBS-D). Recently, it was found that the imbalance of the gut microbiota-bile acid axis is closely related to them. Therefore, understanding the structure and function of the gut microbiota and bile acids and the underlying mechanisms by which they shape visceral hypersensitivity and mucosal barrier damage in IBS-D is critical. An examination of intestinal feces from IBS-D patients revealed that alterations in gut microbiota and bile acid metabolism underlie IBS-D and symptom onset. We also expanded beyond existing knowledge of well-studied gut microbiota and bile acid and found that Bacteroides ovatus and chenodeoxycholic acid may be potential bacteria and bile acid involved in the pathogenesis of IBS-D. Moreover, our data integration reveals the influence of the microbiota-bile acid-TGR5 axis on barrier function and visceral hypersensitivity.
Collapse
Affiliation(s)
- Kai Zhan
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Haomeng Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongyin Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kehan Rao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shumin Qin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanming Yang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Rui Jia
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihuan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaogang Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Guo M, Fang L, Chen M, Shen J, Tan Z, He W. Dysfunction of cecal microbiota and CutC activity in mice mediating diarrhea with kidney-yang deficiency syndrome. Front Microbiol 2024; 15:1354823. [PMID: 38500584 PMCID: PMC10944907 DOI: 10.3389/fmicb.2024.1354823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Objective Previous studies have indicated that diarrhea with kidney-yang deficiency syndrome leads to a disorder of small intestine contents and mucosal microbiota. However, the relationship of TMA-lyase (CutC) activity and TMAO with diarrhea with kidney-yang deficiency syndrome remains unexplored. Therefore, this study explores the relationship between cecal microbiota and choline TMA-lyase (CutC) activity, as well as the correlation between trimethylamine oxide (TMAO), inflammatory index, and CutC activity. Method Twenty SPF-grade male KM mice were randomly divided into the normal group (CN) and the diarrhea model group (CD). Diarrhea mouse models were established by adenine combined with Folium sennae administration. CutC activity, TMAO, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were detected, and the cecal content microbiota was sequenced. Result After 14 days, diarrhea occurred in the CD group. Compared with the CN group, there was no significant change in the activity of CutC in the small intestine of the CD group, while the activity of CutC in the cecum was significantly increased, and the levels of TMAO, IL-6, and TNF-α showed a significant increase. The Chao1 index, Observed_species index, Shannon index, and Simpson index all exhibited a decreasing trend. The main changes at the bacterial genus level were Alistipes, Enterorhabdus, Desulfovibrio, Bacteroides, Candidatus_Saccharimonas, and [Ruminococcus]_torques_group. The results of LEfSe analysis, random forest analysis and ROC curve analysis revealed Paludicola, Blautia, Negativibacillus, Paraprevotella, Harryflintia, Candidatus_Soleaferrea, Anaerotruncus, Oscillibacter, Colidextribacter, [Ruminococcus]_torques_group, and Bacteroides as characteristic bacteria in the CD group. Correlation analysis showed a significant negative correlation between cecal CutC activity and Ligilactobacillus, and a significant positive correlation with Negativibacillus and Paludicola. The level of TMAO was significantly positively correlated with CutC activity and IL-6. Conclusion Diarrhea with kidney-yang deficiency syndrome significantly affects the physiological status, digestive enzyme activity, CutC activity, TMAO levels, and inflammatory response in mice. Additionally, there are changes in the composition and function of cecal microbiota, indicating an important impact of diarrhea with kidney-yang deficiency syndrome on the host intestinal microbiota balance. The occurrence of diarrhea with kidney-yang deficiency syndrome may be associated with dysbiosis of intestinal microbiota, increased CutC activity, elevated TMAO levels, and heightened inflammatory factor levels.
Collapse
Affiliation(s)
- Mingmin Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Leyao Fang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Meili Chen
- Changsha Hospital of Traditional Chinese Medicine, Changsha, China
| | - Junxi Shen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wenzhi He
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Zhan X, Xiao Y, Jian Q, Dong Y, Ke C, Zhou Z, Liu Y, Tu J. Integrated analysis of metabolomic and transcriptomic profiling reveals the effect of Atractylodes oil on Spleen Yang Deficiency Syndrome in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117205. [PMID: 37741473 DOI: 10.1016/j.jep.2023.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spleen Yang Deficiency Syndrome (SYDS), which is a syndrome commonly treated with Traditional Chinese Medicine (TCM), manifests as overall metabolic dysfunction caused mainly by digestive system disorders. Atractylodes lancea (Thunb.) DC. (AL) is a widely used traditional herb with the efficacy of eliminate dampness and strengthen the spleen, Atractylodes oil (AO) is a medicinal component of AL and can be used to treat various gastrointestinal disorders. However, its effects on SYDS and underlying mechanisms have not been clarified to date. AIM OF THE STUDY The present study aimed to investigate the efficacy of AO in the improvement of the symptoms of SYDS in rat and the underlying mechanism by integrating transcriptomics, and metabolomics. MATERIALS AND METHODS The SYDS rats induced by reserpine were treated with AO. The protective effect of AO on SYDS rats was evaluated by serum biochemical detection, histopathological analyses. Enzyme-linked immunosorbent assay (ELISA), colorimetric assay and immunofluorescence (IF) were performed to determine the levels of relevant indicators of mitochondrial function and energy metabolism in the liver. Liver metabolites and transcript levels were assessed by non-targeted metabolomics and transcriptomics to analyze potential molecular mechanisms and targets. The expression of the corresponding proteins was verified using Western blotting. RESULTS AO not only regulated the digestion, absorption function and oxidative stress status of SYDS rats, but also improved mitochondrial function and alleviated energy metabolism disorders in SYDS rats. Metabolomic and transcriptomic analyses demonstrated that AO regulation is mainly exerted in amino acid metabolism, unsaturated fatty acid metabolism, TCA cycle as well as PPAR and AMPK signaling pathways. In addition, The AMPK signaling pathway was verified and AO promoted AMPK phosphorylation and the expression of SIRT1, PGC-1α, and PPARα in SYDS rats. CONCLUSIONS The therapeutic effect of AO on SYDS is potentially attributable to activation of the AMPK/SIRT1/PGC-1α signaling pathway, which enhances transport and regulation of energy metabolism.
Collapse
Affiliation(s)
- Xin Zhan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yangxin Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qipan Jian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Dong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China.
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China.
| |
Collapse
|
17
|
Long J, Gu J, Yang J, Chen P, Dai Y, Lin Y, Wu M, Wu Y. Exploring the Association between Gut Microbiota and Inflammatory Skin Diseases: A Two-Sample Mendelian Randomization Analysis. Microorganisms 2023; 11:2586. [PMID: 37894244 PMCID: PMC10609507 DOI: 10.3390/microorganisms11102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Emerging research underscores the substantial link between gut flora and various inflammatory skin diseases. We hypothesize that there exists a complex gut-skin axis, possibly affecting the progression of conditions such as eczema, acne, psoriasis, and rosacea. However, the precise nature of the causal connection between gut flora and skin diseases remains unestablished. In this study, we started by compiling summary data from genome-wide association studies (GWAS) featuring 211 unique gut microbiota and four types of skin conditions. We scrutinized these data across different taxonomic strata. Subsequently, we leveraged Mendelian randomization (MR) to ascertain if there is a causal link between gut microbiota and these skin conditions. We also performed a bidirectional MR analysis to identify the causality's direction. By utilizing Mendelian randomization, we identified 26 causal connections between the gut microbiome and four recognized inflammatory skin conditions, including 9 positive and 17 negative causal directions. Additional sensitivity analyses of these results revealed no evidence of pleiotropy or heterogeneity. Our MR analysis suggests a causal connection between gut microbiota and skin diseases, potentially providing groundbreaking perspectives for future mechanistic and clinical studies on microbiota-affected skin conditions.
Collapse
Affiliation(s)
- Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Jinglan Gu
- National Clinical Research Center for Child Health, Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Ming Wu
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
18
|
Xue H, Mei C, Wang F, Tang X. Relationship among Chinese herb polysaccharide (CHP), gut microbiota, and chronic diarrhea and impact of CHP on chronic diarrhea. Food Sci Nutr 2023; 11:5837-5855. [PMID: 37823142 PMCID: PMC10563694 DOI: 10.1002/fsn3.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic diarrhea, including diarrhea-predominant irritable bowel syndrome (IBS-D), osmotic diarrhea, bile acid diarrhea, and antibiotic-associated diarrhea, is a common problem which is highly associated with disorders of the gut microbiota composition such as small intestinal bacterial overgrowth (SIBO) and so on. A growing number of studies have supported the view that Chinese herbal formula alleviates the symptoms of diarrhea by modulating the fecal microbiota. Chinese herbal polysaccharides (CHPs) are natural polymers composed of monosaccharides that are widely found in Chinese herbs and function as important active ingredients. Commensal gut microbiota has an extensive capacity to utilize CHPs and play a vital role in degrading polysaccharides into short-chain fatty acids (SCFAs). Many CHPs, as prebiotics, have an antidiarrheal role to promote the growth of beneficial bacteria and inhibit the colonization of pathogenic bacteria. This review systematically summarizes the relationship among gut microbiota, chronic diarrhea, and CHPs as well as recent progress on the impacts of CHPs on the gut microbiota and recent advances on the possible role of CHPs in chronic diarrhea.
Collapse
Affiliation(s)
- Hong Xue
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Chun‐Feng Mei
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Feng‐Yun Wang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Xu‐Dong Tang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
19
|
Fang X, Nong K, Qin X, Liu Z, Gao F, Jing Y, Fan H, Wang Z, Wang X, Zhang H. Effect of purple sweet potato-derived anthocyanins on heat stress response in Wenchang chickens and preliminary mechanism study. Poult Sci 2023; 102:102861. [PMID: 37390559 PMCID: PMC10466256 DOI: 10.1016/j.psj.2023.102861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
This study was conducted to investigate the beneficial effect of purple sweet potato anthocyanins (PSPA) on growth performance, oxidative status, immune response, intestinal morphology, and intestinal flora homeostasis in heat-stressed Wenchang chickens. A total of 100 Wenchang chickens (50-day-old) were randomly assigned to 5 groups, including the thermoneutral environment (TN) group (26°C); high-temperature stressed (HS) group (33°C ± 1°C); low-dose PSPA treatment (L_HS) group (8 mg/kg body weight, 33°C ± 1°C); medium-dose PSPA treatment (M_HS) group and high-dose PSPA treatment (H_HS) group (16 mg/kg and 32 mg/kg body weight, respectively, 33°C ± 1°C). The results showed that PSPA reversed the adverse effects of heat stress on growth performance, meat quality, and carcass characteristics. And the effect was associated with the concentration of PSPA partially. Heat stress increased the serum lipids of Wenchang chickens. LDL-C, TG, TC, and FFA in the serum were significantly decreased, and HDL-C and LPS in the serum were increased by PSPA treatment. The digestive enzymes in duodenal chyme were significantly (P < 0.05) increased by PSPA treatment. And PSPA treatment significantly (P < 0.05) enhanced the redox status by improving antioxidant parameters (GSH-Px and SOD) and decreasing the MDA level in the serum and liver. Moreover, the level of inflammatory cytokines was significantly (P < 0.05) regulated by PSPA treatment compared to the HS group. The villus length and goblet cell numbers after PSPA treatment were significantly higher than HS group. Furthermore, PSPA also played protection on the intestine structure by decreasing the level of D-LA and DAO. 16S rRNA sequencing revealed the microbial composition was altered by PSPA, and Acetanaerobacterium and Oscillibacter were dominant in the H_HS group. Microbial functional prediction indicated that function pathways based on KEGG and metacyc database were regulated by PSPA, and intestinal flora correlated with metabolic function significantly. The spearman correlation analysis showed that Saccharibacteria and Clostridium_IV correlated with the serum lipids, antioxidant, and inflammatory cytokines. Collectively, these findings suggest that PSPA has a positive effect against heat stress in poultry.
Collapse
Affiliation(s)
- Xin Fang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Keyi Nong
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Xinyun Qin
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Zhineng Liu
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Feng Gao
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Yuanli Jing
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Haokai Fan
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Zihan Wang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Xuemei Wang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Haiwen Zhang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China.
| |
Collapse
|
20
|
Huang KY, Wang FY, Lv M, Ma XX, Tang XD, Lv L. Irritable bowel syndrome: Epidemiology, overlap disorders, pathophysiology and treatment. World J Gastroenterol 2023; 29:4120-4135. [PMID: 37475846 PMCID: PMC10354571 DOI: 10.3748/wjg.v29.i26.4120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 07/10/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disease with a significant impact on patients' quality of life and a high socioeconomic burden. And the understanding of IBS has changed since the release of the Rome IV diagnosis in 2016. With the upcoming Rome V revision, it is necessary to review the results of IBS research in recent years. In this review of IBS, we can highlight future concerns by reviewing the results of IBS research on epidemiology, overlap disorders, pathophysiology, and treatment over the past decade and summarizing the latest research.
Collapse
Affiliation(s)
- Kai-Yue Huang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
- Institute of Digestive Diseases, Beijing Institute of Spleen and Stomach Disease of Traditional Chinese Medicine, Beijing 100091, China
| | - Feng-Yun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
- Institute of Digestive Diseases, Beijing Institute of Spleen and Stomach Disease of Traditional Chinese Medicine, Beijing 100091, China
| | - Mi Lv
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
- Institute of Digestive Diseases, Beijing Institute of Spleen and Stomach Disease of Traditional Chinese Medicine, Beijing 100091, China
| | - Xiang-Xue Ma
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
- Institute of Digestive Diseases, Beijing Institute of Spleen and Stomach Disease of Traditional Chinese Medicine, Beijing 100091, China
| | - Xu-Dong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
- Institute of Digestive Diseases, Beijing Institute of Spleen and Stomach Disease of Traditional Chinese Medicine, Beijing 100091, China
| | - Lin Lv
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
- Institute of Digestive Diseases, Beijing Institute of Spleen and Stomach Disease of Traditional Chinese Medicine, Beijing 100091, China
| |
Collapse
|
21
|
Zhu N, Zhu L, Zhang X, Huang C, Xiang W, Huang B. Triptolide attenuates irritable bowel syndrome via inhibiting ODC1. BMC Gastroenterol 2023; 23:202. [PMID: 37308808 DOI: 10.1186/s12876-023-02847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a chronic disorder of the gut-brain axis with significant morbidity. Triptolide, an active compound extracted from Tripterygium wilfordii Hook F (TwHF), has been widely used as a major medicinal herb in the treatment of inflammatory disease. METHODS The chronic-acute combined stress (CAS) stimulation was used to establish IBS rat model. The model rats were then gavaged with triptolide. Forced swimming, marble-burying, fecal weight and abdominal withdrawal reflex (AWR) score were recorded. Pathologic changes in the ileal and colonic tissues were validated by hematoxylin and eosin staining. The inflammatory cytokines and Ornithine Decarboxylase-1 (ODC1) in the ileal and colonic tissues were performed by ELISA and WB. RESULTS Triptolide didn't have antidepressant- and antianxiety- effects in rats caused by CAS, but decreased fecal weight and AWR score. In addition, Triptolide reduced the release of IL-1, IL-6, and TNF-α and the expression of ODC1 in the ileum and colon. CONCLUSION The therapeutic efficacy of triptolide for IBS induced by CAS was revealed in this study, which may be related to the reduction of ODC1.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299 Guan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Liuyan Zhu
- Department of General Practice, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299 Guan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Xueliang Zhang
- Department of General Practice, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299 Guan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Chengbin Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Wenjun Xiang
- Department of Pathology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299 Guan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Bingwu Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
22
|
Zhang D, Cheng H, Zhang Y, Zhou Y, Wu J, Liu J, Feng W, Peng C. Ameliorative effect of Aconite aqueous extract on diarrhea is associated with modulation of the gut microbiota and bile acid metabolism. Front Pharmacol 2023; 14:1189971. [PMID: 37266146 PMCID: PMC10229775 DOI: 10.3389/fphar.2023.1189971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Aconite is a form of traditional Chinese medicine (TCM) that has been widely used to treat diarrhea for thousands of years. However, it is not clear whether the anti-diarrhea role of aconite aqueous extract (AA) is associated with regulation of the gut microbiota or with bile acid (BA) metabolism. This study aimed to confirm whether AA exerts its anti-diarrhea effects by regulating the gut microbiota and BA metabolism. Methods: The therapeutic effect of AA in a mouse model of diarrhea was measured based on analysis of body weight, fecal water content, diarrhea scores, intestinal propulsion rate, colonic pathology, and colonic immunohistochemistry. In addition, 16S rRNA high-throughput sequencing was conducted to analyze the effect of AA on the gut microbiota, and targeted metabolomics was employed to analyze the effect of AA on metabolism of BAs. Results: The results showed that treatment with AA reduced fecal water content and diarrhea scores, inhibited intestinal propulsion rate and pathological changes in the colon, and increased AQP3 and AQP4 content in the colon. In addition, AA was found to be capable of regulating the gut microbiota. Effects included increasing its richness (according to the ACE and Chao1 indices); altering the gut microbiota community structure (PCA, PCoA, and NMDS); increasing the relative abundance of norank_f_Muribaculaceae, Ruminococcus, Lachnospiraceae_NK4A136_group, Prevotellaceae_UCG-001, and norank_f_norank_o_Clostridia_UCG-014; and decreasing the relative abundance of Escherichia-Shigella, unclassified_f_Ruminococcaceae, Ruminococcus_torques_group, and Parasutterella. More importantly, AA significantly increased fecal TCA (a primary BA) and DCA, LCA, GDCA, dehydro-LCA, and 12-keto-LCA (secondary BAs), thus restoring BA homeostasis. Moreover, AA increased the ratios of DCA/CA, DCA/TCA, and LCA/CDCA and decreased the ratios of TLCA/LCA, GLCA/LCA, and TUDCA/UDCA. Conclusion: The anti-diarrhea effect of AA was associated with restoration of the gut microbiota and BA metabolism-related homeostasis. The results of this study provide insights into the application of AA and the treatment of diarrhea.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Hu X, Liu W, He M, Qiu Q, Zhou B, Liu R, Wu F, Huang Z. Comparison of the molecular mechanisms of Fuzi Lizhong Pill and Huangqin decoction in the treatment of the cold and heat syndromes of ulcerative colitis based on network pharmacology. Comput Biol Med 2023; 159:106870. [PMID: 37084637 DOI: 10.1016/j.compbiomed.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE The aim of this study was to illuminate the similarities and differences of two prescriptions as "cold" and "heat" drugs for treating ulcerative colitis (UC) with the simultaneous occurrence of heat and cold syndrome via network pharmacology. METHODS (1) Active compounds of Fuzi-Lizhong Pill (FLP) and Huangqin Decoction (HQT) were retrieved from the TCMSP database, and their common active compounds were compared using the Venn diagram. (2) Potential proteins targeted to three sets of compounds either (i) shared by FLP and HQT, (ii) unique to FLP or (iii) unique to HQT were screened from the STP, STITCH and TCMSP databases, and three corresponding core compound sets were identified in Herb-Compound-Target (H-C-T) networks. (3) Targets related to UC were identified from the DisGeNET and GeneCards databases and compared with the FLP-HQT common targets to identify potential targets of FLP-HQT compounds related to UC. (4) Three potential target sets were imported into the STRING database for protein‒protein interaction (PPI) analysis, and three core target sets were defined. (5) The binding capabilities and interacting modes between core compounds and key targets were verified by molecular docking via Discovery Studio 2019 and molecular dynamics (MD) simulations via Amber 2018. (6) The target sets were enriched for KEGG pathways using the DAVID database. RESULTS (1) FLP and HQT included 95 and 113 active compounds, respectively, with 46 common compounds, 49 FLP-specific compounds and 67 HQT-specific compounds. (2) 174 targets of FLP-HQT common compounds, 168 targets of FLP-specific compounds, and 369 targets of HQT-specific compounds were predicted from the STP, STITCH and TCMSP databases; six core compounds specific to FLP and HQT were screened in the FLP-specific and HQT-specific H-C-T networks, respectively. (3) 103 targets overlapped from the 174 predicted targets and the 4749 UC-related targets; two core compounds for FLP-HQT were identified from the FLP-HQT H-C-T network. (4) 103 FLP-HQT-UC common targets, 168 of FLP-specific targets and 369 of HQT-specific targets had shared core targets (AKT1, MAPK3, TNF, JUN and CASP3) based on the PPI network analysis. (5) Molecular docking demonstrated that naringenin, formononetin, luteolin, glycitein, quercetin, kaempferol and baicalein of FLP and HQT play a critical role in treating UC; meanwhile, MD simulations revealed the stability of protein‒ligand interactions. (6) The enriched pathways indicated that most targets were related to anti-inflammatory, immunomodulatory and other pathways. Compared with the pathways identified using traditional methods, FLP-specific pathways included the PPAR signaling pathway and the bile secretion pathway, and HQT-specific pathways included the vascular smooth muscle contraction pathway and the natural killer cell-mediated cytotoxicity pathway etc. CONCLUSION: In this study, we clarified the common mechanisms of FLP and HQT in treating UC and their specific mechanisms in treating cold and heat syndrome in UC through compound, target and pathway distinction and a literature comparison based on network pharmacology; these results provide a new perspective on the detailed mechanism of "multidrugs and single-disease" thought in traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiyun Hu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Weidong Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Meiqi He
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Qimiao Qiu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Bingjie Zhou
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Ruining Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Fengxu Wu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China; Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| |
Collapse
|
24
|
Qian W, Li W, Chen X, Cui L, Liu X, Yao J, Wang X, Liu Y, Li C, Wang Y, Wang W. Exploring the mechanism of Xingpi Capsule in diarrhea predominant-irritable bowel syndrome treatment based on multiomics technology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154653. [PMID: 36641976 DOI: 10.1016/j.phymed.2023.154653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Xingpi Capsule (XP), a commercially available over-the-counter herbal medicine in China, plays a prominent role in treating diarrhea-predominant irritable bowel syndrome (IBS-D). Nevertheless, the potential mechanisms remain unclear. PURPOSE This study aimed to investigate XP efficacy in IBS-D and elucidate the underlying molecular mechanisms. METHODS A rat IBS-D model was established by senna decoction gavage combined with restraint stress and swimming exhaustion. The changes in rat body weight and stool were recorded daily. Colon pathological changes and the number of colonic goblet cells of rats were observed by hematoxylin-eosin (HE) staining and Alcian blue plus periodic acid-Schiff (AB-PAS) staining, respectively. The expression of Occludin, a tight-junction-associated protein, was examined via immunohistochemistry. Images of colonic microvilli were obtained by TEM. Western blotting (WB) was used to analyze the protein expression of the ASK1/P38 MAPK pathway. The composition of the rat intestinal microbiota was detected by 16S rRNA sequencing. Changes in colonic metabolites were evaluated by liquid chromatography-mass spectrometry (LC-MS). Changes in colon RNA expression were assessed by RNA sequencing (RNA-Seq). The nontoxic range of hypoxanthine (HPX) was screened by Cell Counting Kit-8 (CCK8), the cell model of human colonic epithelial cells (NCM460) induced by lipopolysaccharide (LPS) was established, and the effective concentration of HPX was screened by CCK8. After transfection of pcDNA3.1-MAP3K5, Hoechst 33,342 staining, flow cytometry to detect cell apoptosis, and immunofluorescence to detect the fluorescence changes of ASK1 and ZO-1. WB detection of ASK1/P38 MAPK pathway protein expression changes. RESULTS XP increased the body weight of IBS-D patients and reduced the loose stool rate, loose stool index, and Bristo score. In addition, XP mitigated colon lesions, increased the number of goblet cells and the expression of Occludin, and prevented severe distortion and effacement of the microvillous structure. Specifically, 16S rRNA gene sequence analysis showed that XP decreased the abundance of Desulfurium and Prevotella 9 at the phylum and genus levels while increasing the abundance of Bacteroides at the genus level. RNA-Seq combined with WB validation showed that XP exerted antidiarrheal effects by inhibiting the ASK1/P38 MAPK signaling pathway. Additionally, XP also increased the relative expression level of the metabolite HPX, as revealed by untargeted metabolomics analysis. Impressively, the correlation analysis between 16S rRNA sequencing and LC-MS suggested that HPX and Prevotella 9 are negatively correlated, which indicated that XP might increase the content of HPX by reducing the abundance of Prevotella 9. Meanwhile, a negative correlation between HPX and ASK1 was indicated through RNA-Seq and LC-MS, which suggested that the inhibition of ASK1 (Map3k5) may be ascribed to the increase in HPX after XP treatment. In vitro experiments have proven that HPX can alleviate LPS-induced NCM460 damage, specifically manifested as enhancing cell viability, reducing cell apoptosis, increasing ZO-1 expression, reducing the fluorescence intensity of MAP3K5 in the model group, and inhibiting the expression of ASK1/P38 MAPK pathway proteins. The protective effect of HPX was reversed after transfection with pcDNA 3.1-MAP3K5, which fully demonstrated that the protective mechanism of HPX was achieved by inhibiting MAP3K5 and its downstream pathways. CONCLUSION XP displayed multifaceted protection against IBS-D in rats by regulating the intestinal microbiota, increasing the relative expression level of HPX, a metabolite of the microbiota, and inhibiting the ASK1/P38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Weina Qian
- School of Basic Medical Sciences, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Weili Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoyang Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lingwen Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangning Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junkai Yao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoping Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yizhou Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of Syndrome and Formula, Beijing 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China.
| |
Collapse
|
25
|
Huang H, Tong Y, Fu T, Lin D, Li H, Xu L, Zhang S, Yin Y, Gao Y. Effect of Bining decoction on gouty nephropathy: a network pharmacology analysis and preliminary validation of gut microbiota in a mouse model. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1271. [PMID: 36618800 PMCID: PMC9816844 DOI: 10.21037/atm-22-5523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Background To use network pharmacology and gut microbiota sequencing to investigate the probable mechanism of Bining decoction (BN) in the treatment of gouty nephropathy (GN). Methods Firstly, the mechanism of therapeutic effects of BN on GN were collected by integrating network pharmacology. Secondly, the treatment effects of BN against GN in 30 Institute of Cancer Research (ICR) mice were evaluated by performing biochemical tests [uric acid, blood urea nitrogen, and creatinine (UA, BUN, and Cr)] and evaluating the renal weight index. Finally, 16S rRNA sequencing was utilized for elucidating the therapeutical effect of BN in GN. Results The results of gut microbiota sequencing analysis showed the abundance of Faecalibaculum, Romboutsia, Bifidobacterium, Bacteroides, Odoribacter, Lachnospiraceae NK4A136 group, unclassified_f__Lachnospiraceae, Roseburia, norank_f__Lachnospiraceae, Lactobacillus, Dubosiella, norank_f__Muribaculaceae, and Turicibacter in the BN group had a significant changed between-group comparisons. Using a network pharmacology-related database, 413 active components of BN were identified, as well as 1,085 GN-associated targets. The 118 targets of disease targets and component targets were mapped, of which the top 10 genes were selected. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that 157 pathways were enriched, which was partially consistent with the metabolic pathways of gut microbiota sequencing analysis. Conclusions Combining 16S rRNA gene sequencing and network pharmacology analysis, similar signaling pathways were followed: "Pathways in cancer" and "Adipocytokine signaling pathway". The results reveal that BN increases the abundance of Turicibacter, regulates the expression of JAK2 in the JAK/STAT pathway, increases the beneficial bacteria Turicibacter associated with intestinal butyric acid, which could enhance the intestinal barrier, and exert anti-inflammatory effects.
Collapse
Affiliation(s)
- Huili Huang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Tong
- Department of Rheumatology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Fu
- School of Arts and Sciences, Brandeis University, Boston, MA, USA
| | - Danmei Lin
- Department of Pediatrics, Mudanjiang Maternal and Child Health Hospital, Mudanjiang, China
| | - Hansheng Li
- Department of Discipline Inspection and Supervision, Mudanjiang Hospital of Traditional Chinese Medicine, Mudanjiang, China
| | - Li Xu
- Department of Nephrology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Senyue Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanzhe Yin
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yiran Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
26
|
Huang Y, Ma Q, He J, Liang X, Mai Q, Luo H, Hu J, Song Y. Abdominal massage alleviates functional diarrhea in immature rats via modulation of intestinal microbiota and tight junction protein. Front Pediatr 2022; 10:922799. [PMID: 35935373 PMCID: PMC9354804 DOI: 10.3389/fped.2022.922799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Functional diarrhea (FD) is a common type of chronic diarrhea in children. Recurrent diarrhea can negatively impact children's quality of life and raise healthcare costs significantly. However, conventional treatments are ineffective and limited. Moreover, children with chronic conditions have poor medication compliance. Therefore, non-pharmacological and complementary treatments are urgently needed. In China, abdominal massage is widely used to treat diarrhea in children. Numerous clinical studies have verified its usefulness in treating gastrointestinal disorders as well. Nevertheless, its intrinsic mechanisms are still unclear, and the impact of massage direction on treatment effects has received less attention. In our study, we found that FD was not associated with pathogen infection. A dysbiosis of the intestinal microbiota and disruption of the intestinal barrier are most likely to cause FD. Moreover, this study also substantiates that abdominal massage can mitigate functional diarrhea by altering the intestinal microbiota structure and decreasing the number of bacteria that damage intestinal mucosal barriers. The reduction of Ruminococcus_torques_group and Clostridium_innocuum_group at the genus level potentially mediated the beneficial effects of abdominal massage on alleviating diarrhea. Furthermore, massaging from two different directions, clockwise (CW) and counter-clockwise (CCW) massage, would not significantly influence the effect of the massage on intestinal microbiota or tight junction proteins. In summary, abdominal massage is an effective complementary therapy for children suffering from functional diarrhea.
Collapse
Affiliation(s)
- Yanyi Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Ma
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingxin He
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingshan Liang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingxin Mai
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huifang Luo
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Hu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Song
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|