1
|
Xu Z, Li Y, Pi P, Yi Y, Tang H, Zhang Z, Xiong H, Lei B, Shi Y, Li J, Sun Z. B. glomerulata promotes neuroprotection against ischemic stroke by inhibiting apoptosis through the activation of PI3K/AKT/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155817. [PMID: 39029135 DOI: 10.1016/j.phymed.2024.155817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Brassaiopsis glomerulata (Blum) Regel (B.glomerulata) is recognized as a traditional Chinese medicine (TCM) primarily used for promoting blood circulation and removing stasis. It is frequently utilized in the treatment of injuries resulting from falls and bumps. PURPOSE Despite its effective use in clinical treatment for ischemic stroke (IS), there are currently no reports on its composition and mechanism of action, which affects its promotion. The study investigated the chemical components and molecular mechanisms of B.glomerulata, with the following components: UPLC-Q-TOF-MS, network pharmacology Analysis and experimental verification in vivo and vitro. METHODS The effect of B.glomerulata on interfering with ischemic stroke was assessed on MCAO/R rats and ORD cell model. Then the compositional analysis was conducted using UPLC-Q-TOF-MS. Furthermore, network pharmacology and molecular docking techniques were explored to identify potential targets and pathways. The predicted mechanisms of action were ultimately confirmed by immunohistochemistry and protein blotting. RESULTS B. glomerulata exhibited neuroprotective effects in MCAO/R rats by reductions in hippocampal and cortical neuronal damage, brain infarction, and cerebral edema. Both in vivo and in vitro experiments demonstrated that it decreased ROS and MDA levels, increased SOD and GSH levels, thereby inhibiting oxidative stress. Moreover, the improvements in neuronal morphology and the modulation of Nissl bodies suggested a potential mechanism underlying its neuroprotective action. Additionally, B.glomerulata exhibited concentration-dependent reductions in Bax and Caspase-3 expressions, along with increases in GFAP, Bcl2/Bax ratio, p-PI3K, p-AKT, and p-mTOR levels. CONCLUSION B.glomerulata exhibited neuroprotective effects against cerebral ischemia-reperfusion injury both in vivo and in vitro. It prevented oxidative stress damage and inhibited apoptosis of ischemic stroke through the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Zihan Xu
- Institute (College) of Integrated Medicine, Dalian Medical University, China
| | - Yang Li
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Penglai Pi
- Institute (College) of Integrated Medicine, Dalian Medical University, China
| | - Yujuan Yi
- Institute (College) of Integrated Medicine, Dalian Medical University, China
| | - Hong Tang
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Zhen Zhang
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Huijiang Xiong
- Liuzhi Special District People's Hospital, 553402, Liupanshui, China
| | - Boming Lei
- The Second Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Yusheng Shi
- Institute (College) of Integrated Medicine, Dalian Medical University, China.
| | - Jia Li
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| | - Zheng Sun
- Institute (College) of Integrated Medicine, Dalian Medical University, China.
| |
Collapse
|
2
|
Chen H, Chen J, Feng L, Shao H, Zhou Y, Shan J, Lin L, Ye J, Wang S. Integrated network pharmacology, molecular docking, and lipidomics to reveal the regulatory effect of Qingxuan Zhike granules on lipid metabolism in lipopolysaccharide-induced acute lung injury. Biomed Chromatogr 2024; 38:e5853. [PMID: 38486466 DOI: 10.1002/bmc.5853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/21/2024]
Abstract
Qingxuan Zhike granules (QXZKG), a traditional Chinese patent medication, has shown therapeutic potential against acute lung injury (ALI). However, the precise mechanism underlying its lung-protective effects requires further investigation. In this study, integrated network pharmacology, molecular docking, and lipidomics were used to elucidate QXZKG's regulatory effect on lipid metabolism in lipopolysaccharide-induced ALI. Animal experiments were conducted to substantiate the efficacy of QXZKG in reducing pro-inflammatory cytokines and mitigating pulmonary pathology. Network pharmacology analysis identified 145 active compounds that directly targeted 119 primary targets of QXZKG against ALI. Gene Ontology function analysis emphasized the roles of lipid metabolism and mitogen-activated protein kinase (MAPK) cascade as crucial biological processes. The MAPK1 protein exhibited promising affinities for naringenin, luteolin, and kaempferol. Lipidomic analysis revealed that 12 lipids showed significant restoration following QXZKG treatment (p < 0.05, FC >1.2 or <0.83). Specifically, DG 38:4, DG 40:7, PC O-40:8, TG 18:1_18:3_22:6, PI 18:2_20:4, FA 16:3, FA 20:3, FA 20:4, FA 22:5, and FA 24:5 were downregulated, while Cer 18:0;2O/24:0 and SM 36:1;2O/34:5 were upregulated in the QXZKG versus model groups. This study enhances our understanding of the active compounds and targets of QXZKG, as well as the potential of lipid metabolism in the treatment of ALI.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiabin Chen
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Feng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Shao
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Zhou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Ye
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Jiang Y, Yang L, Chen H, Chen J, Yang L, Wang Z, Yuan X, Shan J, Lin L, Li H, Ye J. Network pharmacology combined with lipidomics to reveal the regulatory effects and mechanisms of Kangzao granules in the hypothalamus of rats with central precocious puberty. J Pharm Biomed Anal 2024; 242:116059. [PMID: 38422672 DOI: 10.1016/j.jpba.2024.116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Central precocious puberty (CPP) is a prevalent endocrine disorder that primarily affects children, specifically females, and is associated with various physical and psychological complications. Although Kangzao granules (KZG) are efficacious in managing CPP, the underlying mechanisms remain unclear. Therefore, this study aimed to elucidate the therapeutic mechanisms of KZG using network pharmacology, molecular docking, pharmacodynamics, and pathway validation. A putative compound-target-pathway network was constructed using Cytoscape, before KEGG and Gene Ontology enrichment analyses were conducted. Moreover, molecular docking was performed using AutoDockTools. Quality control of the 10 key components of KZG was carried out using UHPLC-ESI/LTQ-Orbitrap-MS/MS, and hypothalamic lipids were analyzed using UHPLC-Q-Exactive Orbitrap MS/MS. In total, 87 bioactive compounds that targeting 110 core proteins to alleviate CPP were identified in KZG. Lipidomic analysis revealed 18 differential lipids among the CPP, KZG, and control groups, wherein fatty acids were significantly reduced in the model group; however, these changes were effectively counteracted by KZG treatment. Molecular docking analysis revealed a strong binding affinity between flavonoids and RAC-alpha serine/threonine-protein kinase (AKT) when docked into the crystal structure. Moreover, a substantial disruption in lipid metabolism was observed in the model group; however, treatment with KZG efficiently reversed these alterations. Furthermore, the phosphoinositide 3-kinase/AKT signaling pathway was identified as a pivotal regulator of hypothalamic lipid metabolism regulator. Overall, this study highlights the effectiveness of a multidisciplinary approach that combines network pharmacology, lipidomics, molecular docking, and experimental validation in the elucidation of the therapeutic mechanisms of KZG in CPP treatment.
Collapse
Affiliation(s)
- Yanhua Jiang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Department of Pediatrics, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Lixia Yang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiabin Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingling Yang
- Department of Pediatric, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Zhao Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuejing Yuan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hui Li
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jin Ye
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Chang K, Fan K, Zhang H, Wu Q, Zhang Y, Wang L, Chen H, Tong J, Cui D. Fuzhengjiedu San inhibits porcine reproductive and respiratory syndrome virus by activating the PI3K/AKT pathway. PLoS One 2024; 19:e0283728. [PMID: 38709810 PMCID: PMC11073700 DOI: 10.1371/journal.pone.0283728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/09/2023] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been garnering ever-increasing worldwide attention as the herbal extracts and formulas prove to have potency against disease. Fuzhengjiedu San (FZJDS), has been extensively used to treat viral diseases in pigs, but its bioactive components and therapeutic mechanisms remain unclear. METHODS In this study, we conducted an integrative approach of network pharmacology and experimental study to elucidate the mechanisms underlying FZJDS's action in treating porcine reproductive and respiratory syndrome virus (PRRSV). We constructed PPI network and screened the core targets according to their degree of value. GO and KEGG enrichment analyses were also carried out to identify relevant pathways. Lastly, qRT-PCR, flow cytometry and western blotting were used to determine the effects of FZJDS on core gene expression in PRRSV-infected monkey kidney (MARC-145) cells to further expand the results of network pharmacological analysis. RESULTS Network pharmacology data revealed that quercetin, kaempferol, and luteolin were the main active compounds of FZJDS. The phosphatidylinositol-3-kinase (PI3K)/Akt pathway was deemed the cellular target as it has been shown to participate most in PRRSV replication and other PRRSV-related functions. Analysis by qRT-PCR and western blotting demonstrated that FZJDS significantly reduced the expression of P65, JNK, TLR4, N protein, Bax and IĸBa in MARC-145 cells, and increased the expression of Bcl-2, consistent with network pharmacology results. This study provides that FZJDS has significant antiviral activity through its effects on the PI3K/AKT signaling pathway. CONCLUSION We conclude that FZJDS is a promising candidate herbal formulation for treating PRRSV and deserves further investigation.
Collapse
Affiliation(s)
- Kexin Chang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, PR China
| | - Kuangshi Fan
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, PR China
| | - Hua Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, PR China
| | - Qiong Wu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, PR China
| | - Yonghong Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, PR China
| | - Le Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, PR China
| | - Hongcen Chen
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, PR China
| | - Jinjin Tong
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, PR China
| | - Defeng Cui
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, PR China
| |
Collapse
|
5
|
Ge L, Wang Y, Liu Z, Du H, Zhao D. Chitinase 3-like 1 plays a pivotal role in airway response of RSV infection via regulating DC functional transition. Int Immunopharmacol 2023; 124:110819. [PMID: 37607465 DOI: 10.1016/j.intimp.2023.110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Dendritic cells (DCs) contribute to immune imbalance and airway hyperresponsiveness (AHR) induced by respiratory syncytial virus (RSV). The aim of present study was to explore the mechanism of RSV regulating naive T cell differentiation through DCs. METHODS We generated a Lentivirus shRNA expression vector to knock down CHI3L1 in mouse lungs and bone marrow-derived dendritic cells (BMDCs). Then we investigated the effect of CHI3L1 knockdown on MAPK/ERK pathway, PI3K/AKT pathway, mature DCs represented by molecular markers, naive T cell differentiation and related cytokine expression in vitro and in vivo models of RSV. RESULTS RSV elevated CHI3L1 expression in lung DCs and BMDCs. Knockdown of CHI3L1 impeded RSV-induced activation of MAPK/ERK and PI3K/AKT signaling pathways, attenuated CD86 and OX40L expression in mature DCs, reduced the proportion of Th2 and Th17 cells, and increased the proportion of Treg cells. In addition, by blocking CHI3L1, RSV-infected mice shown relief of airway resistance, the downregulation of Th2/Th17 like cytokines IL-4, IL-13 and IL-17 levels, and the upregulation of IL-10. CONCLUSION Our data show that CHI3L1 promotes RSV induced immune imbalance and airway hyperresponsiveness by regulating the functional transformation of DCs.
Collapse
Affiliation(s)
- Lingli Ge
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Yuxin Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhi Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Hui Du
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Dongchi Zhao
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Children's digital health and data Center of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Zhu H, Chang M, Wang Q, Chen J, Liu D, He W. Identifying the Potential of miRNAs in Houttuynia cordata-Derived Exosome-Like Nanoparticles Against Respiratory RNA Viruses. Int J Nanomedicine 2023; 18:5983-6000. [PMID: 37901360 PMCID: PMC10612503 DOI: 10.2147/ijn.s425173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Pathogenic respiratory RNA viruses, including influenza A virus (IAV), respiratory syncytial virus (RSV), and SARS-CoV-2, are major causes of causes of acute respiratory infection globally. Plant-derived exosome-like nanoparticles containing miRNAs have shown substantial cross-kingdom regulatory effects on both viral and human transcripts. Houttuynia cordata (H. cordata), a traditional Chinese medicine frequently used to treat respiratory diseases. However, the role of H. cordata-derived exosome-like nanoparticles (HELNs) and the miRNA they encapsulated are unclear. Methods HELNs were isolated from fresh underground roots (uHELNs) and above ground stems and leaves (aHELNs) using differential centrifugation. The HELNs were identified using transmission electron microscopy, nanoparticle tracking analysis, and zeta potential. Small RNA sequencing and RT-PCR were employed to determine the miRNA expression in uHELNs and aHELNs. All genomes were sourced from the NCBI database. Target prediction of viral genomes was performed using RNAhybrid, while human target prediction was conducted using both RNAhybrid and Miranda. Functional enrichment analysis was applied to the predicted human targets to explore the hub targets and their roles in antiviral effects. The accessibility of miRNA target sites was determined through the MFOLD web server, and customized dual-luciferase reporter assays were administered to validate the computational findings. Results A total of 12 highly enriched miRNAs were identified in both uHELNs and aHELNs. Upon prediction and verification, miR858a and miR858b were shown to target the NP gene in H1N1, while miR166a-3p targeted the ORF1ab in SARS-CoV-2. However, no valid miRNA targets were found for RSV. Regarding human transcripts, miR168a-3p, miR168b-3p, and miR8175 were found to inhibit MAPK3 expression, and novel_mir2 could suppress both AKT1 and MAPK3 expression. Discussion This study sheds light on the collaborative antiviral mechanism of miRNAs in HELNs across two species and explores the potential antiviral scopes of both H. cordata miRNAs and HELNs.
Collapse
Affiliation(s)
- He Zhu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Mujun Chang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
- Center for Translational Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Qiulan Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Jing Chen
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
7
|
Zhao L, Zhang H, Li N, Chen J, Xu H, Wang Y, Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116306. [PMID: 36858276 DOI: 10.1016/j.jep.2023.116306] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Network pharmacology is a new discipline based on systems biology theory, biological system network analysis, and multi-target drug molecule design specific signal node selection. The mechanism of action of TCM formula has the characteristics of multiple targets and levels. The mechanism is similar to the integrity, systematization and comprehensiveness of network pharmacology, so network pharmacology is suitable for the study of the pharmacological mechanism of Chinese medicine compounds. AIM OF THE STUDY The paper summarizes the present application status and existing problems of network pharmacology in the field of Chinese medicine formula, and formulates the research ideas, up-to-date key technology and application method and strategy of network pharmacology. Its purpose is to provide guidance and reference for using network pharmacology to reveal the modern scientific connotation of Chinese medicine. MATERIALS AND METHODS Literatures in this review were searched in PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, ScienceDirect and Google Scholar using the keywords "traditional Chinese medicine", "Chinese herb medicine" and "network pharmacology". The literature cited in this review dates from 2002 to 2022. RESULTS Using network pharmacology methods to predict the basis and mechanism of pharmacodynamic substances of traditional Chinese medicines has become a trend. CONCLUSION Network pharmacology is a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.
Collapse
Affiliation(s)
- Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jinman Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
8
|
Zheng J, Wu Q, Zhang L, Zou Y, Wang M, He L, Guo S. Anti-inflammatory activities of Qingfei oral liquid and its influence on respiratory microbiota in mice with ovalbumin-induced asthma. Front Pharmacol 2022; 13:911667. [PMID: 36081945 PMCID: PMC9445488 DOI: 10.3389/fphar.2022.911667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Dysbiosis of respiratory microbiota is closely related to the pathophysiological processes of asthma, including airway inflammation. Previous studies have shown that Qingfei oral liquid (QF) can alleviate airway inflammation and airway hyper-responsiveness in respiratory syncytial virus-infected asthmatic mice, but its effect on the respiratory microbiota is unknown. We therefore aimed to observe the effects of QF on airway inflammation and respiratory microbiota in ovalbumin (OVA)-induced asthmatic mice. We also explored the potential mechanism of QF in reducing airway inflammation by regulating respiratory microbiota. Hematoxylin and eosin as well as periodic acid-Schiff staining were performed to observe the effects of QF on lung pathology in asthmatic mice. Cytokine levels in bronchoalveolar lavage fluid (BALF) specimens were also measured. Changes in respiratory microbiota were analyzed using 16S rRNA gene sequencing, followed by taxonomical analysis. In order to verify the metagenomic function prediction results, the expression of key proteins related to the MAPK and NOD-like receptor signaling pathways in the lung tissues were detected by immunohistochemistry. The current study found that QF had a significant anti-inflammatory effect in the airways of asthmatic mice. This is mainly attributed to a reduction in lung pathology changes and regulating cytokine levels in BALF. Analysis of the respiratory microbiota in asthmatic mice showed that the abundance of Proteobacteria at the phylum level and Pseudomonas at the genus level increased significantly and QF could significantly regulate the dysbiosis of respiratory microbiota in asthmatic mice. Metagenomic functional prediction showed that QF can downregulate the MAPK and Nod-like receptor signaling pathways. Immunohistochemical results showed that QF could downregulate the expression of p-JNK, p-P38, NLRP3, Caspase-1, and IL-1β, which are all key proteins in the signaling pathway of lung tissue. Our study therefore concluded that QF may reduce airway inflammation in asthmatic mice by regulating respiratory microbiota, and to the possibly downregulate MAPK and Nod-like receptor signaling pathways as its underlying mechanism.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wu
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Zhang
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Zou
- Department of Emergency Medicine, Putuo Hospital, Shanghai University of Traditional Medicine, Shanghai, China
| | - Meifen Wang
- Department of Pediatrics, Sanmen People’s Hospital, Taizhou, Zhejiang, China
| | - Li He
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Li He, ; Sheng Guo,
| | - Sheng Guo
- Department of Endocrine, Genetics and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Li He, ; Sheng Guo,
| |
Collapse
|
9
|
Ling X, Zhou J, Jin T, Xu W, Sun X, Li W, Ding Y, Liang M, Zhu C, Zhao P, Hu C, Yuan B, Xie T, Tao J. Acteoside attenuates RSV-induced lung injury by suppressing necroptosis and regulating metabolism. Front Pharmacol 2022; 13:870928. [PMID: 36059973 PMCID: PMC9437591 DOI: 10.3389/fphar.2022.870928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Necroptosis and inflammation are closely related to the pathogenesis of respiratory syncytial virus (RSV). Acteoside (AC), a natural phenylpropanoid glycoside from Kuding Tea, has significant anti-RSV effect. However, the roles of AC on RSV-induced lung necroptosis and inflammation are yet to be elucidated.Methods: The effects of AC were investigated in BALB/c mice and A549 cells. Lung histopathology was observed through H&E staining. The viral titer was assessed via plaque assay. The RSV-F expression was determined by RT-qPCR and immunohistochemistry assay. The levels of cytokines were detected by ELISA and RT-qPCR. The necroptosis rate and mitochondrial membrane potential were evaluated via flow cytometry. The expressions of HMGB1/NF-κB and RIP1/RIP3/MLKL/PGAM5/DRP1 were detected by western blot. Additionally, untargeted metabolomics was conducted to investigate the metabolic profiles and related metabolic pathways via Gas Chromatography-Mass Spectrometry.Results: The results showed that compared with the RSV-infected group, AC treatment significantly attenuated lung pathological damage, virus replication, and cytokines levels. AC also alleviated RSV-induced necroptosis and mitochondrial dysfunction in vitro and in vivo. Moreover, AC treatment down-regulated the expression of HMGB1, p-Iκbα/Iκbα, p-p65/p65, RIP1, RIP3, MLKL, PGAM5, and DRP1. Furthermore, metabolomic analyses suggested that the perturbations in major metabolites of AC therapy were related to variations in amino acid and energy metabolism.Conclusion: Our findings validated the beneficial effects of AC in suppressing necroptosis and regulating metabolism, suggesting AC may be a new drug candidate for RSV infection.
Collapse
Affiliation(s)
- Xiaoying Ling
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Zhou
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianzi Jin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichen Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xun Sun
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weifeng Li
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yali Ding
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miaomiao Liang
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenbi Zhu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peipei Zhao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chanchan Hu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Yuan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Bin Yuan, ; Tong Xie, ; Jialei Tao,
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Bin Yuan, ; Tong Xie, ; Jialei Tao,
| | - Jialei Tao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Bin Yuan, ; Tong Xie, ; Jialei Tao,
| |
Collapse
|
10
|
Abstract
Respiratory syncytial virus (RSV) infection causes serious pulmonary disease and death in high-risk infants and elderly. Cadmium (Cd) is a toxic environmental metal contaminant and constantly exposed to humans. Limited information is available on Cd toxicity after early-life respiratory virus infection. In this study, we examined the effects of low-dose Cd exposure following early-life RSV infection on lung metabolism and inflammation using mouse and fibroblast culture models. C57BL/6J mice at 8 days old were exposed to RSV 2 times with a 4-week interval. A subset of RSV-infected mice was subsequently treated with Cd at a low dose in drinking water (RSV infection at infant age [RSVinf]+Cd) for 16 weeks. The results of inflammatory marker analysis showed that the levels of cytokines and chemokines were substantially higher in RSVinf+Cd group than other groups, implying that low-dose Cd following early-life RSV infection enhanced lung inflammation. Moreover, histopathology data showed that inflammatory cells and thickening of the alveolar walls as a profibrotic signature were evident in RSVinf+Cd. The metabolomics data revealed that RSVinf+Cd-caused metabolic disruption in histamine and histidine, vitamin D and urea cycle, and pyrimidine pathway accompanying with mechanistic target of rapamycin complex-1 activation. Taken together, our study demonstrates for the first time that cumulative Cd exposure following early-life RSV infection has a significant impact on subsequent inflammation and lung metabolism. Thus, early-life respiratory infection may reprogram metabolism and potentiate Cd toxicity, enhance inflammation, and cause fibrosis later in life.
Collapse
|