1
|
Chen RY, Shi JJ, Liu YJ, Yu J, Li CY, Tao F, Cao JF, Yang GJ, Chen J. The State-of-the-Art Antibacterial Activities of Glycyrrhizin: A Comprehensive Review. Microorganisms 2024; 12:1155. [PMID: 38930536 PMCID: PMC11206003 DOI: 10.3390/microorganisms12061155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Licorice (Glycyrrhiza glabra) is a plant of the genus Glycyrrhiza in the family Fabaceae/Leguminosae and is a renowned natural herb with a long history of medicinal use dating back to ancient times. Glycyrrhizin (GLY), the main active component of licorice, serves as a widely utilized therapeutic agent in clinical practice. GLY exhibits diverse medicinal properties, including anti-inflammatory, antibacterial, antiviral, antitumor, immunomodulatory, intestinal environment maintenance, and liver protection effects. However, current research primarily emphasizes GLY's antiviral activity, while providing limited insight into its antibacterial properties. GLY demonstrates a broad spectrum of antibacterial activity via inhibiting the growth of bacteria by targeting bacterial enzymes, impacting cell membrane formation, and altering membrane permeability. Moreover, GLY can also bolster host immunity by activating pertinent immune pathways, thereby enhancing pathogen clearance. This paper reviews GLY's inhibitory mechanisms against various pathogenic bacteria-induced pathological changes, its role as a high-mobility group box 1 inhibitor in immune regulation, and its efficacy in combating diseases caused by pathogenic bacteria. Furthermore, combining GLY with other antibiotics reduces the minimum inhibitory concentration, potentially aiding in the clinical development of combination therapies against drug-resistant bacteria. Sources of information were searched using PubMed, Web of Science, Science Direct, and GreenMedical for the keywords "licorice", "Glycyrrhizin", "antibacterial", "anti-inflammatory", "HMGB1", and combinations thereof, mainly from articles published from 1979 to 2024, with no language restrictions. Screening was carried out by one author and supplemented by others. Papers with experimental flaws in their experimental design and papers that did not meet expectations (antifungal papers, etc.) were excluded.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China (J.-J.S.); (Y.-J.L.); (J.Y.); (C.-Y.L.); (F.T.); (J.-F.C.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China (J.-J.S.); (Y.-J.L.); (J.Y.); (C.-Y.L.); (F.T.); (J.-F.C.)
| |
Collapse
|
2
|
Liu M, Liu C, Shi J, Wang P, Chang J, Xu X, Wang L, Jin S, Li X, Yin Q, Zhu Q, Dang X, Lu F. Corn straw-saccharification fiber improved the reproductive performance of sows in the late gestation and lactation via lipid metabolism. Front Nutr 2024; 11:1370975. [PMID: 38606017 PMCID: PMC11007230 DOI: 10.3389/fnut.2024.1370975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
With the development of animal husbandry, the shortage of animal feedstuffs has become serious. Dietary fiber plays a crucial role in regulating animal health and production performance. The aim of this study was to investigate the effects of three kinds of corn straw-saccharification fibers (CSSF) such as high-fiber and low-saccharification (HFLS), medium-fiber and medium-saccharification (MFMS), low-fiber and high-saccharification (LFHS) CSSF on the reproductive performance of sows. Thirty-two primiparous Yorkshire sows were randomly assigned to 4 groups, 8 sows for each group. Group A was the basal diet as the control group; groups B - D were added with 6% HFLSCSSF, 6% MFMSCSSF and 6% LFHSCSSF to replace some parts of corn meal and wheat bran in the basal diet, respectively. The experimental period was from day 85 of gestation to the end of lactation (day 25 post-farrowing). The results showed that 6% LFHSCSSF addition significantly increased number of total born (alive) piglets, litter weight at birth (p < 0.05), whereas three kinds of CSSF significantly decreased backfat thickness of sows during gestation (p < 0.001), compared with the control group. Furthermore, CSSF improved the digestibility of crude protein, ether extract and fiber for sows. In addition, the levels of total cholesterol, total triglycerides, and high-density lipoprotein cholesterol in serum of sows were decreased by different kinds of CSSF. Further analysis revealed that CSSF regulated lipid metabolism through adjusting the serum metabolites such as 4-pyridoxic acid, phosphatidyl cholines and L-tyrosine. In summary, CSSF addition to the diets of sows during late gestation and lactation regulated lipid metabolism and improved reproductive performance of sows. This study provided a theoretical basis for the application of corn straw in sow diets.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jiajia Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaoxiang Xu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sanjun Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinxin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qun Zhu
- Henan Delin Biological Product Co. Ltd., Xinxiang, China
| | - Xiaowei Dang
- Henan Delin Biological Product Co. Ltd., Xinxiang, China
| | - Fushan Lu
- Henan Puai Feed Co. Ltd., Zhoukou, China
| |
Collapse
|
3
|
Chai Y, Wang Z, Li Y, Wang Y, Wan Y, Chen X, Xu Y, Ge L, Li H. Glycyrrhizin alleviates radiation-induced lung injury by regulating the NLRP3 inflammasome through endoplasmic reticulum stress. Toxicol Res (Camb) 2024; 13:tfae009. [PMID: 38283822 PMCID: PMC10811523 DOI: 10.1093/toxres/tfae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
Objective Radiation pneumonitis (RP) is the major adverse response of radiation therapy for thoracic malignant tumors, and there is a lack of effective interventions. The aim of this study was to investigate the radioprotective effect of Glycyrrhizin (GL) on RP and its potential mechanism. Method The body weight and lung weight of mice were monitored. HE staining was used to observe lung injury, and the expression of endoplasmic reticulum (ER) stress biomarkers and the activation of NLRP3 inflammasome were determined by Western blotting and immunohistochemistry. Flow cytometry was performed to check MLE-12 apoptosis. ER stress activator, Tunicamycin (Tuni), was used to verify the potential mechanism of GL. A systemic pharmacology explored the potential targets and pathways of GL. Results In this study, the lungs of irradiated mice showed significant pneumonic changes. In vivo and in vitro assay, NLRP3 inflammasome was significantly activated, the expression of ER stress biomarkers was elevated, flow cytometry confirms increased apoptosis in irradiated MLE-12 cells. GL inhibits the activation of NLRP3 inflammasome and ER stress pathways. Furthermore, systemic pharmacology revealed that the radioprotective effect of GL may be related to the MAPK signaling pathway. Conclusion In the present study, the results indicated that GL may regulate NLRP3 inflammasome through ER stress, thus exerting irradiation-protective effects on RP, and the ER stress pathway may be a potential target for RP treatment.
Collapse
Affiliation(s)
- Yuqing Chai
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Ziming Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Yun Li
- Kindstar Global Precision Medicine Institute, Gaoxin 2nd Road, Jiangxia District, Wuhan, Hubei 43000, China
- Department of Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd., Guanggu Biological City, No. 666 Gaoxin Avenue, Hongshan District, Wuhan, Hubei 43000, China
| | - Yi Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Yu Wan
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Xue Chen
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Yang Xu
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Lei Ge
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Hongxia Li
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| |
Collapse
|
4
|
Li S, Duan X, Zhang Y, Zhao C, Yu M, Li X, Li X, Zhang J. Lipidomics reveals serum lipid metabolism disorders in CTD-induced liver injury. BMC Pharmacol Toxicol 2024; 25:10. [PMID: 38225635 PMCID: PMC10790540 DOI: 10.1186/s40360-024-00732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Cantharidin (CTD), the main toxic component of Mylabris, has been extensively used for tumor treatment in recent years. CTD-induced liver toxicity has attracted significant interest in clinic. METHODS In this study, biochemical parameters and liver pathological changes were analyzed after CTD was administered to mice by gavage. Subsequently, a lipidomic approach was used to investigate serum lipid metabolism disorders, and the mechanism underlying CTD-induced liver injury in mice was explored. RESULTS The results showed that the levels of TC and LDL-C were significantly increased after CTD intervention. Besides, pathological results showed inflammatory cell infiltration and hepatocyte necrosis in the liver. Furthermore, lipidomics found that a total of 18 lipid metabolites were increased and 40 were decreased, including LPC(20:4), LPC(20:3), PC(22:6e/2:0), PE(14:0e/21:2), PC(18:2e/22:6), glycerophospholipids, CE(16:0), CE(18:0) Cholesterol esters and TAG(12:0/12:0/22:3), TAG(16:1/16:2/20:4), TAG(18:1/18:1/20:0), TAG(16:2/18:2/18:2), TAG(18:0/18:0/20:0), TAG(13:1/19:0/19:0) glycerolipids. Metabolic pathway analysis found that glycerophospholipid, glycerol ester and glycosylphosphatidylinositol (GPI)-anchored biosynthetic metabolic pathways were dysregulated and the increase in PE caused by glycophoric metabololism and GPI may be the source of lipid metabolism disorders caused by CTD. Overall, the present study provided new insights into the mechanism of CTD-induced liver injury and increased drug safety during clinical application.
Collapse
Affiliation(s)
- Shan Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaotong Duan
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yixin Zhang
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Cancan Zhao
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ming Yu
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Xiaomei Li
- Cancer Research Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
5
|
Guo Q, Wu J, Wang Q, Huang Y, Chen L, Gong J, Du M, Cheng G, Lu T, Zhao M, Zhao Y, Qiu C, Xia F, Zhang J, Chen J, Qiu F, Wang J. Single-cell transcriptome analysis uncovers underlying mechanisms of acute liver injury induced by tripterygium glycosides tablet in mice. J Pharm Anal 2023; 13:908-925. [PMID: 37719192 PMCID: PMC10499593 DOI: 10.1016/j.jpha.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 09/19/2023] Open
Abstract
Tripterygium glycosides tablet (TGT), the classical commercial drug of Tripterygium wilfordii Hook. F. has been effectively used in the treatment of rheumatoid arthritis, nephrotic syndrome, leprosy, Behcet's syndrome, leprosy reaction and autoimmune hepatitis. However, due to its narrow and limited treatment window, TGT-induced organ toxicity (among which liver injury accounts for about 40% of clinical reports) has gained increasing attention. The present study aimed to clarify the cellular and molecular events underlying TGT-induced acute liver injury using single-cell RNA sequencing (scRNA-seq) technology. The TGT-induced acute liver injury mouse model was constructed through short-term TGT exposure and further verified by hematoxylin-eosin staining and liver function-related serum indicators, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin. Using the mouse model, we identified 15 specific subtypes of cells in the liver tissue, including endothelial cells, hepatocytes, cholangiocytes, and hepatic stellate cells. Further analysis indicated that TGT caused a significant inflammatory response in liver endothelial cells at different spatial locations; led to marked inflammatory response, apoptosis and fatty acid metabolism dysfunction in hepatocytes; activated hepatic stellate cells; brought about the activation, inflammation, and phagocytosis of liver capsular macrophages cells; resulted in immune dysfunction of liver lymphocytes; disturbed the intercellular crosstalk in liver microenvironment by regulating various signaling pathways. Thus, these findings elaborate the mechanism underlying TGT-induced acute liver injury, provide new insights into the safe and rational applications in the clinic, and complement the identification of new biomarkers and therapeutic targets for liver protection.
Collapse
Affiliation(s)
- Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiangpeng Wu
- School of Chinese Materia Medica, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China
| | - Qixin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuwen Huang
- College of Food Science and Engineering, Institute of Ocean, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Lin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jie Gong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Maobo Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tianming Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Minghong Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuan Zhao
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Feng Qiu
- School of Chinese Materia Medica, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- School of Chinese Materia Medica, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China
| |
Collapse
|
6
|
Yang Y, Fu X, Xia B, Zhou L, Zhang H, Li C, Ye X, Liu T. Glycyrrhizic acid glycosides reduces extensive tripterygium glycosides-induced lipid deposition in hepatocytes. Heliyon 2023; 9:e17891. [PMID: 37483744 PMCID: PMC10362073 DOI: 10.1016/j.heliyon.2023.e17891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Aim Tripterygium glycosides (TG) extracted from the plant Tripterygium wilfordii Hook F has been used to treat chronic kidney diseases for many years. However, hepatotoxicity limits its clinical application. Glycyrrhizic acid glycosides (GA) can reduce TG hepatotoxicity, however, further investigation into the underlying molecular mechanisms by which GA attenuates TG-induced hepatotoxicity is required. Methods Sprague‒Dawley rats were randomly divided into the control group, the TG groups (TG189 mg/kg group, TG472.5 mg/kg group), and the TG + GA groups (TG189 mg/kg + GA20.25 mg/kg group, TG472.5 mg/kg + GA20.25 mg/kg group). After 21 consecutive days of intragastric administration, structural and molecular changes in hepatocytes were detected. Results After 21 days of TG treatment, the serum level of the total bilirubin, triglyceride, total cholesterol, and low-density lipoprotein cholesterol increased in the TG189 mg/kg and TG472.5 mg/kg groups when compared to the control group. High-density lipoprotein cholesterol levels were reduced in both TG groups. The ultrastructure of hepatocytes and the structural integrity of the liver were compromised. In addition, the relevant molecular level of the peroxisome proliferators-activated receptor α (PPARα) and acyl-CoA synthetase long-chain family members (ACSLs) pathway was modulated. With the addition of 20.25 mg/kg GA, the serum biochemical indexes and liver tissue structure ultrastructure of hepatocytes were improved, and the PPARα-ACSLs pathway was corrected. Conclusion The combined application of GA and TG improved abnormal lipid metabolism, repaired liver structure, reduced lipid deposition in hepatocytes, and reduced TG-induced hepatotoxicity.
Collapse
|
7
|
Pandey B, Baral R, Kaundinnyayana A, Panta S. Promising hepatoprotective agents from the natural sources: a study of scientific evidence. EGYPTIAN LIVER JOURNAL 2023. [DOI: 10.1186/s43066-023-00248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Abstract
Background
Natural bioactive components derived from plant secondary metabolites have been pronounced as valuable alternatives for anticipating and subsiding hepatotoxic effects and its chronic complications based on experimental verification. The focus of this review is to elucidate the commonly used modern medicine for the treatment of liver disease and how major phytoconstituents have been tested for hepatoprotective activity, mechanism of action of some promising agents from natural sources, and clinical trial data for treating in patients with different liver diseases by the aid of natural phytoconstituents.
Main text
The review shows fifteen major isolated phytoconstituents, their biological sources, chemical structures, utilized plant parts, type of extracts used, hepatoprotective assay method, and their possible mechanism of action on the hepatoprotection. Nine promising hepatoprotective leads from natural sources with their chemistry and hepatoprotective mechanism are mentioned briefly. The review further includes the recent clinical trial studies of some hepatoprotective leads and their clinical outcome with different liver disease patients. Scientific studies revealed that antioxidant properties are the central mechanism for the phytoconstituents to subside different disease pathways by upsurging antioxidant defense system of cells, scavenging free radicals, down surging lipid peroxidation, improving anti-inflammatory potential, and further protecting the hepatic cell injury. In this review, we summarize recent development of natural product-based hepatoprotective leads and their curative potential for various sort of liver diseases. Furthermore, the usefulness of hit and lead molecules from natural sources for significant clinical benefit to discover new drug molecule and downsizing the problems of medication and chemical-induced hepatotoxic effects is extrapolated.
Conclusion
Further research are encouraged to elucidate the pharmacological principle of these natural-based chemical agents which will stimulate future pharmaceutical development of therapeutically beneficial hepatoprotective regimens.
Collapse
|
8
|
Wang Q, Huang Y, Li Y, Zhang L, Tang H, Zhang J, Cheng G, Zhao M, Lu T, Zhang Q, Luo P, Zhu Y, Xia F, Zhang Y, Liu D, Wang C, Li H, Qiu C, Wang J, Guo Q. Glycyrrhizic Acid Mitigates Tripterygium-Glycoside-Tablet-Induced Acute Liver Injury via PKM2 Regulated Oxidative Stress. Metabolites 2022; 12:1128. [PMID: 36422270 PMCID: PMC9694034 DOI: 10.3390/metabo12111128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 09/01/2023] Open
Abstract
Tripterygium glycoside tablet (TGT), as a common clinical drug, can easily cause liver damage due to the narrow therapeutic window. Glycyrrhizic acid (GA) has a hepatoprotective effect, but the characteristics and mechanism of GA's impact on TGT-induced acute liver injury by regulating oxidative stress remain unelucidated. In this study, TGT-induced acute liver injury models were established in vitro and in vivo. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), catalase (CAT), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were quantified. The anti-apoptotic effect of GA was tested using flow cytometry. Potential target proteins of GA were profiled via activity-based protein profiling (ABPP) using a cysteine-specific (IAA-yne) probe. The results demonstrate that GA markedly decreased the concentrations of ALT, AST, AKP, MDA, LDH, TNF-α, IL-1β and IL-6, whereas those of SOD, GSH and CAT increased. GA could inhibit TGT-induced apoptosis in BRL-3A cells. GA bound directly to the cysteine residue of PKM2. The CETSA and enzyme activity results validate the specific targets identified. GA could mitigate TGT-induced acute liver injury by mediating PKM2, reducing oxidative stress and inflammation and reducing hepatocyte apoptosis.
Collapse
Affiliation(s)
- Qixin Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuwen Huang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Yu Li
- Institute for History of Chinese Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing 100073, China
| | - Luyun Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huan Tang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangqing Cheng
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Minghong Zhao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tianming Lu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Piao Luo
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yinhua Zhu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dandan Liu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haiyan Li
- School of Medicine, Foshan University, Foshan 528000, China
| | - Chong Qiu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qiuyan Guo
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|