1
|
Zhao Z, Hu C, Li L, Zhang J, Zhang L. Main chemical constituents and mechanism of anti-tumor action of Solanum nigrum L. Cancer Med 2024; 13:e7314. [PMID: 39155844 PMCID: PMC11331249 DOI: 10.1002/cam4.7314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 08/20/2024] Open
Abstract
OBJECTIVE Solanum nigrum L. (SNL) is a natural drugwith diverse bioactive components and multi-targeted anti-tumor effects, gaining increasing attention in clinical application. METHOD AND RESULTS This paper reviews the studies on SNL by searching academic databases (Google Scholar, PubMed, Science Direct,and Web of Science, among others), analyzing its chemical compositions (alkaloids, saponins, polysaccharides, and polyphenols, among others), andbriefly describes the anti-tumor mechanisms of the main components. DISCUSSION This paper discusses the shortcomings of the current research on SNL and proposes corresponding solutions, providing theoretical support for further research on its biological functions and clinical efficacy.
Collapse
Affiliation(s)
- Zhen‐duo Zhao
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Cheng Hu
- Experiment Center for Science and TechnologyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ling Li
- Institute of Vascular Anomalies, Shanghai TCM‐Integrated Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jia‐qi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li‐chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
2
|
Wang LH, Tan DH, Zhong XS, Jia MQ, Ke X, Zhang YM, Cui T, Shi L. Review on toxicology and activity of tomato glycoalkaloids in immature tomatoes. Food Chem 2024; 447:138937. [PMID: 38492295 DOI: 10.1016/j.foodchem.2024.138937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
Owing to the lack of selection and limited intelligence in mechanical picking, some immature tomatoes that contain alkaloids are thrown away. Tomatine alkaloids are steroidal alkaloids naturally present in Solanaceae plants, which are distributed in small amounts in immature tomato fruits and decrease as the fruits ripen. Tomato glycoalkaloids are harmful to human health. However, in small quantities, there is some evidence that these compounds might be beneficial, as other non-antioxidant bioactivities. This article considers recent research on the biological effects of tomato glycoalkaloids in immature tomatoes, providing reference value for the potential development of these compounds.
Collapse
Affiliation(s)
- Li-Hao Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - De-Hong Tan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue-Song Zhong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mei-Qi Jia
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue Ke
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yu-Mei Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Tong Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Forero-Doria O, Guzmán L, Venturini W, Zapata-Gomez F, Duarte Y, Camargo-Ayala L, Echeverría C, Echeverría J. O-Alkyl derivatives of ferulic and syringic acid as lipophilic antioxidants: effect of the length of the alkyl chain on the improvement of the thermo-oxidative stability of sunflower oil. RSC Adv 2024; 14:22513-22524. [PMID: 39015663 PMCID: PMC11250141 DOI: 10.1039/d4ra01638f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024] Open
Abstract
Lipid oxidation is the major cause of the deterioration of fat-containing foods, especially those containing polyunsaturated fatty acids (PUFAs). Antioxidant additives of synthetic origin are added to matrices rich in PUFAs, such as sunflower oil (SO). However, there is controversy regarding their safety, and their low solubility in both water and fat has led to the search for new covalent modifications through lipophilicity. This work presents the synthesis of O-alkyl acid derivatives from ferulic and syringic acids and the study of their antioxidant capacity and effect on the thermoxidative degradation of SO. Antioxidant activities were evaluated by employing ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays in a concentration range of 10-100 µg mL-1. The IC50 values for DPPH scavenging activity ranged from 15.61-90.43 µg mL-1. The results of the FRAP assay for both O-alkyl ferulic (3a-f) and syringic (5a-f) series revealed a "cut-off" effect on antioxidant activity in carbon five (C5). Thermoxidation study of additives 3b-c and 5b-c showed a decrease in the slope of extinction coefficients K 232 and K 270 in comparison with SOcontrol. Furthermore, 3c presented higher antioxidant activity than 3b and 1, with a power to decrease the thiobarbituric acid reactive species (TBARS) 6 times higher than SOcontrol at 220 °C. Additives 5b-c exerted a protective effect on the thermoxidation of SO. The results suggest that increasing lipophilic and thermal properties of antioxidants through O-alkyl acid derivatization is an effective strategy for accessing lipophilic antioxidant additives with potential use in food matrices.
Collapse
Affiliation(s)
- Oscar Forero-Doria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago 9170022 Chile +56-2-27181154
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás Talca 3460000 Chile
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca Maule Talca 3460000 Chile
| | - Whitney Venturini
- Departamento de Ciencias Pre-Clinicas, Facultad de Medicina, Universidad Católica del Maule Talca 3460000 Chile
| | - Felipe Zapata-Gomez
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca Maule Talca 3460000 Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello Av. República 330 Santiago 8370146 Chile
| | - Lorena Camargo-Ayala
- Laboratorio de Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Cesar Echeverría
- ATACAMA-OMICS, Laboratorio de Biología Molecular y Genómica, Facultad de Medicina, Universidad de Atacama 1532502 Copiapó Chile
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago 9170022 Chile +56-2-27181154
| |
Collapse
|
4
|
Piccolo V, Pastore A, Maisto M, Keivani N, Tenore GC, Stornaiuolo M, Summa V. Agri-Food Waste Recycling for Healthy Remedies: Biomedical Potential of Nutraceuticals from Unripe Tomatoes ( Solanum lycopersicum L.). Foods 2024; 13:331. [PMID: 38275698 PMCID: PMC10815480 DOI: 10.3390/foods13020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Unripe tomatoes represent an agri-food waste resulting from industrial by-processing products of tomatoes, yielding products with a high content of bioactive compounds with potential nutraceutical properties. The food-matrix biological properties are attributed to the high steroidal glycoalkaloid (SGA) content. Among them, α-tomatine is the main SGA reported in unripe green tomatoes. This review provides an overview of the main chemical and pharmacological features of α-tomatine and green tomato extracts. The extraction processes and methods employed in SGA identification and the quantification are discussed. Special attention was given to the methods used in α-tomatine qualitative and quantitative analyses, including the extraction procedures and the clean-up methods applied in the analysis of Solanum lycopersicum L. extracts. Finally, the health-beneficial properties and the pharmacokinetics and toxicological aspects of SGAs and α-tomatine-containing extracts are considered in depth. In particular, the relevant results of the main in vivo and in vitro studies reporting the therapeutic properties and the mechanisms of action were described in detail.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy; (V.P.); (A.P.); (M.M.); (N.K.); (G.C.T.); (M.S.)
| |
Collapse
|
5
|
Patel AH, Sharma HP, Vaishali. Physiological functions, pharmacological aspects and nutritional importance of green tomato- a future food. Crit Rev Food Sci Nutr 2023; 64:9711-9739. [PMID: 37267154 DOI: 10.1080/10408398.2023.2212766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Green tomatoes contain significant levels of steroidal glycoalkoids (SGA) such as α-tomatine and green pigment chlorophyll. Tomatine is an admixture of two glycoalkoids; alpha tomatine and dehydrotomatine reported various health beneficial biological activities. Moreover, a hydrolyzed product of tomatine also contributes to age-related atrophy, and muscle weakness and helps the elderly recover from illness and injuries related to age. However, there is a lack of evidence regarding the absorption of tomatine in the human body concerning proposed biological activity, which should be an area of interest in the future. Once, the absorption study is established compounds concentrated in green tomatoes are potentially involved as protective compounds for several diseases and also used for functional food. To facilitate the use of green tomatoes in food processing, this comprehensive review provides data on the nutritional value of green tomatoes, with emphasis on the evolution of the physiological chemistry, analytical, medicinal, and pharmacological effects of the α-tomatine and chlorophyll in an experimental model. The broad aim of this review is to evaluate the health benefits of green tomatoes in addition to their nutritional value and to study the several features of the role of α-tomatine and chlorophyll in human health.
Collapse
Affiliation(s)
- Arpit H Patel
- College of Food Processing Technology and Bio-energy, Anand Agricultural University, Anand, India
| | - Harsh P Sharma
- Food Science and Technology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Vaishali
- Food Engineerng, National PG College, Gorakhpur, India
| |
Collapse
|
6
|
Kozukue N, Kim DS, Choi SH, Mizuno M, Friedman M. Isomers of the Tomato Glycoalkaloids α-Tomatine and Dehydrotomatine: Relationship to Health Benefits. Molecules 2023; 28:molecules28083621. [PMID: 37110854 PMCID: PMC10142774 DOI: 10.3390/molecules28083621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
High-performance liquid chromatography (HPLC) analysis of three commercial tomatine samples and another isolated from green tomatoes revealed the presence of two small peaks in addition to those associated with the glycoalkaloids dehydrotomatine and α-tomatine. The present study investigated the possible structures of the compounds associated with the two small peaks using HPLC-mass spectrophotometric (MS) methods. Although the two peaks elute much earlier on chromatographic columns than the elution times of the known tomato glycoalkaloids dehydrotomatine and α-tomatine, isolation of the two compounds by preparative chromatography and subsequent analysis by MS shows the two compounds have identical molecular weights, tetrasaccharide side chains, and MS and MS/MS fragmentation patterns to dehydrotomatine and α-tomatine. We suggest the two isolated compounds are isomeric forms of dehydrotomatine and α-tomatine. The analytical data indicate that widely used commercial tomatine preparations and those extracted from green tomatoes and tomato leaves consist of a mixture of α-tomatine, dehydrotomatine, an α-tomatine isomer, and a dehydrotomatine isomer in an approximate ratio of 81:15:4:1, respectively. The significance of the reported health benefits of tomatine and tomatidine is mentioned.
Collapse
Affiliation(s)
- Nobuyuki Kozukue
- Department of Food Service & Culinary Arts, Seowon University, Cheongju-City 28674, Republic of Korea
| | - Dong-Seok Kim
- Department of Food Service & Industry, Yeungnam University, Gyeongsan-City 38541, Republic of Korea
| | - Suk-Hyun Choi
- Department of Food Service & Culinary Arts, Seowon University, Cheongju-City 28674, Republic of Korea
| | - Masashi Mizuno
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
7
|
Tallima H, El Ridi R. Mechanisms of Arachidonic Acid In Vitro Tumoricidal Impact. Molecules 2023; 28:molecules28041727. [PMID: 36838715 PMCID: PMC9966399 DOI: 10.3390/molecules28041727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
To promote the potential of arachidonic acid (ARA) for cancer prevention and management, experiments were implemented to disclose the mechanisms of its tumoricidal action. Hepatocellular, lung, and breast carcinoma and normal hepatocytes cell lines were exposed to 0 or 50 μM ARA for 30 min and then assessed for proliferative capacity, surface membrane-associated sphingomyelin (SM) content, neutral sphingomyelinase (nSMase) activity, beta 2 microglobulin (β2 m) expression, and ceramide (Cer) levels. Reactive oxygen species (ROS) content and caspase 3/7 activity were evaluated. Exposure to ARA for 30 min led to impairment of the tumor cells' proliferative capacity and revealed that the different cell lines display remarkably similar surface membrane SM content but diverse responses to ARA treatment. Arachidonic acid tumoricidal impact was shown to be associated with nSMase activation, exposure of cell surface membrane β2 m to antibody binding, and hydrolysis of SM to Cer, which accumulated on the cell surface and in the cytosol. The ARA and Cer-mediated inhibition of tumor cell viability appeared to be independent of ROS generation or caspase 3/7 activation. The data were compared and contrasted to findings reported in the literature on ARA tumoricidal mechanisms.
Collapse
Affiliation(s)
- Hatem Tallima
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence:
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|