1
|
Cui H, Liu Y, Yu Y, Lv D, Ma S, Gao M, Yang Y, Yuan C, Liu Y, Wang C. Panax notoginseng saponins and acetylsalicylic acid co-delivered liposomes for targeted treatment of ischemic stroke. Int J Pharm 2024; 667:124782. [PMID: 39349224 DOI: 10.1016/j.ijpharm.2024.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 09/28/2024] [Indexed: 10/02/2024]
Abstract
In this study, we aimed to develop brain-targeted co-delivery liposomes for the concurrent delivery of Panax notoginseng saponins (PNS) and acetylsalicylic acid (ASA) for the treatment of ischemic stroke. Within this system, PNS served as a cholesterol substitute, integrating into the phospholipid bilayer of the liposomes, while ASA was encapsulated internally. A poly-2-methacryloyloxyethyl phosphorylcholine (PMPC) polymer was synthesized and incorporated into the liposome surface. This formulation demonstrated an enhanced PNS-loading capacity and facilitated the synchronized delivery of key saponin components. Following PMPC modification, the liposomes exhibited prolonged circulation and improved transport across the blood-brain barrier (BBB) through acetylcholine receptor-mediated pathways. Furthermore, the co-delivery system exhibited enhanced therapeutic efficacy in a rat model of cerebral ischemia-reperfusion injury via the phosphoinositide 3-kinase/protein kinase C pathway. Additional analyses revealed significant effects on the metabolism of neurotransmitters, amino acids, folate, and various other pathways, indicating a multi-faceted therapeutic effect. Overall, this study presents an innovative research strategy for the comprehensive delivery of diverse components in traditional Chinese medicine formulations, highlighting the potential for synergistic treatments that combine traditional Chinese medicine with chemical agents.
Collapse
Affiliation(s)
- Hao Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yanchi Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Ying Yu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Dong Lv
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Sha Ma
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Mingju Gao
- Wenshan University, Wenshan 663099, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Cheng Yuan
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
2
|
Tang C, Shen Y, Xing Y, Wu Y, Zhang M, Zhang H, Zhao S, Zhou Z, Sun Y, Mo X, Wang W. 3D-Printed Stents Loaded with Panax notoginseng Saponin for Promoting Re-endothelialization and Reducing Local Inflammation in the Carotid Artery of Rabbits. ACS Biomater Sci Eng 2024; 10:6483-6497. [PMID: 39141849 DOI: 10.1021/acsbiomaterials.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Endovascular treatment (EVT) using stents has become the primary option for severe cerebrovascular stenosis. However, considerable challenges remain to be addressed, such as in-stent restenosis (ISR) and late thrombosis. Many modified stents have been developed to inhibit the hyperproliferation of vascular smooth muscle cells (SMCs) and protect vascular endothelial cells (VECs), thereby reducing such complications. Some modified stents, such as those infused with rapamycin, have improved in preventing acute thrombosis. However, ISR and late thrombosis, which are long-term complications, remain unavoidable. Panax notoginseng saponin (PNS), a traditional Chinese medicine consisting of various compounds, is beneficial in promoting the proliferation and migration of VECs and inhibiting the proliferation of SMCs. Herein, a 3D-printed polycaprolactone (PCL) stent loaded with PNS (PNS-PCL stent) was developed based on a previous study. In vitro studies confirmed that PNS promotes the migration and proliferation of VECs, which were damaged, by increasing the expression levels of microRNA-126, p-AKT, and endothelial nitric oxide synthase. In vivo, the PNS-PCL stents maintained the patency of the carotid artery in rabbits for up to three months, outperforming the PCL stents. The PNS-PCL stents may present a new solution for the EVT of cerebrovascular atherosclerotic stenosis in the future.
Collapse
Affiliation(s)
- Chaojie Tang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, PR China
| | - Yazhi Xing
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Yufan Wu
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Mianmian Zhang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - He Zhang
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing 100053, PR China
| | - Shuo Zhao
- Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Normal University, Shanghai 200234, PR China
| | - Zhiguo Zhou
- Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Normal University, Shanghai 200234, PR China
| | - Yongning Sun
- Department Cardiovascular Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, PR China
| | - Wu Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| |
Collapse
|
3
|
Liu Y, Niu P, Ji H, Chen Z, Zhai J, Jin X, Pang B, Zheng W, Zhang J, Yang F, Pang W. The use of Panax notoginseng saponins injections after intravenous thrombolysis in acute ischemic stroke: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1376025. [PMID: 38898926 PMCID: PMC11185952 DOI: 10.3389/fphar.2024.1376025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Background As a bioactive metabolite preparation widely used in acute ischemic stroke (AIS), the efficacy and safety of Panax notoginseng saponins injections (PNSI) in patients with AIS after intravenous thrombolysis remain to be evaluated. Methods This study included randomized controlled trials published before 26 April 2024 in 8 databases. AIS patients who received intravenous thrombolysis were included. The control group receiving conventional treatment and the treatment group receiving additional PNSI. Primary outcomes were selected as mortality, disability, and adverse events. Secondary outcomes were selected as all-cause mortality, improvement of neurological deficit, quality of life, and cerebral injury indicators. The revised Cochrane Risk of Bias tool was used to assess risk of bias. Risk ratio (RR) and mean differences (MD) were calculated for binary variables and continuous variables, respectively, based on a 95% confidence interval (CI). Results A total of 20 trials involving 1,856 participants were included. None of them reported mortality or disability. There was no significant difference in the adverse events [RR: 1.04; 95% CI: 0.60 to 1.81] and hemorrhagic transformation [RR: 0.99; 95% CI: 0.36 to 2.70] between the two groups. Compared to the control group, the treatment group had a better effect in neurological improvement assessed by National Institutes of Health Stroke Scale [MD: -2.91; 95% CI: -4.76 to -1.06], a better effect in activities of daily living changes in Barthel Index [MD: 9.37; 95% CI: 1.86 to 16.88], and a lower serum neuron-specific enolase level [MD: -2.08; 95% CI: -2.67 to -1.49]. Conclusion For AIS patients undergoing intravenous thrombolysis, the use of PNSI improved neurological deficits and enhanced activity of daily living in the short term without increasing the occurrence rate of adverse events. However, due to the moderate to very low certainty of evidence, it is advisable to conduct high-quality clinical trials to validate the findings of this study. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=466851, Identifier CRD42023466851.
Collapse
Affiliation(s)
- Yaoyuan Liu
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Puyu Niu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongchang Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhe Chen
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingbo Zhai
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyao Jin
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Pang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenke Zheng
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junhua Zhang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengwen Yang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wentai Pang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Yang Y, Chen W, Lin Z, Wu Y, Li Y, Xia X. Panax notoginseng saponins prevent dementia and oxidative stress in brains of SAMP8 mice by enhancing mitophagy. BMC Complement Med Ther 2024; 24:144. [PMID: 38575939 PMCID: PMC10993618 DOI: 10.1186/s12906-024-04403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/14/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is one of the distinctive features of neurons in patients with Alzheimer's disease (AD). Intraneuronal autophagosomes selectively phagocytose and degrade the damaged mitochondria, mitigating neuronal damage in AD. Panax notoginseng saponins (PNS) can effectively reduce oxidative stress and mitochondrial damage in the brain of animals with AD, but their exact mechanism of action is unknown. METHODS Senescence-accelerated mouse prone 8 (SAMP8) mice with age-related AD were treated with PNS for 8 weeks. The effects of PNS on learning and memory abilities, cerebral oxidative stress status, and hippocampus ultrastructure of mice were observed. Moreover, changes of the PTEN-induced putative kinase 1 (PINK1)-Parkin, which regulates ubiquitin-dependent mitophagy, and the recruit of downstream autophagy receptors were investigated. RESULTS PNS attenuated cognitive dysfunction in SAMP8 mice in the Morris water maze test. PNS also enhanced glutathione peroxidase and superoxide dismutase activities, and increased glutathione levels by 25.92% and 45.55% while inhibiting 8-hydroxydeoxyguanosine by 27.74% and the malondialdehyde production by 34.02% in the brains of SAMP8 mice. Our observation revealed the promotion of mitophagy, which was accompanied by an increase in microtubule-associated protein 1 light chain 3 (LC3) mRNA and 70.00% increase of LC3-II/I protein ratio in the brain tissues of PNS-treated mice. PNS treatment increased Parkin mRNA and protein expression by 62.80% and 43.80%, while increasing the mRNA transcription and protein expression of mitophagic receptors such as optineurin, and nuclear dot protein 52. CONCLUSION PNS enhanced the PINK1/Parkin pathway and facilitated mitophagy in the hippocampus, thereby preventing cerebral oxidative stress in SAMP8 mice. This may be a mechanism contributing to the cognition-improvement effect of PNS.
Collapse
Affiliation(s)
- Yingying Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Wenya Chen
- Key Laboratory of TCM Neuro-metabolism and Immunopharmacology of Guangxi Education Department, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Zhenmei Lin
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yijing Wu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yuqing Li
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Xing Xia
- Key Laboratory of TCM Neuro-metabolism and Immunopharmacology of Guangxi Education Department, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
5
|
Chen P, Gao Z, Guo M, Pan D, Zhang H, Du J, Shi D. Efficacy and safety of Panax notoginseng saponin injection in the treatment of acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2024; 15:1353662. [PMID: 38576488 PMCID: PMC10991745 DOI: 10.3389/fphar.2024.1353662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Purpose: This study aimed to assess the efficacy and safety of Panax notoginseng saponin (PNS) injection, when combined with conventional treatment (CT), for acute myocardial infarction (AMI). Methods: Comprehensive searches were conducted in seven databases from inception until 28 September 2023. The search aimed to identify relevant randomized controlled trials (RCTs) focusing on PNS injection in the context of AMI. This meta-analysis adhered to the PRISMA 2020 guidelines, and its protocol was registered with PROSPERO (number: CRD42023480131). Result: Twenty RCTs involving 1,881 patients were included. The meta-analysis revealed that PNS injection, used adjunctively with CT, significantly improved treatment outcomes compared to CT alone, as evidenced by the following points: (1) enhanced total effective rate [OR = 3.09, p < 0.05]; (2) decreased incidence of major adverse cardiac events [OR = 0.32, p < 0.05]; (3) reduction in myocardial infarct size [MD = -6.53, p < 0.05]; (4) lower ST segment elevation amplitude [MD = -0.48, p < 0.05]; (5) mitigated myocardial injury as indicated by decreased levels of creatine kinase isoenzymes [MD = -11.19, p < 0.05], cardiac troponin T [MD = -3.01, p < 0.05], and cardiac troponin I [MD = -10.72, p < 0.05]; (6) enhanced cardiac function, reflected in improved brain natriuretic peptide [MD = -91.57, p < 0.05], left ventricular ejection fraction [MD = 5.91, p < 0.05], left ventricular end-diastolic dimension [MD = -3.08, p < 0.05], and cardiac output [MD = 0.53, p < 0.05]; (7) reduced inflammatory response, as shown by lower levels of C-reactive protein [MD = -2.99, p < 0.05], tumor necrosis factor-α [MD = -6.47, p < 0.05], interleukin-6 [MD = -24.46, p < 0.05], and pentraxin-3 [MD = -2.26, p < 0.05]; (8) improved vascular endothelial function, demonstrated by decreased endothelin-1 [MD = -20.56, p < 0.05] and increased nitric oxide [MD = 1.33, p < 0.05]; (9) alleviated oxidative stress, evidenced by increased superoxide dismutase levels [MD = 25.84, p < 0.05]; (10) no significant difference in adverse events [OR = 1.00, p = 1.00]. Conclusion: This study highlighted the efficacy and safety of adjunctive PNS injections in enhancing AMI patient outcomes beyond CT alone. Future RCTs need to solidify these findings through rigorous methods. Systematic Review Registration: (https://www.crd.york.ac.uk/PROSPERO/), identifier (CRD42023480131).
Collapse
Affiliation(s)
- Pengfei Chen
- Xiyuan Hospital, Cohina Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuye Gao
- Xiyuan Hospital, Cohina Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Guo
- Xiyuan Hospital, Cohina Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deng Pan
- Xiyuan Hospital, Cohina Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, Cohina Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianpeng Du
- Xiyuan Hospital, Cohina Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, Cohina Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Liu T, Wang Y, Zhang M, Zhang J, Kang N, Zheng L, Ding Z. The Optimization Design of Macrophage Membrane Camouflaging Liposomes for Alleviating Ischemic Stroke Injury through Intranasal Delivery. Int J Mol Sci 2024; 25:2927. [PMID: 38474179 DOI: 10.3390/ijms25052927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Ischemic stroke is associated with a high mortality rate, and effective treatment strategies are currently lacking. In this study, we aimed to develop a novel nano delivery system to treat ischemic stroke via intranasal administration. A three-factor Box-Behnken experimental design was used to optimize the formulation of liposomes co-loaded with Panax notoginseng saponins (PNSs) and Ginsenoside Rg3 (Rg3) (Lip-Rg3/PNS). Macrophage membranes were coated onto the surface of the optimized liposomes to target the ischemic site of the brain. The double-loaded liposomes disguised by macrophage membranes (MM-Lip-Rg3/PNS) were spherical, in a "shell-core" structure, with encapsulation rates of 81.41% (PNS) and 93.81% (Rg3), and showed good stability. In vitro, MM-Lip-Rg3/PNS was taken up by brain endothelial cells via the clathrin-dependent endocytosis and micropinocytosis pathways. Network pharmacology experiments predicted that MM-Lip-Rg3/PNS could regulate multiple signaling pathways and treat ischemic stroke by reducing apoptosis and inflammatory responses. After 14 days of treatment with MM-Lip-Rg3/PNS, the survival rate, weight, and neurological score of middle cerebral artery occlusion (MCAO) rats significantly improved. The hematoxylin and eosin (H&E) and TUNEL staining results showed that MM-Lip-Rg3/PNS can reduce neuronal apoptosis and inflammatory cell infiltration and protect the ischemic brain. In vivo biological experiments have shown that free Rg3, PNS, and MM-Lip-Rg3/PNS can alleviate inflammation and apoptosis, especially MM-Lip-Rg3/PNS, indicating that biomimetic liposomes can improve the therapeutic effects of drugs. Overall, MM-Lip-Rg3/PNS is a potential biomimetic nano targeted formulation for ischemic stroke therapy.
Collapse
Affiliation(s)
- Tianshu Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Mengfan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Naijin Kang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Linlin Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhiying Ding
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Li H, Wang YG, Chen TF, Gao YH, Song L, Yang YF, Gao Y, Huo W, Zhang GP. Panax notoginseng saponin alleviates pulmonary fibrosis in rats by modulating the renin-angiotensin system. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116979. [PMID: 37532070 DOI: 10.1016/j.jep.2023.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a chronic, progressive, and often fatal interstitial lung disease. Traditional Chinese medicine formulations and their active ingredients have shown potential in the treatment of PF. Panax notoginseng saponin (PNS) is extracted from the widely used traditional Chinese medicinal herb Panax notoginseng (Burkill) F. H. Chen, exhibiting therapeutic effects in pulmonary diseases treatment. AIM OF THE STUDY This study aimed to investigate the effects and elucidate possible potential mechanisms of PNS on bleomycin (BLM)-induced PF in rats. MATERIALS AND METHODS PF was induced in rats by intratracheal administration of bleomycin (BLM, 5 mg/kg). After disease model induction, the rats were treated with PNS (50, 100, or 200 mg/kg per day) or pirfenidone (PFD, 50 mg/kg per day) for 28 days. Lung function, histopathological changes, collagen deposition, and E- and N-cadherin levels in lung tissue were evaluated. The mechanism of action of PNS was investigated using tandem mass tag-based quantitative proteomics analysis. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were performed to verify the proteomic results. RESULTS PNS treatment improved lung function, ameliorated the BLM-induced increase in the lung coefficient, attenuated the degree of alveolar inflammation and fibrosis, and reduced the elevated collagen level in PF rats. PNS treatment also down-regulated the expression of N-cadherin while up-regulating the expression of E-cadherin. Proteomic and bioinformatic analyses revealed that the renin-angiotensin system (RAS) was closely related to the therapeutic effect of PNS. Immunohistochemistry, Western blot, and ELISA results indicated that PNS exerted its anti-fibrotic effect via regulation of the balance between the angiotensin-converting enzyme (ACE)-angiotensin (Ang)II-AngII receptor type 1 (AT1R) and ACE2-Ang(1-7)-MasR axes. CONCLUSIONS PNS ameliorates BLM-induced PF in rats by modulating the RAS homeostasis, and is a new potential therapeutic agent for PF.
Collapse
Affiliation(s)
- Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Yu-Guang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Teng-Fei Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Yun-Hang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Ling Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Yi-Fei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Wang Huo
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Guang-Ping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| |
Collapse
|
8
|
Li S, Zhang H, Huai J, Wang H, Li S, Zhuang L, Zhang J. An online preparative high-performance liquid chromatography system with enrichment and purification modes for the efficient and systematic separation of Panax notoginseng saponins. J Chromatogr A 2023; 1709:464378. [PMID: 37741221 DOI: 10.1016/j.chroma.2023.464378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
In this study, an online preparative high-performance liquid chromatography (prep-HPLC) system based on the combination of the enrichment and purification modes for the efficient and systematic separation of Panax notoginseng saponins (PNS) was achieved. Five separation columns were used for the first and second separation of target components, eighteen trap columns were used to capture the effluents from the first separation or loading the trapped sample effluents, and a two-position eight-port valve was used to switch between the first and second separations. The conditions for the first and second separation of PNS were simulated and optimized with the online prep-HPLC system. Then, the PNS were separated using optimized chromatographic conditions. Notably, 14 monomer compounds with >90% purity (11 compounds with purity >97%) were simultaneously isolated from PNS using the above self-developed device, and their chemical structures were identified. Moreover, the separation time was less than 33.0 h. After 6 repeated enrichment and purification, the weight of each compound obtained was more than 5.0 mg, with compound 2 weighing over 900 mg. In brief, the self-developed prep-HPLC system, which integrated enrichment and purification, is suitable for the efficient and systematic separation of PNS and has broad application prospects, especially for the separation of complex chemical components in natural products.
Collapse
Affiliation(s)
- Shuai Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Han Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Jie Huai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Huixia Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Shengfu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Linwu Zhuang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222000, China.
| | - Junjie Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222000, China.
| |
Collapse
|