1
|
Saravanan M, P AK, P ASUP, Sekar D. Identification and expression of microRNA-34a-3p and its target Rapamycin-insensitive companion of mTOR (RICTOR) in polycystic ovarian syndrome in South Indian population. ACTA MARISIENSIS - SERIA MEDICA 2024; 70:163-168. [DOI: 10.2478/amma-2024-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Abstract
Objectives
Polycystic Ovarian Syndrome (PCOS) is a complex condition affecting 4% to 26% of the world-wide population and is characterized by enlarged ovaries and cysts. These cysts are actually immature ovarian follicles that have failed to mature and release an egg, which is a process known as anovulation. This study aims to explore the potential of miRNA as therapeutic and diagnostic biomarkers for PCOS, focusing on the identification and expression analysis of novel candidates like miR-34a-3p and its target Rapamycin-insensitive companion of mTOR (RICTOR). The objective is to enhance our understanding of the molecular mechanisms associated with PCOS, particularly the roles of miRNAs in its pathogenesis. In future, we plan to test miR-34a-3p mimics/inhibitors and RICTOR downregulation to improve insulin sensitivity and ovarian function. We will also explore combined therapies and conduct trials to assess their efficacy and safety in PCOS patients, aiming to develop practical treatments for PCOS.
Methods
National Centre for Biotechnology Information (NCBI) database, TargetScan, and miRbase were explored to identify the novel miRNA candidates, resulting in the discovery of miR-34a-3p. Secondary structure was constructed using RNA Fold, and Ct and melt curve analysis assessed its statistical expression levels. Additionally, similar research was conducted to analyze the expression levels of RICTOR, a target of miR-34a-3p.
Result
The secondary structure showed miR-34a-3p has a minimum free energy of −47.20 kcal. Additionally shows dysregulation in both miR-34a-3p and RICTOR in individuals with PCOS. Furthermore, overexpression of RICTOR and decrease in miR-34a-3p levels suggest their possible role in the pathogenesis of PCOS.
Conclusion
In PCOS, miR-34a-3p is downregulated, and there’s an inverse relationship between miR-34a-3p and RICTOR levels. qRT-PCR results showed high RICTOR expression in PCOS patients. RICTOR plays a crucial role in the mTOR pathway, affecting insulin signaling, metabolism, and cellular growth, which are all implicated in PCOS.
Collapse
Affiliation(s)
- Manya Saravanan
- Saveetha Medical College and Hospital , Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University , Chennai , India
| | - Ameya K P
- RNA Biology Lab, Saveetha Dental College and Hospital , Saveetha Institute of Medical And Technical Science (SIMATS), Saveetha University , Chennai , India
| | - Ashikha Shirin Usman P P
- RNA Biology Lab, Saveetha Dental College and Hospital , Saveetha Institute of Medical And Technical Science (SIMATS), Saveetha University , Chennai , India
| | - Durairaj Sekar
- RNA Biology Lab, Saveetha Dental College and Hospital , Saveetha Institute of Medical And Technical Science (SIMATS), Saveetha University , Chennai , India
| |
Collapse
|
2
|
Sasako T. Exploring mechanisms of insulin action and strategies to treat diabetes. Endocr J 2024; 71:651-660. [PMID: 38811207 DOI: 10.1507/endocrj.ej24-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Insulin is a hormone that positively regulates anabolism and cell growth, whereas diabetes mellitus is a disease characterized by hyperglycemia associated with impaired insulin action. My colleagues and I have elucidated multifaceted insulin action in various tissues mainly by means of model mice. In the liver, insulin regulates endoplasmic reticulum (ER) stress response during feeding, whereas ER stress 'response failure' contributes to the development of steatohepatitis comorbid with diabetes. Not only the liver but also the proximal tubules of the kidney are important in the regulation of gluconeogenesis, and we revealed that insulin suppresses gluconeogenesis in accordance with absorbed glucose in the latter tissue. In skeletal muscle, another important insulin-targeted tissue, impaired insulin/IGF-1 signaling leads not only to sarcopenia, an aging-related disease of skeletal muscle, but also to osteopenia and shorter longevity. Aging is regulated by adipokines as well, and it should be considered that aging could be accelerated by 'imbalanced adipokines' in patients with a genetic background of progeria. Moreover, we reported the effects of intensive multifactorial intervention on diabetic vascular complications and mortality in patients with type 2 diabetes in a large-scale clinical trial, the J-DOIT3, and the results of subsequent sub-analyses of renal events and fracture events. Various approaches of research enable us of endocrinologists to elucidate the physiology of hormone signaling, the mechanisms underlying the development of endocrine diseases, and the appropriate treatment measures. These approaches also raise fundamental questions, but addressing them in an appropriate manner will surely contribute to the further development of endocrinology.
Collapse
Affiliation(s)
- Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Li H, Ren Q, Shi M, Ma L, Fu P. Lactate metabolism and acute kidney injury. Chin Med J (Engl) 2024:00029330-990000000-01083. [PMID: 38802283 DOI: 10.1097/cm9.0000000000003142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 05/29/2024] Open
Abstract
ABSTRACT Acute kidney injury (AKI) is a common clinically critical syndrome in hospitalized patients with high morbidity and mortality. At present, the mechanism of AKI has not been fully elucidated, and no therapeutic drugs exist. As known, glycolytic product lactate is a key metabolite in physiological and pathological processes. The kidney is an important gluconeogenic organ, where lactate is the primary substrate of renal gluconeogenesis in physiological conditions. During AKI, altered glycolysis and gluconeogenesis in kidneys significantly disturb the lactate metabolic balance, which exert impacts on the severity and prognosis of AKI. Additionally, lactate-derived posttranslational modification, namely lactylation, is novel to AKI as it could regulate gene transcription of metabolic enzymes involved in glycolysis or Warburg effect. Protein lactylation widely exists in human tissues and may severely affect non-histone functions. Moreover, the strategies of intervening lactate metabolic pathways are expected to bring a new dawn for the treatment of AKI. This review focused on renal lactate metabolism, especially in proximal renal tubules after AKI, and updated recent advances of lactylation modification, which may help to explore potential therapeutic targets against AKI.
Collapse
Affiliation(s)
- Hui Li
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | |
Collapse
|
4
|
Pfeffer T, Krug SM, Kracke T, Schürfeld R, Colbatzky F, Kirschner P, Medert R, Freichel M, Schumacher D, Bartosova M, Zarogiannis SG, Muckenthaler MU, Altamura S, Pezer S, Volk N, Schwab C, Duensing S, Fleming T, Heidenreich E, Zschocke J, Hell R, Poschet G, Schmitt CP, Peters V. Knock-out of dipeptidase CN2 in human proximal tubular cells disrupts dipeptide and amino acid homeostasis and para- and transcellular solute transport. Acta Physiol (Oxf) 2024; 240:e14126. [PMID: 38517248 DOI: 10.1111/apha.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
AIM Although of potential biomedical relevance, dipeptide metabolism has hardly been studied. We found the dipeptidase carnosinase-2 (CN2) to be abundant in human proximal tubules, which regulate water and solute homeostasis. We therefore hypothesized, that CN2 has a key metabolic role, impacting proximal tubular transport function. METHODS A knockout of the CN2 gene (CNDP2-KO) was generated in human proximal tubule cells and characterized by metabolomics, RNA-seq analysis, paracellular permeability analysis and ion transport. RESULTS CNDP2-KO in human proximal tubule cells resulted in the accumulation of cellular dipeptides, reduction of amino acids and imbalance of related metabolic pathways, and of energy supply. RNA-seq analyses indicated altered protein metabolism and ion transport. Detailed functional studies demonstrated lower CNDP2-KO cell viability and proliferation, and altered ion and macromolecule transport via trans- and paracellular pathways. Regulatory and transport protein abundance was disturbed, either as a consequence of the metabolic imbalance or the resulting functional disequilibrium. CONCLUSION CN2 function has a major impact on intracellular amino acid and dipeptide metabolism and is essential for key metabolic and regulatory functions of proximal tubular cells. These findings deserve in vivo analysis of the relevance of CN2 for nephron function and regulation of body homeostasis.
Collapse
Affiliation(s)
- Tilman Pfeffer
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, CBF, Berlin, Germany
| | - Tamara Kracke
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Robin Schürfeld
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Florian Colbatzky
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Philip Kirschner
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Maria Bartosova
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Sotiris G Zarogiannis
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), EMBL and University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), EMBL and University of Heidelberg, Heidelberg, Germany
| | - Silvia Pezer
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Duensing
- Department of Urology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Elena Heidenreich
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Claus P Schmitt
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Verena Peters
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Jo S, Alejandro EU. RISING STARS: Mechanistic insights into maternal-fetal cross talk and islet beta-cell development. J Endocrinol 2023; 259:e230069. [PMID: 37855321 PMCID: PMC10692651 DOI: 10.1530/joe-23-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
The metabolic health trajectory of an individual is shaped as early as prepregnancy, during pregnancy, and lactation period. Both maternal nutrition and metabolic health status are critical factors in the programming of offspring toward an increased propensity to developing type 2 diabetes in adulthood. Pancreatic beta-cells, part of the endocrine islets, which are nutrient-sensitive tissues important for glucose metabolism, are primed early in life (the first 1000 days in humans) with limited plasticity later in life. This suggests the high importance of the developmental window of programming in utero and early in life. This review will focus on how changes to the maternal milieu increase offspring's susceptibility to diabetes through changes in pancreatic beta-cell mass and function and discuss potential mechanisms by which placental-driven nutrient availability, hormones, exosomes, and immune alterations that may impact beta-cell development in utero, thereby affecting susceptibility to type 2 diabetes in adulthood.
Collapse
Affiliation(s)
- Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Krishnan HR, Vallerini GP, Gavin HE, Guizzetti M, Rizavi HS, Gavin DP, Sharma RP. Effects of alcohol and PARP inhibition on RNA ribosomal engagement in cortical excitatory neurons. Front Mol Neurosci 2023; 16:1125160. [PMID: 37113267 PMCID: PMC10126255 DOI: 10.3389/fnmol.2023.1125160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
We report on the effects of ethanol (EtOH) and Poly (ADP-ribose) polymerase (PARP) inhibition on RNA ribosomal engagement, as a proxy for protein translation, in prefrontal cortical (PFC) pyramidal neurons. We hypothesized that EtOH induces a shift in RNA ribosomal-engagement (RE) in PFC pyramidal neurons, and that many of these changes can be reversed using a PARP inhibitor. We utilized the translating ribosome affinity purification (TRAP) technique to isolate cell type-specific RNA. Transgenic mice with EGFP-tagged Rpl10a ribosomal protein expressed only in CaMKIIα-expressing pyramidal cells were administered EtOH or normal saline (CTL) i.p. twice a day, for four consecutive days. On the fourth day, a sub-group of mice that received EtOH in the previous three days received a combination of EtOH and the PARP inhibitor ABT-888 (EtOH + ABT-888). PFC tissue was processed to isolate both, CaMKIIα pyramidal cell-type specific ribosomal-engaged RNA (TRAP-RNA), as well as genomically expressed total-RNA from whole tissue, which were submitted for RNA-seq. We observed EtOH effects on RE transcripts in pyramidal cells and furthermore treatment with a PARP inhibitor "reversed" these effects. The PARP inhibitor ABT-888 reversed 82% of the EtOH-induced changes in RE (TRAP-RNA), and similarly 83% in the total-RNA transcripts. We identified Insulin Receptor Signaling as highly enriched in the ethanol-regulated and PARP-reverted RE pool and validated five participating genes from this pathway. To our knowledge, this is the first description of the effects of EtOH on excitatory neuron RE transcripts from total-RNA and provides insights into PARP-mediated regulation of EtOH effects.
Collapse
Affiliation(s)
- Harish R. Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Gian Paolo Vallerini
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Hannah E. Gavin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Hooriyah S. Rizavi
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - David P. Gavin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Rajiv P. Sharma
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|