1
|
Gautam AK, Kumar P, Kumar V, Singh A, Mahata T, Maity B, Yadav S, Kumar D, Singh S, Saha S, Vijayakumar MR. Preclinical evaluation of dalbergin loaded PLGA-galactose-modified nanoparticles against hepatocellular carcinoma via inhibition of the AKT/NF-κB signaling pathway. Int Immunopharmacol 2024; 140:112813. [PMID: 39088916 DOI: 10.1016/j.intimp.2024.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
Prior research has shown the effectiveness of dalbergin (DL), dalbergin nanoformulation (DLF), and dalbergin-loaded PLGA-galactose-modified nanoparticles (DLMF) in treating hepatocellular carcinoma (HCC) cells. The present investigation constructs upon our previous research and delves into the molecular mechanisms contributing to the anticancer effects of DLF and DLMF. This study examined the anti-cancer effects of DL, DLF, and DLMF by diethyl nitrosamine (DEN)-induced HCC model in albino Wistar rats. In addition, we performed biochemical, antioxidant, lipid profile tests, and histological studies of liver tissue. The anticancer efficacy of DLMF is equivalent to that of 5-fluorouracil, a commercially available therapy for HCC. Immunoblotting studies revealed a reduction in the expression of many apoptotic markers, such as p53, BAX, and Cyt-C, in HCC. Conversely, the expression of Bcl-2, TNF-α, NFκB, p-AKT, and STAT-3 was elevated. Nevertheless, the administration of DL, DLF, and DLMF effectively controlled the levels of these apoptotic markers, resulting in a considerable decrease in the expression of Bcl-2, TNF-α, NFκB, p-AKT, and STAT-3. Specifically, the activation of TNF-alpha and STAT-3 triggers the signalling pathways that include the Bcl-2 family of proteins, Cyt-C, caspase 3, and 9. This ultimately leads to apoptosis and the suppression of cell growth. Furthermore, metabolomic analysis using 1H NMR indicated that the metabolites of animals reverted to normal levels after the treatment.
Collapse
Affiliation(s)
- Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India; Department of Pharmacology, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226031, Uttar Pradesh, India
| | - Vipin Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Amita Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Tarun Mahata
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sachin Yadav
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sanjay Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - M R Vijayakumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India.
| |
Collapse
|
2
|
Mateen A, Khan A, Khan I, Ahmad L, Khan A, Salam A. Formulation development, characterization, and evaluation of sorafenib-loaded PLGA-chitosan nanoparticles. Front Pharmacol 2024; 15:1465363. [PMID: 39444599 PMCID: PMC11496126 DOI: 10.3389/fphar.2024.1465363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
The basic purpose of this work was to develop environmentally friendly, biodegradable, and biocompatible polymeric nanoparticles of sorafenib that can effectively release the desired drug in a customized and controlled manner for targeting hepatocellular carcinoma. The solvent evaporation technique was employed for the synthesis of sorafenib-loaded PLGA-chitosan nanoparticles, followed by various experimental specifications and compatibility studies using poloxamer 407 as the stabilizer. The best nanoparticles thus synthesized were selected to be used for cytotoxicity investigations through in vitro and in vivo assessments. For the in vitro drug release tests, the dialysis bag diffusion technique was used. For both chitosan nanoparticles and PLGA loaded with sorafenib, a biphasic release pattern was found, exhibiting a protracted release lasting 10 days after a 24-h burst release. As experimental animals, rabbits were utilized to evaluate different in vivo pharmacokinetic properties of the selected formulations. Plasma samples were extracted with acetonitrile and analyzed through the developed HPLC method. Pharmacokinetic parameters such as AUC0-t, Cmax MRT, Vd, and half-life (t1/2) were enhanced significantly (p ≤ 0.001), while clearance was considerably decreased (p ≤ 0.001) for the chosen synthesized nanoparticles in contrast to the commercially accessible sorafenib formulation (Nexavar®). The cytotoxicity of the reference drug and sorafenib-loaded PLGA and chitosan nanoparticles was calculated by performing an MTT assay against HepG2 cell lines. The developed polymeric sorafenib nanoformulations possess the appropriate physicochemical properties, better targeting, surface morphology, and prolonged release kinetics. The pharmacokinetic parameters were improved significantly when the results were compared with commercially available sorafenib formulations.
Collapse
Affiliation(s)
- Abdul Mateen
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Abad Khan
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Ismail Khan
- HBS Institute of Healthcare & Allied Health Sciences, Islamabad, Pakistan
| | - Lateef Ahmad
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Amjad Khan
- Department of Pharmacy Kohat University of Science and Technology (KUST) Kohat, Kohat, Pakistan
| | - Abdul Salam
- Institute of Pathology and Diagnostics Medicine, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
3
|
Niu C, Zhang J, Okolo PI. Liver cancer wars: plant-derived polyphenols strike back. Med Oncol 2024; 41:116. [PMID: 38625672 DOI: 10.1007/s12032-024-02353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Liver cancer currently represents the leading cause of cancer-related death worldwide. The majority of liver cancer arises in the context of chronic inflammation and cirrhosis. Surgery, radiation therapy, and chemotherapy have been the guideline-recommended treatment options for decades. Despite enormous advances in the field of liver cancer therapy, an effective cure is yet to be found. Plant-derived polyphenols constitute a large family of phytochemicals, with pleiotropic effects and little toxicity. They can drive cellular events and modify multiple signaling pathways which involves initiation, progression and metastasis of liver cancer and play an important role in contributing to anti-liver cancer drug development. The potential of plant-derived polyphenols for treating liver cancer has gained attention from research clinicians and pharmaceutical scientists worldwide in the last decades. This review overviews hepatic carcinogenesis and briefly discusses anti-liver cancer mechanisms associated with plant-derived polyphenols, specifically involving cell proliferation, apoptosis, autophagy, angiogenesis, oxidative stress, inflammation, and metastasis. We focus on plant-derived polyphenols with experiment-based chemopreventive and chemotherapeutic properties against liver cancer and generalize their basic molecular mechanisms of action. We also discuss potential opportunities and challenges in translating plant-derived polyphenols from preclinical success into clinical applications.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
4
|
Jaiswal S, Anjum MM, Arya DK, Thakur S, Pandey P, Deepak P, Kanaujiya S, Anand S, Kaushik AS, Mishra V, Rajinikanth PS. Surface entrenched β-sitosterol niosomes for enhanced cardioprotective activity against isoproterenol induced cardiotoxicity in rats. Int J Pharm 2024; 653:123872. [PMID: 38336178 DOI: 10.1016/j.ijpharm.2024.123872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Cardiotoxicity (CT) is a severe condition that negatively impacts heart function. β-sitosterol (BS) is a group of phytosterols and known for various pharmacological benefits, such as managing diabetes, cardiac protection, and neuroprotection. This study aims to develop niosomes (NS) containing BS, utilizing cholesterol as the lipid and Tween 80 as the stabilizer. The research focuses on designing and evaluating both conventional BS-NS and hyaluronic acid (HA) modified NS (BS-HA-NS) to enhance the specificity and efficacy of BS within cardiac tissue. The resulting niosomal formulation was spherical, with a size of about 158.51 ± 0.57 nm, an entrapment efficiency of 93.56 ± 1.48 %, and a drug loading of 8.07 ± 1.62 %. To evaluate cytotoxicity on H9c2 heart cells, the MTT assay was used. The cellular uptake of BS-NS and BS-HA-NS was confirmed by confocal microscopy on H9c2 cardiac cells. Administering BS-NS and BS-HA-NS intravenously at a dose of 10 mg/kg showed the ability to significantly decrease the levels of cardiac troponin-I (cTn-I), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and lipid peroxidation (MDA). Tissue histopathology indicated a substantial potential for repairing cardiac tissue after treatment with BS-NS and BS-HA-NS and strong cardioprotection against ISO induced myocardial tissue damages. Thus, enhancing BS's therapeutic effectiveness through niosome surface modification holds promise for mitigating cardiac damage resulting from CT.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sunita Thakur
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shubham Kanaujiya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sneha Anand
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | | |
Collapse
|