1
|
Santiago MJ, Chinnapaiyan S, Panda K, Rahman MS, Ghorai S, Rahman I, Black SM, Liu Y, Unwalla HJ. Altered Host microRNAomics in HIV Infections: Therapeutic Potentials and Limitations. Int J Mol Sci 2024; 25:8809. [PMID: 39201495 PMCID: PMC11354509 DOI: 10.3390/ijms25168809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
microRNAs have emerged as essential regulators of health and disease, attracting significant attention from researchers across diverse disciplines. Following their identification as noncoding oligonucleotides intricately involved in post-transcriptional regulation of protein expression, extensive efforts were devoted to elucidating and validating their roles in fundamental metabolic pathways and multiple pathologies. Viral infections are significant modifiers of the host microRNAome. Specifically, the Human Immunodeficiency Virus (HIV), which affects approximately 39 million people worldwide and has no definitive cure, was reported to induce significant changes in host cell miRNA profiles. Identifying and understanding the effects of the aberrant microRNAome holds potential for early detection and therapeutic designs. This review presents a comprehensive overview of the impact of HIV on host microRNAome. We aim to review the cause-and-effect relationship between the HIV-induced aberrant microRNAome that underscores miRNA's therapeutic potential and acknowledge its limitations.
Collapse
Affiliation(s)
- Maria J. Santiago
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA;
| | - Stephen M. Black
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| |
Collapse
|
2
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Pant K, Ali H, Paudel KR, Dureja H, Singh TG, Singh SK, Dua K. ncRNAs and their impact on dopaminergic neurons: Autophagy pathways in Parkinson's disease. Ageing Res Rev 2024; 98:102327. [PMID: 38734148 DOI: 10.1016/j.arr.2024.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
3
|
Goleij P, Babamohamadi M, Rezaee A, Sanaye PM, Tabari MAK, Sadreddini S, Arefnezhad R, Motedayyen H. Types of RNA therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:41-63. [PMID: 38360005 DOI: 10.1016/bs.pmbts.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA therapy is one of the new treatments using small RNA molecules to target and regulate gene expression. It involves the application of synthetic or modified RNA molecules to inhibit the expression of disease-causing genes specifically. In other words, it silences genes and suppresses the transcription process. The main theory behind RNA therapy is that RNA molecules can prevent the translation into proteins by binding to specific messenger RNA (mRNA) molecules. By targeting disease-related mRNA molecules, RNA therapy can effectively silence or reduce the development of harmful proteins. There are different types of RNA molecules used in therapy, including small interfering RNAs (siRNAs), microRNAs (miRNAs), aptamer, ribozyme, and antisense oligonucleotides (ASOs). These molecules are designed to complement specific mRNA sequences, allowing them to bind and degrade the targeted mRNA or prevent its translation into protein. Nanotechnology is also highlighted to increase the efficacy of RNA-based drugs. In this chapter, while examining various methods of RNA therapy, we discuss the advantages and challenges of each.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehregan Babamohamadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran; Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sarvin Sadreddini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Kon T, Forrest SL, Lee S, Martinez-Valbuena I, Li J, Nassir N, Uddin MJ, Lang AE, Kovacs GG. Neuronal SNCA transcription during Lewy body formation. Acta Neuropathol Commun 2023; 11:185. [PMID: 37996943 PMCID: PMC10666428 DOI: 10.1186/s40478-023-01687-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Misfolded α-synuclein (α-syn) is believed to contribute to neurodegeneration in Lewy body disease (LBD) based on considerable evidence including a gene-dosage effect observed in relation to point mutations and multiplication of SNCA in familial Parkinson's disease. A contradictory concept proposes early loss of the physiological α-syn as the major driver of neurodegeneration. There is a paucity of data on SNCA transcripts in various α-syn immunoreactive cytopathologies. Here, the total cell body, nuclear, and cytoplasmic area density of SNCA transcripts in neurons without and with various α-syn immunoreactive cytopathologies in the substantia nigra and amygdala in autopsy cases of LBD (n = 5) were evaluated using RNAscope combined with immunofluorescence for disease-associated α-syn. Single-nucleus RNA sequencing was performed to elucidate cell-type specific SNCA expression in non-diseased frontal cortex (n = 3). SNCA transcripts were observed in the neuronal nucleus and cytoplasm in neurons without α-syn, those containing punctate α-syn immunoreactivity, irregular-shaped compact inclusion, and brainstem-type and cortical-type LBs. However, SNCA transcripts were only rarely found in the α-syn immunoreactive LB areas. The total cell body SNCA transcript area densities in neurons with punctate α-syn immunoreactivity were preserved but were significantly reduced in neurons with compact α-syn inclusions both in the substantia nigra and amygdala. This reduction was also observed in the cytoplasm but not in the nucleus. Only single SNCA transcripts were detected in astrocytes with or without disease-associated α-syn immunoreactivity in the amygdala. Single-nucleus RNA sequencing revealed that excitatory and inhibitory neurons, oligodendrocyte progenitor cells, oligodendrocytes, and homeostatic microglia expressed SNCA transcripts, while expression was largely absent in astrocytes and microglia. The preserved cellular SNCA expression in the more abundant non-Lewy body type α-syn cytopathologies might provide a pool for local protein production that can aggregate and serve as a seed for misfolded α-syn. Successful segregation of disease-associated α-syn is associated with the exhaustion of SNCA production in the terminal cytopathology, the Lewy body. Our observations inform therapy development focusing on targeting SNCA transcription in LBD.
Collapse
Affiliation(s)
- Tomoya Kon
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada
| | | | - Mohammed J Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- GenomeArc Inc, Toronto, ON, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada
- Edmund J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Ave., Rm 6KD414, Tanz CRND, Krembil Discovery Tower, Toronto, ON, M5T 0S8, Canada.
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Edmund J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada.
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|