Zeng P, Zhou H, Guo P, Han N, Zhang X, Yin Z, Xia W, Huang J, Zeng Q. Bushen Huoxue formula for the treatment of diminished ovarian reserve: A combined metabolomics and integrated network pharmacology analysis.
Heliyon 2023;
9:e20104. [PMID:
37809906 PMCID:
PMC10559866 DOI:
10.1016/j.heliyon.2023.e20104]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Objective
This study aimed to explore the mechanism of the Bushen Huoxue Formula (BHF) in treating diminished ovarian reserve (DOR) through the use of metabolomics and integrated network pharmacology.
Methods
The study involved 24 non-pregnant female Sprague-Dawley rats, divided into four groups of six rats each: control, model, BHF, and DHEA (n = 6 per group). The model group was induced with DOR by administering Tripterygium glycosides orally [50 mg (kg·d)-1] for 14 days. Subsequently, BHF and Dehydroepiandrosterone (DHEA) treatments were given to the respective groups. Ovarian reserve function was assessed by measuring anti-Müllerian hormone (AMH), estradiol (E2), and follicle-stimulating hormone (FSH) levels and conducting hematoxylin-eosin staining. In addition, UHPLC-QTOF-MS analysis was performed to identify differential metabolites and pathways in DOR rats treated with BHF. In this study, LC-MS was utilized to identify the active ingredients of BHF, while network pharmacology was employed to investigate the correlations between BHF-related genes and DOR-related genes. An integrated analysis of metabonomics and network pharmacology was conducted to elucidate the mechanisms underlying the efficacy of BHF in treating DOR.
Results
The model group exhibited a poor general condition and a significant decrease in the number of primordial, primary, and secondary follicles (P < 0.05) when compared to the control group. However, BHF intervention resulted in an increase in the number of primordial, primary, and secondary follicles (P < 0.05), along with elevated levels of AMH and E2 (P < 0.05), and a decrease in FSH levels (P < 0.05) in DOR rats. The modeling process identified eleven classes of metabolites, including cholesterol esters (CE), diacylglycerols (DAG), hexosylceramides (HCER), lysophosphatidylcholines (LPC), phosphatidylcholines (PC), phosphatidylethanolamines (PE), sphingomyelins (SM), ceramides (CER), free fatty acids (FFA), triacylglycerols (TAG), and lysophosphatidylethanolamines (LPE). The study found that PC, CE, DAG, and TAG are important metabolites in the treatment of DOR with BHF. LC-MS analysis showed that there were 183 active ingredients in ESI(+) mode and 51 in ESI(-) mode. Network pharmacology analysis identified 285 potential genes associated with BHF treatment for DOR in ESI(+) mode and 177 in ESI(-) mode. The combined analysis indicated that linoleic acid metabolism is the primary pathway in treating DOR with BHF.
Conclusion
BHF was found to improve ovarian function in rats with DOR induced by Tripterygium glycosides. The study identified key metabolites such as phosphatidylcholine (PC), cholesteryl ester (CE), diacylglycerol (DAG), triacylglycerol (TAG), and the linoleic acid metabolism pathway, which were crucial in improving ovarian function in DOR rats treated with BHF.
Collapse